51
|
Gosavi PM, Korendovych IV. Minimalist IR and fluorescence probes of protein function. Curr Opin Chem Biol 2016; 34:103-109. [PMID: 27599185 DOI: 10.1016/j.cbpa.2016.08.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 08/16/2016] [Accepted: 08/18/2016] [Indexed: 11/19/2022]
Abstract
Spectroscopic studies of small proteins and peptides, especially those requiring fine spatial and/or temporal resolution, demand synthetic probes that confer the minimal possible steric and functional change on the native properties. Here we review the recent progress in development of minimally disruptive probes for fluorescence and infrared spectroscopies, as well as the methods to efficiently incorporate them into proteins. Advances in spectroscopy on the one hand result in high specialization of synthetic probes for a particular purpose, but on the other hand allow for the same probes be used for different techniques to gather complementary biochemical information.
Collapse
Affiliation(s)
- Pallavi M Gosavi
- Department of Chemistry, Syracuse University, Syracuse, NY 13244, United States
| | - Ivan V Korendovych
- Department of Chemistry, Syracuse University, Syracuse, NY 13244, United States.
| |
Collapse
|
52
|
Torii H. Unified Electrostatic Understanding on the Solvation-Induced Changes in the CN Stretching Frequency and the NMR Chemical Shifts of a Nitrile. J Phys Chem A 2016; 120:7137-44. [DOI: 10.1021/acs.jpca.6b06607] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hajime Torii
- Department
of Chemistry,
Faculty of Education, and Department of Optoelectronics and Nanostructure
Science, Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Shizuoka 422-8529, Japan
| |
Collapse
|
53
|
Maj M, Ahn C, Błasiak B, Kwak K, Han H, Cho M. Isonitrile as an Ultrasensitive Infrared Reporter of Hydrogen-Bonding Structure and Dynamics. J Phys Chem B 2016; 120:10167-10180. [DOI: 10.1021/acs.jpcb.6b04319] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Michał Maj
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic
Science (IBS) and ‡Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Changwoo Ahn
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic
Science (IBS) and ‡Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Bartosz Błasiak
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic
Science (IBS) and ‡Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Kyungwon Kwak
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic
Science (IBS) and ‡Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Hogyu Han
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic
Science (IBS) and ‡Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Minhaeng Cho
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic
Science (IBS) and ‡Department of Chemistry, Korea University, Seoul 02841, Korea
| |
Collapse
|
54
|
Schmitz AJ, Hogle DG, Gai XS, Fenlon EE, Brewer SH, Tucker MJ. Two-Dimensional Infrared Study of Vibrational Coupling between Azide and Nitrile Reporters in a RNA Nucleoside. J Phys Chem B 2016; 120:9387-94. [PMID: 27510724 DOI: 10.1021/acs.jpcb.6b07212] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The vibrations in the azide, N3, asymmetric stretching region and nitrile, CN, symmetric stretching region of 2'-azido-5-cyano-2'-deoxyuridine (N3CNdU) are examined by two-dimensional infrared (2D IR) spectroscopy. At earlier waiting times, the 2D IR spectrum shows the presence of both vibrational transitions along the diagonal and off-diagonal cross peaks indicating vibrational coupling. The coupling strength is determined from the off-diagonal anharmonicity to be 66 cm(-1) for the intramolecular distance of ∼7.9 Å, based on a structural map generated for this model system. In addition, the frequency-frequency correlation decay is detected, monitoring the solvent dynamics around each individual probe position. Overall, these vibrational reporters can be utilized in tandem to simultaneously track global structural information and fast structural fluctuations.
Collapse
Affiliation(s)
- Andrew J Schmitz
- Department of Chemistry, University of Nevada , Reno, Nevada 89557, United States
| | - David G Hogle
- Department of Chemistry, University of Nevada , Reno, Nevada 89557, United States
| | - Xin Sonia Gai
- Department of Chemistry, Franklin & Marshall College , Lancaster, Pennsylvania 17604-3003, United States
| | - Edward E Fenlon
- Department of Chemistry, Franklin & Marshall College , Lancaster, Pennsylvania 17604-3003, United States
| | - Scott H Brewer
- Department of Chemistry, Franklin & Marshall College , Lancaster, Pennsylvania 17604-3003, United States
| | - Matthew J Tucker
- Department of Chemistry, University of Nevada , Reno, Nevada 89557, United States
| |
Collapse
|
55
|
Deb P, Haldar T, Kashid SM, Banerjee S, Chakrabarty S, Bagchi S. Correlating Nitrile IR Frequencies to Local Electrostatics Quantifies Noncovalent Interactions of Peptides and Proteins. J Phys Chem B 2016; 120:4034-46. [DOI: 10.1021/acs.jpcb.6b02732] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Pranab Deb
- Physical and Materials Chemistry
Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
| | - Tapas Haldar
- Physical and Materials Chemistry
Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
| | - Somnath M Kashid
- Physical and Materials Chemistry
Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
| | - Subhrashis Banerjee
- Physical and Materials Chemistry
Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
| | - Suman Chakrabarty
- Physical and Materials Chemistry
Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
| | - Sayan Bagchi
- Physical and Materials Chemistry
Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
| |
Collapse
|
56
|
Unraveling the dynamics and structure of functionalized self-assembled monolayers on gold using 2D IR spectroscopy and MD simulations. Proc Natl Acad Sci U S A 2016; 113:4929-34. [PMID: 27044113 DOI: 10.1073/pnas.1603080113] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Functionalized self-assembled monolayers (SAMs) are the focus of ongoing investigations because they can be chemically tuned to control their structure and dynamics for a wide variety of applications, including electrochemistry, catalysis, and as models of biological interfaces. Here we combine reflection 2D infrared vibrational echo spectroscopy (R-2D IR) and molecular dynamics simulations to determine the relationship between the structures of functionalized alkanethiol SAMs on gold surfaces and their underlying molecular motions on timescales of tens to hundreds of picoseconds. We find that at higher head group density, the monolayers have more disorder in the alkyl chain packing and faster dynamics. The dynamics of alkanethiol SAMs on gold are much slower than the dynamics of alkylsiloxane SAMs on silica. Using the simulations, we assess how the different molecular motions of the alkyl chain monolayers give rise to the dynamics observed in the experiments.
