51
|
Earth-Abundant 3d Transition Metal Catalysts for Hydroalkoxylation and Hydroamination of Unactivated Alkenes. Catalysts 2021. [DOI: 10.3390/catal11060674] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
This review summarizes the most noteworthy achievements in the field of C–O and C–N bond formation by hydroalkoxylation and hydroamination reactions on unactivated alkenes (including 1,2- and 1,3-dienes) promoted by earth-abundant 3d transition metal catalysts based on manganese, iron, cobalt, nickel, copper and zinc. The relevant literature from 2012 until early 2021 has been covered.
Collapse
|
52
|
Xia J, Hirai T, Katayama S, Nagae H, Zhang W, Mashima K. Mechanistic Study of Ni and Cu Dual Catalyst for Asymmetric C–C Bond Formation; Asymmetric Coupling of 1,3-Dienes with C-nucleophiles to Construct Vicinal Stereocenters. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01626] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jingzhao Xia
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People’s Republic of China
| | - Takahiro Hirai
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Shoichiro Katayama
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Haruki Nagae
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People’s Republic of China
| | - Kazushi Mashima
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
53
|
Morimoto Y, Hamada M, Takano S, Mochizuki K, Kochi T, Kakiuchi F. 2:1 versus 1:1 Coupling of Alkylacetylenes with Secondary Amines: Selectivity Switching in 8-Quinolinolato Rhodium Catalysis. Org Lett 2021; 23:3803-3808. [PMID: 33683910 DOI: 10.1021/acs.orglett.1c00094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Both 2:1 and 1:1 couplings of alkylacetylenes with secondary amines were achieved using 8-quinolinolato rhodium catalysts and CsF. The 2:1/1:1 selectivity was switched by choosing the reaction solvent. In DMA, an unprecedented 2:1 coupling reaction of alkylacetylenes with amines proceeded to give 2-aminodiene products. One-pot 2:1 coupling/reduction provided rapid access to various allylamines, while one-pot coupling/hydrolysis gave enones as products. In toluene, anti-Markovnikov hydroamination occurred under relatively mild conditions to give 1:1 coupling products.
Collapse
Affiliation(s)
- Yoshihiko Morimoto
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Moe Hamada
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Shotaro Takano
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Katsufumi Mochizuki
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Takuya Kochi
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Fumitoshi Kakiuchi
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| |
Collapse
|
54
|
Jiang WS, Ji DW, Zhang WS, Zhang G, Min XT, Hu YC, Jiang XL, Chen QA. Orthogonal Regulation of Nucleophilic and Electrophilic Sites in Pd-Catalyzed Regiodivergent Couplings between Indazoles and Isoprene. Angew Chem Int Ed Engl 2021; 60:8321-8328. [PMID: 33463001 DOI: 10.1002/anie.202100137] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Indexed: 12/29/2022]
Abstract
Depending on the reactant property and reaction mechanism, one major regioisomer can be favored in a reaction that involves multiple active sites. Herein, an orthogonal regulation of nucleophilic and electrophilic sites in the regiodivergent hydroamination of isoprene with indazoles is demonstrated. Under Pd-hydride catalysis, the 1,2- or 4,3-insertion pathway with respect to the electrophilic sites on isoprene could be controlled by the choice of ligands. In terms of the nucleophilic sites on indazoles, the reaction occurs at either the N1 - or N2 -position of indazoles is governed by the acid co-catalysts. Preliminary experimental studies have been performed to rationalize the mechanism and regioselectivity. This study not only contributes a practical tool for selective functionalization of isoprene, but also provides a guide to manipulate the regioselectivity for the N-functionalization of indazoles.
