53
|
Melkozernov AN, Lin S, Blankenship RE, Valkunas L. Spectral inhomogeneity of photosystem I and its influence on excitation equilibration and trapping in the cyanobacterium Synechocystis sp. PCC6803 at 77 K. Biophys J 2001; 81:1144-54. [PMID: 11463655 PMCID: PMC1301583 DOI: 10.1016/s0006-3495(01)75771-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Ultrafast transient absorption spectroscopy was used to probe excitation energy transfer and trapping at 77 K in the photosystem I (PSI) core antenna from the cyanobacterium Synechocystis sp. PCC 6803. Excitation of the bulk antenna at 670 and 680 nm induces a subpicosecond energy transfer process that populates the Chl a spectral form at 685--687 nm within few transfer steps (300--400 fs). On a picosecond time scale equilibration with the longest-wavelength absorbing pigments occurs within 4-6 ps, slightly slower than at room temperature. At low temperatures in the absence of uphill energy transfer the energy equilibration processes involve low-energy shifted chlorophyll spectral forms of the bulk antenna participating in a 30--50-ps process of photochemical trapping of the excitation by P(700). These spectral forms might originate from clustered pigments in the core antenna and coupled chlorophylls of the reaction center. Part of the excitation is trapped on a pool of the longest-wavelength absorbing pigments serving as deep traps at 77 K. Transient hole burning of the ground-state absorption of the PSI with excitation at 710 and 720 nm indicates heterogeneity of the red pigment absorption band with two broad homogeneous transitions at 708 nm and 714 nm (full-width at half-maximum (fwhm) approximately 200--300 cm(-1)). The origin of these two bands is attributed to the presence of two chlorophyll dimers, while the appearance of the early time bleaching bands at 683 nm and 678 nm under excitation into the red side of the absorption spectrum (>690 nm) can be explained by borrowing of the dipole strength by the ground-state absorption of the chlorophyll a monomers from the excited-state absorption of the dimeric red pigments.
Collapse
Affiliation(s)
- A N Melkozernov
- Department of Chemistry and Biochemistry, Center for the Study of Early Events in Photosynthesis, Arizona State University, Tempe, Arizona 85287-1604, USA
| | | | | | | |
Collapse
|
54
|
Gobets B, van Stokkum IH, Rögner M, Kruip J, Schlodder E, Karapetyan NV, Dekker JP, van Grondelle R. Time-resolved fluorescence emission measurements of photosystem I particles of various cyanobacteria: a unified compartmental model. Biophys J 2001; 81:407-24. [PMID: 11423424 PMCID: PMC1301521 DOI: 10.1016/s0006-3495(01)75709-8] [Citation(s) in RCA: 177] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Photosystem I (PS-I) contains a small fraction of chlorophylls (Chls) that absorb at wavelengths longer than the primary electron donor P700. The total number of these long wavelength Chls and their spectral distribution are strongly species dependent. In this contribution we present room temperature time-resolved fluorescence data of five PS-I core complexes that contain different amounts of these long wavelength Chls, i.e., monomeric and trimeric photosystem I particles of the cyanobacteria Synechocystis sp. PCC 6803, Synechococcus elongatus, and Spirulina platensis, which were obtained using a synchroscan streak camera. Global analysis of the data reveals considerable differences between the equilibration components (3.4-15 ps) and trapping components (23-50 ps) of the various PS-I complexes. We show that a relatively simple compartmental model can be used to reproduce all of the observed kinetics and demonstrate that the large kinetic differences are purely the result of differences in the long wavelength Chl content. This procedure not only offers rate constants of energy transfer between and of trapping from the compartments, but also well-defined room temperature emission spectra of the individual Chl pools. A pool of red shifted Chls absorbing around 702 nm and emitting around 712 nm was found to be a common feature of all studied PS-I particles. These red shifted Chls were found to be located neither very close to P700 nor very remote from P700. In Synechococcus trimeric and Spirulina monomeric PS-I cores, a second pool of red Chls was present which absorbs around 708 nm, and emits around 721 nm. In Spirulina trimeric PS-I cores an even more red shifted second pool of red Chls was found, absorbing around 715 nm and emitting at 730 nm.