Collapse
|
57
|
Giammanco CH, Kramer PL, Yamada SA, Nishida J, Tamimi A, Fayer MD. Carbon dioxide in an ionic liquid: Structural and rotational dynamics. J Chem Phys 2016; 144:104506. [DOI: 10.1063/1.4943390] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Chiara H. Giammanco
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | - Patrick L. Kramer
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | - Steven A. Yamada
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | - Jun Nishida
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | - Amr Tamimi
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | - Michael D. Fayer
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
58
|
Tamimi A, Fayer MD. Ionic Liquid Dynamics Measured with 2D IR and IR Pump–Probe Experiments on a Linear Anion and the Influence of Potassium Cations. J Phys Chem B 2016; 120:5842-54. [DOI: 10.1021/acs.jpcb.6b00409] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Amr Tamimi
- Department
of Chemistry Stanford University, Stanford, California 94305, United States
| | - Michael D. Fayer
- Department
of Chemistry Stanford University, Stanford, California 94305, United States
| |
Collapse
|
59
|
Dippel AB, Olenginski GM, Maurici N, Liskov MT, Brewer SH, Phillips-Piro CM. Probing the effectiveness of spectroscopic reporter unnatural amino acids: a structural study. Acta Crystallogr D Struct Biol 2016; 72:121-30. [PMID: 26894540 PMCID: PMC4756619 DOI: 10.1107/s2059798315022858] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 11/29/2015] [Indexed: 11/10/2022] Open
Abstract
The X-ray crystal structures of superfolder green fluorescent protein (sfGFP) containing the spectroscopic reporter unnatural amino acids (UAAs) 4-cyano-L-phenylalanine (pCNF) or 4-ethynyl-L-phenylalanine (pCCF) at two unique sites in the protein have been determined. These UAAs were genetically incorporated into sfGFP in a solvent-exposed loop region and/or a partially buried site on the β-barrel of the protein. The crystal structures containing the UAAs at these two sites permit the structural implications of UAA incorporation for the native protein structure to be assessed with high resolution and permit a direct correlation between the structure and spectroscopic data to be made. The structural implications were quantified by comparing the root-mean-square deviation (r.m.s.d.) between the crystal structure of wild-type sfGFP and the protein constructs containing either pCNF or pCCF in the local environment around the UAAs and in the overall protein structure. The results suggest that the selective placement of these spectroscopic reporter UAAs permits local protein environments to be studied in a relatively nonperturbative fashion with site-specificity.
Collapse
Affiliation(s)
- Andrew B. Dippel
- Department of Chemistry, Franklin and Marshall College, PO Box 3003, Lancaster, PA 17604-3003, USA
| | - Gregory M. Olenginski
- Department of Chemistry, Franklin and Marshall College, PO Box 3003, Lancaster, PA 17604-3003, USA
| | - Nicole Maurici
- Department of Chemistry, Franklin and Marshall College, PO Box 3003, Lancaster, PA 17604-3003, USA
| | - Melanie T. Liskov
- Department of Chemistry, Franklin and Marshall College, PO Box 3003, Lancaster, PA 17604-3003, USA
| | - Scott H. Brewer
- Department of Chemistry, Franklin and Marshall College, PO Box 3003, Lancaster, PA 17604-3003, USA
| | | |
Collapse
|
60
|
Abstract
Two-dimensional infrared (2D IR) spectroscopy has recently emerged as a powerful tool with applications in many areas of scientific research. The inherent high time resolution coupled with bond-specific spatial resolution of IR spectroscopy enable direct characterization of rapidly interconverting species and fast processes, even in complex systems found in chemistry and biology. In this minireview, we briefly outline the fundamental principles and experimental procedures of 2D IR spectroscopy. Using illustrative example studies, we explain the important features of 2D IR spectra and their capability to elucidate molecular structure and dynamics. Primarily, this minireview aims to convey the scope and potential of 2D IR spectroscopy by highlighting select examples of recent applications including the use of innate or introduced vibrational probes for the study of nucleic acids, peptides/proteins, and materials.