Collapse
Affiliation(s)
- Wen-Shuang Jiang
- Department of Medicinal Chemistry, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China.,Dalian Institute of Chemical Physics, University of Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Ding-Wei Ji
- Dalian Institute of Chemical Physics, University of Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Wei-Song Zhang
- Dalian Institute of Chemical Physics, University of Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Gong Zhang
- Dalian Institute of Chemical Physics, University of Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Xiang-Ting Min
- Dalian Institute of Chemical Physics, University of Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Yan-Cheng Hu
- Dalian Institute of Chemical Physics, University of Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Xu-Liang Jiang
- Department of Medicinal Chemistry, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Qing-An Chen
- Dalian Institute of Chemical Physics, University of Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| |
Collapse
|
55
|
Jiang W, Ji D, Zhang W, Zhang G, Min X, Hu Y, Jiang X, Chen Q. Orthogonal Regulation of Nucleophilic and Electrophilic Sites in Pd‐Catalyzed Regiodivergent Couplings between Indazoles and Isoprene. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100137] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Wen‐Shuang Jiang
- Department of Medicinal Chemistry Shenyang Pharmaceutical University 103 Wenhua Road Shenyang 110016 China
- Dalian Institute of Chemical Physics University of Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Ding‐Wei Ji
- Dalian Institute of Chemical Physics University of Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Wei‐Song Zhang
- Dalian Institute of Chemical Physics University of Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Gong Zhang
- Dalian Institute of Chemical Physics University of Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Xiang‐Ting Min
- Dalian Institute of Chemical Physics University of Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Yan‐Cheng Hu
- Dalian Institute of Chemical Physics University of Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Xu‐Liang Jiang
- Department of Medicinal Chemistry Shenyang Pharmaceutical University 103 Wenhua Road Shenyang 110016 China
| | - Qing‐An Chen
- Dalian Institute of Chemical Physics University of Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| |
Collapse
|
56
|
Xiao EK, Wu XT, Ma F, Feng X, Chen P, Jiang YJ. Fe(OTf)3- and γ-Cyclodextrin-Catalyzed Hydroamination of Alkenes with Carbazoles. Org Lett 2020; 23:449-453. [DOI: 10.1021/acs.orglett.0c03959] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- En-Kai Xiao
- School of Materials Science and Chemical Engineering, Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, P. R. China
| | - Xian-Tao Wu
- School of Materials Science and Chemical Engineering, Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, P. R. China
| | - Feng Ma
- School of Materials Science and Chemical Engineering, Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, P. R. China
| | - Xiaohua Feng
- Zhejiang Engineering Research Center for Biomedical Materials, Cixi Institute of BioMedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Cixi 315300, P. R. China
| | - Peng Chen
- School of Materials Science and Chemical Engineering, Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, P. R. China
| | - Yi-Jun Jiang
- School of Materials Science and Chemical Engineering, Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, P. R. China
| |
Collapse
|
57
|
Bahena EN, Griffin SE, Schafer LL. Zirconium-Catalyzed Hydroaminoalkylation of Alkynes for the Synthesis of Allylic Amines. J Am Chem Soc 2020; 142:20566-20571. [PMID: 33249842 DOI: 10.1021/jacs.0c10405] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A zirconium-catalyzed hydroaminoalkylation of alkynes to access α,β,γ-substituted allylic amines in an atom-economic fashion is reported. The reaction is compatible with N-(trimethylsilyl)benzylamine and a variety of N-benzylaniline substrates, with the latter giving the allylic amine as the sole organic product. Various internal alkynes with electron-withdrawing and electron-donating substituents were tolerated. Model intermediates of the reaction were synthesized and structurally characterized. Stoichiometric studies on key intermediates revealed that the open coordination sphere at zirconium, imparted by the tethered bis(ureate) ligand, is crucial for the coordination of neutral donors. These complexes may serve as models for the inner-sphere protonolysis reactions required for catalytic turnover.
Collapse
Affiliation(s)
- Erick Nuñez Bahena
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada V6T 1Z1
| | - Samuel E Griffin
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada V6T 1Z1
| | - Laurel L Schafer
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada V6T 1Z1
| |
Collapse
|
58
|
Desfeux C, Besnard C, Mazet C. [ n]Dendralenes as a Platform for Selective Catalysis: Ligand-Controlled Cu-Catalyzed Chemo-, Regio-, and Enantioselective Borylations. Org Lett 2020; 22:8181-8187. [PMID: 32559086 DOI: 10.1021/acs.orglett.0c01892] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report the development of two complementary methods for the Cu-catalyzed anti-Markovnikov borylation of one specific olefin in 2-substituted [n]dendralenes (n = 3-6). The first protocol operates with a bisphosphine ligand and occurs with high regio- and chemoselectivity for the terminal double bond, independently of the number of cross-conjugated alkenes. We show that the use of a chiral phosphanamine ligand enables the highly chemo-, regio-, and enantioselective borylation of the alkene cross-conjugated with the terminal olefin in [n]dendralenes.