Collapse
Affiliation(s)
- B Gobets
- Division of Physics and Astronomy of the faculty of Sciences and Institute of Molecular Biological Sciences, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
55
|
Pieper J, Schödel R, Irrgang KD, Voigt J, Renger G. Electron−Phonon Coupling in Solubilized LHC II Complexes of Green Plants Investigated by Line-Narrowing and Temperature-Dependent Fluorescence Spectroscopy. J Phys Chem B 2001. [DOI: 10.1021/jp010229g] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- J. Pieper
- Institute of Physics, Humboldt University, 10099 Berlin, Germany, and Max-Volmer-Institute for Biophysical Chemistry and Biochemistry, Technical University, 10623 Berlin, Germany
| | - R. Schödel
- Institute of Physics, Humboldt University, 10099 Berlin, Germany, and Max-Volmer-Institute for Biophysical Chemistry and Biochemistry, Technical University, 10623 Berlin, Germany
| | - K.-D. Irrgang
- Institute of Physics, Humboldt University, 10099 Berlin, Germany, and Max-Volmer-Institute for Biophysical Chemistry and Biochemistry, Technical University, 10623 Berlin, Germany
| | - J. Voigt
- Institute of Physics, Humboldt University, 10099 Berlin, Germany, and Max-Volmer-Institute for Biophysical Chemistry and Biochemistry, Technical University, 10623 Berlin, Germany
| | - G. Renger
- Institute of Physics, Humboldt University, 10099 Berlin, Germany, and Max-Volmer-Institute for Biophysical Chemistry and Biochemistry, Technical University, 10623 Berlin, Germany
| |
Collapse
|
56
|
Reinot T, Zazubovich V, Hayes JM, Small GJ. New Insights on Persistent Nonphotochemical Hole Burning and Its Application to Photosynthetic Complexes. J Phys Chem B 2001. [DOI: 10.1021/jp010126y] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Tonu Reinot
- Department of Chemistry and Ames Laboratory-U.S. Department of Energy, Iowa State University, Ames, Iowa 50011
| | - Valter Zazubovich
- Department of Chemistry and Ames Laboratory-U.S. Department of Energy, Iowa State University, Ames, Iowa 50011
| | - John M. Hayes
- Department of Chemistry and Ames Laboratory-U.S. Department of Energy, Iowa State University, Ames, Iowa 50011
| | - Gerald J. Small
- Department of Chemistry and Ames Laboratory-U.S. Department of Energy, Iowa State University, Ames, Iowa 50011
| |
Collapse
|
57
|
Jankowiak R, Zazubovich V, Rätsep M, Matsuzaki S, Alfonso M, Picorel R, Seibert M, Small GJ. The CP43 Core Antenna Complex of Photosystem II Possesses Two Quasi-Degenerate and Weakly Coupled Qy-Trap States. J Phys Chem B 2000. [DOI: 10.1021/jp0025431] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- R. Jankowiak
- Ames Laboratory-USDOE and Department of Chemistry, Iowa State University, Ames, Iowa 50011, E. E. Aula Dei, CSIC, 50080-Zaragoza, Spain, and National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden, Colorado 80401
| | - V. Zazubovich
- Ames Laboratory-USDOE and Department of Chemistry, Iowa State University, Ames, Iowa 50011, E. E. Aula Dei, CSIC, 50080-Zaragoza, Spain, and National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden, Colorado 80401
| | - M. Rätsep
- Ames Laboratory-USDOE and Department of Chemistry, Iowa State University, Ames, Iowa 50011, E. E. Aula Dei, CSIC, 50080-Zaragoza, Spain, and National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden, Colorado 80401
| | - S. Matsuzaki
- Ames Laboratory-USDOE and Department of Chemistry, Iowa State University, Ames, Iowa 50011, E. E. Aula Dei, CSIC, 50080-Zaragoza, Spain, and National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden, Colorado 80401
| | - M. Alfonso
- Ames Laboratory-USDOE and Department of Chemistry, Iowa State University, Ames, Iowa 50011, E. E. Aula Dei, CSIC, 50080-Zaragoza, Spain, and National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden, Colorado 80401
| | - R. Picorel
- Ames Laboratory-USDOE and Department of Chemistry, Iowa State University, Ames, Iowa 50011, E. E. Aula Dei, CSIC, 50080-Zaragoza, Spain, and National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden, Colorado 80401
| | - M. Seibert
- Ames Laboratory-USDOE and Department of Chemistry, Iowa State University, Ames, Iowa 50011, E. E. Aula Dei, CSIC, 50080-Zaragoza, Spain, and National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden, Colorado 80401
| | - G. J. Small
- Ames Laboratory-USDOE and Department of Chemistry, Iowa State University, Ames, Iowa 50011, E. E. Aula Dei, CSIC, 50080-Zaragoza, Spain, and National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden, Colorado 80401
| |
Collapse
|