Collapse
Affiliation(s)
- Amanda L Le Sueur
- Department of Chemistry, Indiana University, Bloomington, Indiana, 47405, USA.
| | | | | |
Collapse
|
61
|
Guo Q, Pagano P, Li YL, Kohen A, Cheatum CM. Line shape analysis of two-dimensional infrared spectra. J Chem Phys 2015; 142:212427. [PMID: 26049447 PMCID: PMC4409623 DOI: 10.1063/1.4918350] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 04/06/2015] [Indexed: 12/19/2022] Open
Abstract
Ultrafast two-dimensional infrared (2D IR) spectroscopy probes femtosecond to picosecond time scale dynamics ranging from solvation to protein motions. The frequency-frequency correlation function (FFCF) is the quantitative measure of the spectral diffusion that reports those dynamics and, within certain approximations, can be extracted directly from 2D IR line shapes. A variety of methods have been developed to extract the FFCF from 2D IR spectra, which, in principle, should give the same FFCF parameters, but the complexity of real experimental systems will affect the results of these analyses differently. Here, we compare five common analysis methods using both simulated and experimental 2D IR spectra to understand the effects of apodization, anharmonicity, phasing errors, and finite signal-to-noise ratios on the results of each of these analyses. Our results show that although all of the methods can, in principle, yield the FFCF under idealized circumstances, under more realistic experimental conditions they behave quite differently, and we find that the centerline slope analysis yields the best compromise between the effects we test and is most robust to the distortions that they cause.
Collapse
Affiliation(s)
- Qi Guo
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, USA and Optical Science and Technology Center, University of Iowa, Iowa City, Iowa 52242, USA
| | - Philip Pagano
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, USA and Optical Science and Technology Center, University of Iowa, Iowa City, Iowa 52242, USA
| | - Yun-Liang Li
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, USA and Optical Science and Technology Center, University of Iowa, Iowa City, Iowa 52242, USA
| | - Amnon Kohen
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, USA and Optical Science and Technology Center, University of Iowa, Iowa City, Iowa 52242, USA
| | - Christopher M Cheatum
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, USA and Optical Science and Technology Center, University of Iowa, Iowa City, Iowa 52242, USA
| |
Collapse
|
62
|
Kramer PL, Nishida J, Giammanco CH, Tamimi A, Fayer MD. Observation and theory of reorientation-induced spectral diffusion in polarization-selective 2D IR spectroscopy. J Chem Phys 2015; 142:184505. [DOI: 10.1063/1.4920949] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Patrick L. Kramer
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | - Jun Nishida
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | - Chiara H. Giammanco
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | - Amr Tamimi
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | - Michael D. Fayer
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
63
|
Koziol KL, Johnson PJM, Stucki-Buchli B, Waldauer SA, Hamm P. Fast infrared spectroscopy of protein dynamics: advancing sensitivity and selectivity. Curr Opin Struct Biol 2015; 34:1-6. [PMID: 25900180 DOI: 10.1016/j.sbi.2015.03.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 03/27/2015] [Accepted: 03/31/2015] [Indexed: 01/08/2023]
Abstract
2D-IR spectroscopy has matured to a powerful technique to study the structure and dynamics of peptides, but its extension to larger proteins is still in its infancy, the major limitations being sensitivity and selectivity. Site-selective information requires measuring single vibrational probes at sub-millimolar concentrations where most proteins are still stable, which is a severe challenge for conventional (FT)IR spectroscopy. Besides its ultrafast time-resolution, a so far largely underappreciated potential of 2D-IR spectroscopy lies in its sensitivity gain. The present paper sets the goals and outlines strategies how to use that sensitivity gain together with properly designed vibrational labels to make IR spectroscopy a versatile tool to study a wide class of proteins.
Collapse
Affiliation(s)
- Klemens L Koziol
- Department of Chemistry, University of Zurich, Winterthurerstr. 190, CH-8057 Zürich, Switzerland
| | - Philip J M Johnson
- Department of Chemistry, University of Zurich, Winterthurerstr. 190, CH-8057 Zürich, Switzerland
| | - Brigitte Stucki-Buchli
- Department of Chemistry, University of Zurich, Winterthurerstr. 190, CH-8057 Zürich, Switzerland
| | - Steven A Waldauer
- Department of Chemistry, University of Zurich, Winterthurerstr. 190, CH-8057 Zürich, Switzerland
| | - Peter Hamm
- Department of Chemistry, University of Zurich, Winterthurerstr. 190, CH-8057 Zürich, Switzerland.
| |
Collapse
|
64
|
Giammanco CH, Kramer PL, Fayer MD. Dynamics of Dihydrogen Bonding in Aqueous Solutions of Sodium Borohydride. J Phys Chem B 2015; 119:3546-59. [DOI: 10.1021/jp512426y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chiara H. Giammanco
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Patrick L. Kramer
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Michael D. Fayer
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
65
|
Abstract
Infrared spectroscopy has played an instrumental role in the study of a wide variety of biological questions. However, in many cases, it is impossible or difficult to rely on the intrinsic vibrational modes of biological molecules of interest, such as proteins, to reveal structural and environmental information in a site-specific manner. To overcome this limitation, investigators have dedicated many recent efforts to the development and application of various extrinsic vibrational probes that can be incorporated into biological molecules and used to site-specifically interrogate their structural or environmental properties. In this review, we highlight recent advancements in this rapidly growing research area.
Collapse
|
66
|
Kwon Y, Park S. Complexation dynamics of CH3SCN and Li+ in acetonitrile studied by two-dimensional infrared spectroscopy. Phys Chem Chem Phys 2015; 17:24193-200. [DOI: 10.1039/c5cp02833g] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A chemical exchange 2DIR study of ion–molecule complexation dynamics in electrolyte solutions.