Collapse
Affiliation(s)
- Camille Desfeux
- Department of Organic Chemistry, University of Geneva, 30 quai Ernest Ansermet, 1211 Geneva, Switzerland
| | - Céline Besnard
- Laboratory of Crystallography, University of Geneva, 24 quai Ernest Ansermet, 1211 Geneva, Switzerland
| | - Clément Mazet
- Department of Organic Chemistry, University of Geneva, 30 quai Ernest Ansermet, 1211 Geneva, Switzerland
| |
Collapse
|
59
|
Catalytic asymmetric addition of an amine N-H bond across internal alkenes. Nature 2020; 588:254-260. [PMID: 33142305 PMCID: PMC8638802 DOI: 10.1038/s41586-020-2919-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 10/27/2020] [Indexed: 12/16/2022]
|
60
|
Beletskaya IP, Naájera C, Yus M. Catalysis and regioselectivity in hydrofunctionalization reactions of unsaturated carbon bonds. Part II. Hydroamination. RUSSIAN CHEMICAL REVIEWS 2020. [DOI: 10.1070/rcr4953] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This review continues consideration of the regioselectivity problem in the catalyzed hydrofunctionalization of unsaturated organic compounds and addresses hydroamination of unsaturated hydrocarbons. Particular parts of the review deal with reactions of alkenes, alkynes, allenes and dienes. It is shown that the selectivity of hydroamination depends on the natures of the reactants and the catalyst. Conditions of the reactions are described; in some cases, reaction mechanisms are discussed. Reactions for which divergent regioselectivity is possible are noted.
The bibliography includes 249 references.
Dedicated to the memory of V.V.Markovnikov.
Collapse
|
61
|
Shao W, Besnard C, Guénée L, Mazet C. Ni-Catalyzed Regiodivergent and Stereoselective Hydroalkylation of Acyclic Branched Dienes with Unstabilized C(sp3) Nucleophiles. J Am Chem Soc 2020; 142:16486-16492. [DOI: 10.1021/jacs.0c08319] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Wen Shao
- Department of Organic Chemistry, University of Geneva, 30 quai Ernest Ansermet, Geneva 1211, Switzerland
| | - Céline Besnard
- Laboratory of Crystallography, University of Geneva, 24 quai Ernest Ansermet, Geneva 1211, Switzerland
| | - Laure Guénée
- Laboratory of Crystallography, University of Geneva, 24 quai Ernest Ansermet, Geneva 1211, Switzerland
| | - Clément Mazet
- Department of Organic Chemistry, University of Geneva, 30 quai Ernest Ansermet, Geneva 1211, Switzerland
| |
Collapse
|
62
|
Mulks FF, Bole LJ, Davin L, Hernán‐Gómez A, Kennedy A, García‐Álvarez J, Hevia E. Ambient Moisture Accelerates Hydroamination Reactions of Vinylarenes with Alkali‐Metal Amides under Air. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008512] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Florian F. Mulks
- Departement für Chemie und Biochemie (DCB) Universität Bern Freiestrasse 3 3012 Bern Switzerland
| | - Leonie J. Bole
- Departement für Chemie und Biochemie (DCB) Universität Bern Freiestrasse 3 3012 Bern Switzerland
| | - Laia Davin
- Department of Pure and Applied Chemistry University of Strathclyde 295 Cathedral St G11XL Glasgow UK
| | - Alberto Hernán‐Gómez
- Departamento de Química Orgańica y Química Inorgańica Universidad de Alcalá 28805 Alcalá de Henares-Madrid Spain
| | - Alan Kennedy
- Department of Pure and Applied Chemistry University of Strathclyde 295 Cathedral St G11XL Glasgow UK
| | - Joaquín García‐Álvarez
- Laboratorio de Compuestos Organometálicos y Catálisis (Unidad Asociada al CSIC) Departamento de Química Orgánica e Inorgánica (IUQOEM) Centro de Innovación en Química Avanzada (ORFEO-CINQA) Facultad de Química Universidad de Oviedo 33071 Oviedo Spain
| | - Eva Hevia
- Departement für Chemie und Biochemie (DCB) Universität Bern Freiestrasse 3 3012 Bern Switzerland
- Department of Pure and Applied Chemistry University of Strathclyde 295 Cathedral St G11XL Glasgow UK
| |
Collapse
|
63
|
Mulks FF, Bole LJ, Davin L, Hernán‐Gómez A, Kennedy A, García‐Álvarez J, Hevia E. Ambient Moisture Accelerates Hydroamination Reactions of Vinylarenes with Alkali‐Metal Amides under Air. Angew Chem Int Ed Engl 2020; 59:19021-19026. [DOI: 10.1002/anie.202008512] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Florian F. Mulks
- Departement für Chemie und Biochemie (DCB) Universität Bern Freiestrasse 3 3012 Bern Switzerland
| | - Leonie J. Bole
- Departement für Chemie und Biochemie (DCB) Universität Bern Freiestrasse 3 3012 Bern Switzerland
| | - Laia Davin