Collapse
Affiliation(s)
- YoungAh Kwon
- Department of Chemistry
- Korea University
- Seoul 136-701
- Korea
| | - Sungnam Park
- Department of Chemistry
- Korea University
- Seoul 136-701
- Korea
- Multidimensional Spectroscopy Laboratory
| |
Collapse
|
67
|
Maj M, Ahn C, Kossowska D, Park K, Kwak K, Han H, Cho M. β-Isocyanoalanine as an IR probe: comparison of vibrational dynamics between isonitrile and nitrile-derivatized IR probes. Phys Chem Chem Phys 2015; 17:11770-8. [DOI: 10.1039/c5cp00454c] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An infrared (IR) probe based on isonitrile (NC)-derivatized alanine 1 was synthesized and the vibrational properties of its NC stretching mode were investigated using FTIR and femtosecond IR pump–probe spectroscopy.
Collapse
Affiliation(s)
- Michał Maj
- Center for Molecular Spectroscopy and Dynamics
- Institute for Basic Science (IBS)
- Seoul 136-701, Korea
- Department of Chemistry
- Korea University
| | - Changwoo Ahn
- Department of Chemistry
- Korea University
- Seoul 136-701, Korea
| | - Dorota Kossowska
- Center for Molecular Spectroscopy and Dynamics
- Institute for Basic Science (IBS)
- Seoul 136-701, Korea
- Department of Chemistry
- Korea University
| | - Kwanghee Park
- Center for Molecular Spectroscopy and Dynamics
- Institute for Basic Science (IBS)
- Seoul 136-701, Korea
- Department of Chemistry
- Korea University
| | - Kyungwon Kwak
- Department of Chemistry
- Chung-Ang University
- Seoul 156-756, Korea
| | - Hogyu Han
- Department of Chemistry
- Korea University
- Seoul 136-701, Korea
| | - Minhaeng Cho
- Center for Molecular Spectroscopy and Dynamics
- Institute for Basic Science (IBS)
- Seoul 136-701, Korea
- Department of Chemistry
- Korea University
| |
Collapse
|
68
|
Horness RE, Basom EJ, Thielges MC. Site-selective Characterization of Src Homology 3 Domain Molecular Recognition with Cyanophenylalanine Infrared Probes. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2015; 7:7234-7241. [PMID: 26491469 PMCID: PMC4609639 DOI: 10.1039/c5ay00523j] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Local heterogeneity of microenvironments in proteins is important in biological function, but difficult to characterize experimentally. One approach is the combination of infrared (IR) spectroscopy and site-selective incorporation of probe moieties with spectrally resolved IR absorptions that enable characterization within inherently congested protein IR spectra. We employed this method to study molecular recognition of a Src homology 3 (SH3) domain from the yeast protein Sho1 for a peptide containing the proline-rich recognition sequence of its physiological binding partner Pbs2. Nitrile IR probes were introduced at four distinct sites in the protein by selective incorporation of p-cyanophenylalanine via the amber codon suppressor method and characterized by IR spectroscopy. Variation among the IR absorption bands reports on heterogeneity in local residue environments dictated by the protein structure, as well as on residue-dependent changes upon peptide binding. The study informs on the molecular recognition of SH3 Sho1 and illustrates the speed and simplicity of this approach for characterization of select microenvironments within proteins.
Collapse
Affiliation(s)
| | - Edward J. Basom
- Department of Chemistry, Indiana University, Bloomington, USA
| | - Megan C. Thielges
- Department of Chemistry, Indiana University, Bloomington, USA
- Corresponding authors,
| |
Collapse
|
69
|
Tookmanian EM, Fenlon EE, Brewer SH. Synthesis and Protein Incorporation of Azido-Modified Unnatural Amino Acids. RSC Adv 2014; 5:1274-1281. [PMID: 26478813 PMCID: PMC4603873 DOI: 10.1039/c4ra14244f] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Two new azidophenylalanine residues (3 and 4) have been synthesized and, in combination with 4-azido-L-phenylalanine (1) and 4-azidomethyl-L-phenylalanine (2), form a series of unnatural amino acids (UAAs) containing the azide vibrational reporter at varying distances from the aromatic ring of phenylalanine. These UAAs were designed to probe protein hydration with high spatial resolution by utilizing the large extinction coefficient and environmental sensitivity of the azide asymmetric stretch vibration. The sensitivity of the azide reporters was investigated in solvents that mimic distinct local protein environments. Three of the four azido-modified phenylalanine residues were successfully genetically incorporated into a surface site in superfolder green fluorescent protein (sfGFP) utilizing an engineered, orthogonal aminoacyl-tRNA synthetase in response to an amber codon with high efficiency and fidelity. SDS-PAGE and ESI-Q-TOF mass analysis verified the site-specific incorporation of these UAAs. The observed azide asymmetric stretch in the linear IR spectra of these UAAs incorporated into sfGFP indicated that the azide groups were hydrated in the protein.
Collapse
Affiliation(s)
- Elise M. Tookmanian
- Franklin & Marshall College, Department of Chemistry, Lancaster, PA 17604-3003 USA
| | - Edward E. Fenlon
- Franklin & Marshall College, Department of Chemistry, Lancaster, PA 17604-3003 USA
| | - Scott H. Brewer
- Franklin & Marshall College, Department of Chemistry, Lancaster, PA 17604-3003 USA
| |
Collapse
|
70
|
Chatterjee P, Bagchi S, Sengupta N. The non-uniform early structural response of globular proteins to cold denaturing conditions: a case study with Yfh1. J Chem Phys 2014; 141:205103. [PMID: 25429964 DOI: 10.1063/1.4901897] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The mechanism of cold denaturation in proteins is often incompletely understood due to limitations in accessing the denatured states at extremely low temperatures. Using atomistic molecular dynamics simulations, we have compared early (nanosecond timescale) structural and solvation properties of yeast frataxin (Yfh1) at its temperature of maximum stability, 292 K (Ts), and the experimentally observed temperature of complete unfolding, 268 K (Tc). Within the simulated timescales, discernible "global" level structural loss at Tc is correlated with a distinct increase in surface hydration. However, the hydration and the unfolding events do not occur uniformly over the entire protein surface, but are sensitive to local structural propensity and hydrophobicity. Calculated infrared absorption spectra in the amide-I region of the whole protein show a distinct red shift at Tc in comparison to Ts. Domain specific calculations of IR spectra indicate that the red shift primarily arises from the beta strands. This is commensurate with a marked increase in solvent accessible surface area per residue for the beta-sheets at Tc. Detailed analyses of structure and dynamics of hydration water around the hydrophobic residues of the beta-sheets show a more bulk water like behavior at Tc due to preferential disruption of the hydrophobic effects around these domains. Our results indicate that in this protein, the surface exposed beta-sheet domains are more susceptible to cold denaturing conditions, in qualitative agreement with solution NMR experimental results.
Collapse
Affiliation(s)
- Prathit Chatterjee
- Physical Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India
| | - Sayan Bagchi
- Physical Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India
| | - Neelanjana Sengupta
- Physical Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India
| |
Collapse
|
71
|
Sokolowsky KP, Bailey HE, Fayer MD. New divergent dynamics in the isotropic to nematic phase transition of liquid crystals measured with 2D IR vibrational echo spectroscopy. J Chem Phys 2014; 141:194502. [DOI: 10.1063/1.4901081] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
| | - Heather E. Bailey
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | - Michael D. Fayer
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
72
|
Londergan CH, Baskin R, Bischak CG, Hoffman KW, Snead DM, Reynoso C. Dynamic Asymmetry and the Role of the Conserved Active-Site Thiol in Rabbit Muscle Creatine Kinase. Biochemistry 2014; 54:83-95. [DOI: 10.1021/bi5008063] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Casey H. Londergan
- Department of Chemistry, Haverford College, 370 Lancaster Avenue, Haverford, Pennsylvania 19041, United States
| | - Rachel Baskin
- Department of Chemistry, Haverford College, 370 Lancaster Avenue, Haverford, Pennsylvania 19041, United States
| | - Connor G. Bischak
- Department of Chemistry, Haverford College, 370 Lancaster Avenue, Haverford, Pennsylvania 19041, United States
| | - Kevin W. Hoffman
- Department of Chemistry, Haverford College, 370 Lancaster Avenue, Haverford, Pennsylvania 19041, United States
| | - David M. Snead
- Department of Chemistry, Haverford College, 370 Lancaster Avenue, Haverford, Pennsylvania 19041, United States
| | - Christopher Reynoso
- Department of Chemistry, Haverford College, 370 Lancaster Avenue, Haverford, Pennsylvania 19041, United States
| |
Collapse
|
73
|
Johnson MR, Londergan CH, Charkoudian LK. Probing the phosphopantetheine arm conformations of acyl carrier proteins using vibrational spectroscopy. J Am Chem Soc 2014; 136:11240-3. [PMID: 25080832 PMCID: PMC4140477 DOI: 10.1021/ja505442h] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Indexed: 12/23/2022]
Abstract
Acyl carrier proteins (ACPs) are universal and highly conserved domains central to both fatty acid and polyketide biosynthesis. These proteins tether reactive acyl intermediates with a swinging 4'-phosphopantetheine (Ppant) arm and interact with a suite of catalytic partners during chain transport and elongation while stabilizing the growing chain throughout the biosynthetic pathway. The flexible nature of the Ppant arm and the transient nature of ACP-enzyme interactions impose a major obstacle to obtaining structural information relevant to understanding polyketide and fatty acid biosynthesis. To overcome this challenge, we installed a thiocyanate vibrational spectroscopic probe on the terminal thiol of the ACP Ppant arm. This site-specific probe successfully reported on the local environment of the Ppant arm of two ACPs previously characterized by solution NMR, and was used to determine the solution exposure of the Ppant arm of an ACP from 6-deoxyerythronolide B synthase (DEBS). Given the sensitivity of the probe's CN stretching band to conformational distributions resolved on the picosecond time scale, this work lays a foundation for observing the dynamic action-related structural changes of ACPs using vibrational spectroscopy.
Collapse
Affiliation(s)
- Matthew
N. R. Johnson
- Department of Chemistry, Haverford College, Haverford, Pennsylvania 19041-1392, United States
| | - Casey H. Londergan
- Department of Chemistry, Haverford College, Haverford, Pennsylvania 19041-1392, United States
| | - Louise K. Charkoudian
- Department of Chemistry, Haverford College, Haverford, Pennsylvania 19041-1392, United States
| |
Collapse
|
74
|
Liu CT, Layfield JP, Stewart RJ, French JB, Hanoian P, Asbury JB, Hammes-Schiffer S, Benkovic SJ. Probing the electrostatics of active site microenvironments along the catalytic cycle for Escherichia coli dihydrofolate reductase. J Am Chem Soc 2014; 136:10349-60. [PMID: 24977791 PMCID: PMC4183630 DOI: 10.1021/ja5038947] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Electrostatic interactions play an
important role in enzyme catalysis
by guiding ligand binding and facilitating chemical reactions. These
electrostatic interactions are modulated by conformational changes
occurring over the catalytic cycle. Herein, the changes in active
site electrostatic microenvironments are examined for all enzyme complexes
along the catalytic cycle of Escherichia coli dihydrofolate reductase (ecDHFR) by incorporation
of thiocyanate probes at two site-specific locations in the active
site. The electrostatics and degree of hydration of the microenvironments
surrounding the probes are investigated with spectroscopic techniques
and mixed quantum mechanical/molecular mechanical (QM/MM) calculations.