- Department of Pure and Applied Chemistry University of Strathclyde 295 Cathedral St G11XL Glasgow UK
| | - Alberto Hernán‐Gómez
- Departamento de Química Orgańica y Química Inorgańica Universidad de Alcalá 28805 Alcalá de Henares-Madrid Spain
| | - Alan Kennedy
- Department of Pure and Applied Chemistry University of Strathclyde 295 Cathedral St G11XL Glasgow UK
| | - Joaquín García‐Álvarez
- Laboratorio de Compuestos Organometálicos y Catálisis (Unidad Asociada al CSIC) Departamento de Química Orgánica e Inorgánica (IUQOEM) Centro de Innovación en Química Avanzada (ORFEO-CINQA) Facultad de Química Universidad de Oviedo 33071 Oviedo Spain
| | - Eva Hevia
- Departement für Chemie und Biochemie (DCB) Universität Bern Freiestrasse 3 3012 Bern Switzerland
- Department of Pure and Applied Chemistry University of Strathclyde 295 Cathedral St G11XL Glasgow UK
| |
Collapse
|
64
|
Zhang Q, Dong D, Zi W. Palladium-Catalyzed Regio- and Enantioselective Hydrosulfonylation of 1,3-Dienes with Sulfinic Acids: Scope, Mechanism, and Origin of Selectivity. J Am Chem Soc 2020; 142:15860-15869. [DOI: 10.1021/jacs.0c05976] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Qinglong Zhang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Dongfang Dong
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Weiwei Zi
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
65
|
Kennedy CR, Zhong H, Joannou MV, Chirik PJ. Pyridine(diimine) Iron Diene Complexes Relevant to Catalytic [2+2]-Cycloaddition Reactions. Adv Synth Catal 2020; 362:404-416. [PMID: 32431586 PMCID: PMC7236768 DOI: 10.1002/adsc.201901289] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Indexed: 11/10/2022]
Abstract
The synthesis, characterization, and catalytic activity of pyridine(diimine) iron piperylene and isoprene complexes are described. These diene complexes are competent precatalysts for (i) the selective cross-[2+2]-cycloaddition of butadiene or (E)-piperylene with ethylene and α-olefins and (ii) the 1,4-hydrovinylation of isoprene with ethylene. In the former case, kinetic analysis implicates the diamagnetic η4-piperylene complex as the resting state prior to rate-determining oxidative cyclization. Variable temperature 1H NMR and EXSY experiments established that diene exchange from the diamagnetic, 18e- complexes occurs rapidly in solution at ambient temperature through a dissociative mechanism. The solid-state structure of (Me(Et)PDI)Fe(η4-piperylene) (Me(Et)PDI = 2,6-(2,6-Me2-C6H3N═CEt)2C5H3N), was determined by single-crystal X-ray diffraction and confirmed the s-trans coordination of the monosubstituted 1,3-diene. Possible relationships between ligand-controlled diene coordination geometry, metallacycle denticity, and chemoselectivity of iron-mediated cycloaddition reactions are discussed.
Collapse
Affiliation(s)
- C. Rose Kennedy
- Princeton University, Department of Chemistry, Princeton, NJ 08544, United States
| | - Hongyu Zhong
- Princeton University, Department of Chemistry, Princeton, NJ 08544, United States
| | - Matthew V. Joannou
- Princeton University, Department of Chemistry, Princeton, NJ 08544, United States
| | - Paul J. Chirik
- Princeton University, Department of Chemistry, Princeton, NJ 08544, United States
| |
Collapse
|
66
|
Hamaguchi T, Takahashi Y, Tsuji H, Kawatsura M. Nickel-Catalyzed Hydroarylation of in Situ Generated 1,3-Dienes with Arylboronic Acids Using a Secondary Homoallyl Carbonate as a Surrogate for the 1,3-Diene and Hydride Source. Org Lett 2020; 22:1124-1129. [DOI: 10.1021/acs.orglett.9b04634] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Takashi Hamaguchi
- Department of Chemistry, College of Humanities & Sciences, Nihon University, Sakurajosui, Setagaya-ku, Tokyo 156-8550, Japan
| | - Yoshiyuki Takahashi
- Department of Chemistry, College of Humanities & Sciences, Nihon University, Sakurajosui, Setagaya-ku, Tokyo 156-8550, Japan
| | - Hiroaki Tsuji
- Department of Chemistry, College of Humanities & Sciences, Nihon University, Sakurajosui, Setagaya-ku, Tokyo 156-8550, Japan
| | - Motoi Kawatsura
- Department of Chemistry, College of Humanities & Sciences, Nihon University, Sakurajosui, Setagaya-ku, Tokyo 156-8550, Japan
| |
Collapse
|
67
|