Changes in the electrostatic microenvironments along the catalytic
environment lead to different nitrile (CN) vibrational stretching
frequencies and 13C NMR chemical shifts. These environmental
changes arise from protein conformational rearrangements during catalysis.
The QM/MM calculations reproduce the experimentally measured vibrational
frequency shifts of the thiocyanate probes across the catalyzed hydride
transfer step, which spans the closed and occluded conformations of
the enzyme. Analysis of the molecular dynamics trajectories provides
insight into the conformational changes occurring between these two
states and the resulting changes in classical electrostatics and specific
hydrogen-bonding interactions. The electric fields along the CN axes
of the probes are decomposed into contributions from specific residues,
ligands, and solvent molecules that make up the microenvironments
around the probes. Moreover, calculation of the electric field along
the hydride donor–acceptor axis, along with decomposition of
this field into specific contributions, indicates that the cofactor
and substrate, as well as the enzyme, impose a substantial electric
field that facilitates hydride transfer. Overall, experimental and
theoretical data provide evidence for significant electrostatic changes
in the active site microenvironments due to conformational motion
occurring over the catalytic cycle of ecDHFR.
Collapse
Affiliation(s)
- C Tony Liu
- Department of Chemistry, Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | | | | | | | | | | | | | | |
Collapse
|
75
|
Ghosh A, Wang J, Moroz YS, Korendovych IV, Zanni M, DeGrado WF, Gai F, Hochstrasser RM. 2D IR spectroscopy reveals the role of water in the binding of channel-blocking drugs to the influenza M2 channel. J Chem Phys 2014; 140:235105. [PMID: 24952572 PMCID: PMC4098053 DOI: 10.1063/1.4881188] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 05/21/2014] [Indexed: 12/21/2022] Open
Abstract
Water is an integral part of the homotetrameric M2 proton channel of the influenza A virus, which not only assists proton conduction but could also play an important role in stabilizing channel-blocking drugs. Herein, we employ two dimensional infrared (2D IR) spectroscopy and site-specific IR probes, i.e., the amide I bands arising from isotopically labeled Ala30 and Gly34 residues, to probe how binding of either rimantadine or 7,7-spiran amine affects the water dynamics inside the M2 channel. Our results show, at neutral pH where the channel is non-conducting, that drug binding leads to a significant increase in the mobility of the channel water. A similar trend is also observed at pH 5.0 although the difference becomes smaller. Taken together, these results indicate that the channel water facilitates drug binding by increasing its entropy. Furthermore, the 2D IR spectral signatures obtained for both probes under different conditions collectively support a binding mechanism whereby amantadine-like drugs dock in the channel with their ammonium moiety pointing toward the histidine residues and interacting with a nearby water cluster, as predicted by molecular dynamics simulations. We believe these findings have important implications for designing new anti-influenza drugs.
Collapse
Affiliation(s)
- Ayanjeet Ghosh
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Jun Wang
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California 94143, USA
| | - Yurii S Moroz
- Department of Chemistry, Syracuse University, Syracuse, New York 13244, USA
| | - Ivan V Korendovych
- Department of Chemistry, Syracuse University, Syracuse, New York 13244, USA
| | - Martin Zanni
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| | - William F DeGrado
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California 94143, USA
| | - Feng Gai
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Robin M Hochstrasser
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
76
|
Kel O, Tamimi A, Fayer MD. The Influence of Cholesterol on Fast Dynamics Inside of Vesicle and Planar Phospholipid Bilayers Measured with 2D IR Spectroscopy. J Phys Chem B 2014; 119:8852-62. [DOI: 10.1021/jp503940k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Oksana Kel
- Department
of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | - Amr Tamimi
- Department
of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | - Michael D. Fayer
- Department
of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| |
Collapse
|
77
|
Microscopic insights into the protein-stabilizing effect of trimethylamine N-oxide (TMAO). Proc Natl Acad Sci U S A 2014; 111:8476-81. [PMID: 24912147 DOI: 10.1073/pnas.1403224111] [Citation(s) in RCA: 196] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Although it is widely known that trimethylamine N-oxide (TMAO), an osmolyte used by nature, stabilizes the folded state of proteins, the underlying mechanism of action is not entirely understood. To gain further insight into this important biological phenomenon, we use the C≡N stretching vibration of an unnatural amino acid, p-cyano-phenylalanine, to directly probe how TMAO affects the hydration and conformational dynamics of a model peptide and a small protein. By assessing how the lineshape and spectral diffusion properties of this vibration change with cosolvent conditions, we are able to show that TMAO achieves its protein-stabilizing ability through the combination of (at least) two mechanisms: (i) It decreases the hydrogen bonding ability of water and hence the stability of the unfolded state, and (ii) it acts as a molecular crowder, as suggested by a recent computational study, that can increase the stability of the folded state via the excluded volume effect.
Collapse
|
78
|
Jung JE, Lee SY, Park H, Cha H, Ko W, Sachin K, Kim DW, Chi DY, Lee HS. Genetic incorporation of unnatural amino acids biosynthesized from α-keto acids by an aminotransferase. Chem Sci 2014. [DOI: 10.1039/c3sc51617b] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
79
|
Gonzalez JD, Levonyak NS, Schneider SC, Smith MJ, Cremeens ME. Using infrared spectroscopy of a nitrile labeled phenylalanine and tryptophan fluorescence to probe the α-MSH peptide’s side-chain interactions with a micelle model membrane. J Mol Struct 2014. [DOI: 10.1016/j.molstruc.2013.09.059] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
80
|
van Wilderen LJGW, Kern-Michler D, Müller-Werkmeister HM, Bredenbeck J. Vibrational dynamics and solvatochromism of the label SCN in various solvents and hemoglobin by time dependent IR and 2D-IR spectroscopy. Phys Chem Chem Phys 2014; 16:19643-53. [DOI: 10.1039/c4cp01498g] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The vibrational label SCN is used to report on local structural dynamics in a protein revealing spectral diffusion on a picosecond scale. The SCN spectra are compared to the response of methylthiocyanate in solvents with different polarity and hydrogen-bonding capabilities.
Collapse
Affiliation(s)
| | - Daniela Kern-Michler
- Johann Wolfgang Goethe-University
- Institute of Biophysics
- Frankfurt am Main, Germany
| | | | - Jens Bredenbeck
- Johann Wolfgang Goethe-University
- Institute of Biophysics
- Frankfurt am Main, Germany
| |
Collapse
|
81
|
Gerace M, Loring RF. Two-dimensional spectroscopy of coupled vibrations with the optimized mean-trajectory approximation. J Phys Chem B 2013; 117:15452-61. [PMID: 23924378 PMCID: PMC3865215 DOI: 10.1021/jp405225g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The optimized mean-trajectory (OMT) approximation is a semiclassical representation of the nonlinear vibrational response function used to compute multidimensional infrared spectra. In this method, response functions are calculated from a sequence of classical trajectories linked by discontinuities representing the effects of radiation-matter interactions, thus providing an approximation to quantum dynamics using classical inputs. This approach was previously formulated and assessed numerically for a single anharmonic degree of freedom. Our previous work is generalized here in two respects. First, the derivation of the OMT is extended to any number of coupled anharmonic vibrations by determining semiclassical approximations for pairs of double-sided Feynman diagrams. Second, an efficient numerical procedure is developed for calculating two-dimensional infrared spectra of coupled anharmonic vibrations in the OMT approximation. The OMT approximation is shown to reproduce the fundamental features of the quantum response function including both coherence and population dynamics.
Collapse
Affiliation(s)
- Mallory Gerace
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York, 14853, USA
| | - Roger F. Loring
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York, 14853, USA
| |
Collapse
|
82
|
Sokolowsky KP, Fayer MD. Dynamics in the isotropic phase of nematogens using 2D IR vibrational echo measurements on natural-abundance 13CN and extended lifetime probes. J Phys Chem B 2013; 117:15060-71. [PMID: 24156524 DOI: 10.1021/jp4071955] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The long time scale orientational relaxation of nematogens in the isotropic phase is associated with the randomization of pseudonematic domains, which have a correlation length that grows as the isotropic-to-nematic phase transition temperature is approached from above. Here we begin to address the fast dynamics of the nematogen molecules within the domains using two-dimensional infrared (2D IR) vibrational echo experiments. The problems of performing ultrafast IR experiments in pure liquids are discussed, and solutions are presented. In addition, the issue of short vibrational lifetimes, which limit the ability of 2D IR experiments to examine dynamics over a wide range of times, is addressed. The experiments were performed on the nematogen 4-cyano-4'-pentylbiphenyl (5CB), with the CN stretch initially used as the vibrational probe. Although the CN stretch has a small transition dipole, because the sample is a pure liquid it is necessary to use an exceedingly thin sample to perform the experiments. The small sample volume leads to massive heating effects that distort the results. In addition, the high concentration in the pure liquid can result in vibrational excitation transfer that interferes with the measurements of structural dynamics, and the CN vibrational lifetime is very short (3.6 ps). These problems were overcome by performing the experiments on the natural-abundance (13)CN stretch (5(13)CB), which greatly reduced the absorbance, eliminating the heating problems; also, this stretch has a longer lifetime (7.9 ps). Experiments were also performed on benzonitrile, which showed that the heating problems associated with pure liquids are not unique to 5CB. Again, the problems were eliminated by conducting measurements on the (13)CN stretch, which has an even longer lifetime (20.2 ps) compared with the (12)CN stretch (5.6 ps). Finally, to extend the range of the dynamical measurements, 4-pentyl-4'-thiocyanobiphenyl (5SCB) was synthesized and studied as a dilute solute in 5CB. The CN stretch of 5SCB has a vibrational lifetime of 103 ps, which permits dynamical measurements to 200 ps, revealing the full range of fast structural dynamics in the isotropic phase of 5CB. It is shown that the 5SCB probe reports essentially the same dynamics as 5(13)CB on the short time scale that is observable with the 5(13)CB vibrational probe.