Zhang Z, Xiao F, Wu HM, Dong XQ, Wang CJ. Pd-Catalyzed Asymmetric Hydroalkylation of 1,3-Dienes: Access to Unnatural α-Amino Acid Derivatives Containing Vicinal Quaternary and Tertiary Stereogenic Centers. Org Lett 2020; 22:569-574. [PMID: 31895576 DOI: 10.1021/acs.orglett.9b04341] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pd-phosphinooxazoline (Pd-PHOX)-catalyzed asymmetric hydroalkylation of 1,3-dienes with azlactones was successfully developed for the first time, affording various enantioenriched α-quaternary α-amino acid derivatives bearing contiguous quaternary and tertiary stereogenic centers in good yields with exclusive regioselectivity and excellent stereoselective control (up to 92% yield, >20:1 dr, and >99% ee). The scale-up catalytic asymmetric hydroalkylation was performed well without loss of reactivity and stereoselectivities, which exhibited great potential application. The synthetic utility of the current methodology was demonstrated through product transformations to access other biologically important compounds such as chiral β-amino alcohol and α-quaternary cyclic α-amino acid derivatives.
Collapse
Affiliation(s)
- Zongpeng Zhang
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , China
| | - Fan Xiao
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , China
| | - Hui-Min Wu
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , China
| | - Xiu-Qin Dong
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , China
| | - Chun-Jiang Wang
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , China.,State Key Laboratory of Organometallic Chemistry , Shanghai Institute of Organic Chemistry , Shanghai 230021 , China
| |
Collapse
|
68
|
Ji DW, He GC, Zhang WS, Zhao CY, Hu YC, Chen QA. Nickel-catalyzed allyl–allyl coupling reactions between 1,3-dienes and allylboronates. Chem Commun (Camb) 2020; 56:7431-7434. [DOI: 10.1039/d0cc02697b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A nickel-hydride catalysis has been developed to facilitate the allyl–allyl cross-coupling reactions between 1,3-dienes and allyl-B(pin) in excellent regioselectivity.
Collapse
Affiliation(s)
- Ding-Wei Ji
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- P. R. China
- University of Chinese Academy of Sciences
| | - Gu-Cheng He
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- P. R. China
| | - Wei-Song Zhang
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- P. R. China
| | - Chao-Yang Zhao
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- P. R. China
| | - Yan-Cheng Hu
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- P. R. China
| | - Qing-An Chen
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- P. R. China
| |
Collapse
|
69
|
Adamson NJ, Malcolmson SJ. Catalytic Enantio- and Regioselective Addition of Nucleophiles in the Intermolecular Hydrofunctionalization of 1,3-Dienes. ACS Catal 2019. [DOI: 10.1021/acscatal.9b04712] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Nathan J. Adamson
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Steven J. Malcolmson
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
70
|
Fiorito D, Liu Y, Besnard C, Mazet C. Direct Access to Chiral Secondary Amides by Copper-Catalyzed Borylative Carboxamidation of Vinylarenes with Isocyanates. J Am Chem Soc 2019; 142:623-632. [DOI: 10.1021/jacs.9b12297] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Daniele Fiorito
- Department of Organic Chemistry, University of Geneva, 30 quai Ernest Ansermet, 1211 Geneva, Switzerland
| | - Yangbin Liu
- Department of Organic Chemistry, University of Geneva, 30 quai Ernest Ansermet, 1211 Geneva, Switzerland
| | - Céline Besnard
- Laboratory of Crystallography, University of Geneva, 24 quai Ernest Ansermet, 1211 Geneva, Switzerland
| | - Clément Mazet
- Department of Organic Chemistry, University of Geneva, 30 quai Ernest Ansermet, 1211 Geneva, Switzerland
| |
Collapse
|
71
|
Chen XW, Zhu L, Gui YY, Jing K, Jiang YX, Bo ZY, Lan Y, Li J, Yu DG. Highly Selective and Catalytic Generation of Acyclic Quaternary Carbon Stereocenters via Functionalization of 1,3-Dienes with CO 2. J Am Chem Soc 2019; 141:18825-18835. [PMID: 31703165 DOI: 10.1021/jacs.9b09721] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The catalytic asymmetric functionalization of readily available 1,3-dienes is highly important, but current examples are mostly limited to the construction of tertiary chiral centers. The asymmetric generation of acyclic products containing all-carbon quaternary stereocenters from substituted 1,3-dienes represents a more challenging, but highly desirable, synthetic process for which there are very few examples. Herein, we report the highly selective copper-catalyzed generation of chiral all-carbon acyclic quaternary stereocenters via functionalization of 1,3-dienes with CO2. A variety of readily available 1,1-disubstituted 1,3-dienes, as well as a 1,3,5-triene, undergo reductive hydroxymethylation with high chemo-, regio-, E/Z-, and enantioselectivities. The reported method features good functional group tolerance, is readily scaled up to at least 5 mmol of starting diene, and generates chiral products that are useful building blocks for further derivatization. Systemic mechanistic investigations using density functional theory calculations were performed and provided the first theoretical investigation for an asymmetric transformation involving CO2. These computational results indicate that the 1,2-hydrocupration of 1,3-diene proceeds with high π-facial selectivity to generate an (S)-allylcopper intermediate, which further induces the chirality of the quaternary carbon center in the final product. The 1,4-addition of an internal allylcopper complex, which differs from previous reports involving terminal allylmetallic intermediates, to CO2 kinetically determines the E/Z- and regioselectivity. The rapid reduction of a copper carboxylate intermediate to the corresponding silyl-ether in the presence of Me(MeO)2SiH provides the exergonic impetus and leads to chemoselective hydroxymethylation rather than carboxylation. These results provide new insights for guiding further development of asymmetric C-C bond formations with CO2.
Collapse
Affiliation(s)
- Xiao-Wang Chen
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry , Sichuan University , Chengdu 610064 , P. R. China
| | - Lei Zhu
- School of Chemistry and Chemical Engineering , Chongqing University , Chongqing 400030 , P. R. China
| | - Yong-Yuan Gui
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry , Sichuan University , Chengdu 610064 , P. R. China.,College of Chemistry and Materials Science , Sichuan Normal University , Chengdu 610068 , P. R. China
| | - Ke Jing
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry , Sichuan University , Chengdu 610064 , P. R. China
| | - Yuan-Xu Jiang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry , Sichuan University , Chengdu 610064 , P. R. China
| | - Zhi-Yu Bo
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry , Sichuan University , Chengdu 610064 , P. R. China
| | - Yu Lan
- School of Chemistry and Chemical Engineering , Chongqing University , Chongqing 400030 , P. R. China.,College of Chemistry, and Institute of Green Catalysis , Zhengzhou University , Zhengzhou 450001 , P. R. China
| | - Jing Li
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry , Sichuan University , Chengdu 610064 , P. R. China
| | - Da-Gang Yu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry , Sichuan University , Chengdu 610064 , P. R. China.,Beijing National Laboratory for Molecular Sciences , Beijing 100190 , P. R. China
| |
Collapse
|
72
|
Nickel/Brønsted Acid-Catalyzed Chemo- and Enantioselective Intermolecular Hydroamination of Conjugated Dienes. iScience 2019; 22:369-379. [PMID: 31812807 PMCID: PMC6906649 DOI: 10.1016/j.isci.2019.11.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/02/2019] [Accepted: 11/05/2019] [Indexed: 01/26/2023] Open
Abstract
A novel nickel/Brønsted acid-catalyzed asymmetric hydroamination of acyclic 1,3-dienes has been established. A wide array of primary and secondary amines can be transformed into allylic amines with high yields and high enantioselectivities under very mild conditions. Moreover, our method is compatible with various functional groups and heterocycles, allowing for late-stage functionalization of biologically active complex molecules. Remarkably, this protocol exhibits good chemoselectivity with respect to amines bearing two different nucleophilic sites. Mechanistic studies reveal that the enantioselective carbon-nitrogen bond-forming step is reversible.
Collapse
|
73
|
Tran G, Mazet C. Ni-Catalyzed Regioselective Hydroalkoxylation of Branched 1,3-Dienes. Org Lett 2019; 21:9124-9127. [DOI: 10.1021/acs.orglett.9b03511] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Gaël Tran
- Department of Organic Chemistry, University of Geneva, 30 quai Ernest Ansermet, 1211 Geneva, Switzerland
| | - Clément Mazet
- Department of Organic Chemistry, University of Geneva, 30 quai Ernest Ansermet, 1211 Geneva, Switzerland
| |
Collapse
|