Collapse
Affiliation(s)
- Kathleen P Sokolowsky
- Department of Chemistry, Stanford University , Stanford, California 94305, United States
| | | |
Collapse
|
83
|
Bazewicz CG, Liskov MT, Hines KJ, Brewer SH. Sensitive, site-specific, and stable vibrational probe of local protein environments: 4-azidomethyl-L-phenylalanine. J Phys Chem B 2013; 117:8987-93. [PMID: 23865850 DOI: 10.1021/jp4052598] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We have synthesized the unnatural amino acid (UAA), 4-azidomethyl-L-phenylalanine (pN₃CH₂Phe), to serve as an effective vibrational reporter of local protein environments. The position, extinction coefficient, and sensitivity to local environment of the azide asymmetric stretch vibration of pN₃CH₂Phe are compared to the vibrational reporters: 4-cyano-L-phenylalanine (pCNPhe) and 4-azido-L-phenylalanine (pN₃Phe). This UAA was genetically incorporated in a site-specific manner utilizing an engineered, orthogonal aminoacyl-tRNA synthetase in response to an amber codon with high efficiency and fidelity into two distinct sites in superfolder green fluorescent protein (sfGFP). This allowed for the dependence of the azide asymmetric stretch vibration of pN₃CH₂Phe to different protein environments to be measured. The photostability of pN₃CH₂Phe was also measured relative to the photoreactive UAA, pN₃Phe.
Collapse
Affiliation(s)
- Christopher G Bazewicz
- Department of Chemistry, Franklin & Marshall College, Lancaster, Pennsylvania 17604-3003, USA
| | | | | | | |
Collapse
|
84
|
Kim H, Cho M. Infrared Probes for Studying the Structure and Dynamics of Biomolecules. Chem Rev 2013; 113:5817-47. [DOI: 10.1021/cr3005185] [Citation(s) in RCA: 165] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Heejae Kim
- Department of Chemistry, Korea University, Seoul 136-713, Korea
| | - Minhaeng Cho
- Department of Chemistry, Korea University, Seoul 136-713, Korea
- Multidimensional Spectroscopy Laboratory, Korea Basic Science Institute,
Seoul 136-713, Korea
| |
Collapse
|
85
|
Woys AM, Mukherjee SS, Skoff DR, Moran SD, Zanni MT. A strongly absorbing class of non-natural labels for probing protein electrostatics and solvation with FTIR and 2D IR spectroscopies. J Phys Chem B 2013; 117:5009-18. [PMID: 23537223 DOI: 10.1021/jp402946c] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A series of non-natural infrared probes is reported that consist of a metal-tricarbonyl modified with a -(CH2)n- linker and cysteine-specific leaving group. They can be site-specifically attached to proteins using mutagenesis and similar protocols for EPR spin labels, which have the same leaving group. We characterize the label's frequencies and lifetimes using 2D IR spectroscopy in solvents of varying dielectric. The frequency range spans 10 cm(-1), and the variation in lifetimes ranges from 6 to 19 ps, indicating that these probes are very sensitive to their environments. Also, we attached probes with -(CH2)-, -(CH2)3-, and -(CH2)4- linkers to ubiquitin at positions 6 and 63 and collected spectra in aqueous buffer. The frequencies and lifetimes were correlated for 3C and 4C linkers, as they were in the solvents, but did not correlate for the 1C linker. We conclude that lifetime measures solvation, whereas frequency reflects the electrostatics of the environment, which in the case of the 1C linker is a measure of the protein electrostatic field. We also labeled V71C α-synuclein in buffer and membrane-bound. Unlike most other infrared labels, this label has extremely strong cross sections and thus can be measured with 2D IR spectroscopy at sub-millimolar concentrations. We expect that these labels will find use in studying the structure and dynamics of membrane-bound, aggregated, and kinetically evolving proteins for which high signal-to-noise at low protein concentrations is imperative.
Collapse
Affiliation(s)
- Ann Marie Woys
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53703, United States
| | | | | | | | | |
Collapse
|
86
|
Gerace M, Loring RF. An optimized semiclassical approximation for vibrational response functions. J Chem Phys 2013; 138:124104. [PMID: 23556706 DOI: 10.1063/1.4795941] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The observables of multidimensional infrared spectroscopy may be calculated from nonlinear vibrational response functions. Fully quantum dynamical calculations of vibrational response functions are generally impractical, while completely classical calculations are qualitatively incorrect at long times. These challenges motivate the development of semiclassical approximations to quantum mechanics, which use classical mechanical information to reconstruct quantum effects. The mean-trajectory (MT) approximation is a semiclassical approach to quantum vibrational response functions employing classical trajectories linked by deterministic transitions representing the effects of the radiation-matter interaction. Previous application of the MT approximation to the third-order response function R(3)(t3, t2, t1) demonstrated that the method quantitatively describes the coherence dynamics of the t3 and t1 evolution times, but is qualitatively incorrect for the waiting-time t2 period. Here we develop an optimized version of the MT approximation by elucidating the connection between this semiclassical approach and the double-sided Feynman diagrams (2FD) that represent the quantum response. Establishing the direct connection between 2FD and semiclassical paths motivates a systematic derivation of an optimized MT approximation (OMT). The OMT uses classical mechanical inputs to accurately reproduce quantum dynamics associated with all three propagation times of the third-order vibrational response function.
Collapse
Affiliation(s)
- Mallory Gerace
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, USA
| | | |
Collapse
|
87
|
Brookes JF, Slenkamp KM, Lynch MS, Khalil M. Effect of solvent polarity on the vibrational dephasing dynamics of the nitrosyl stretch in an Fe(II) complex revealed by 2D IR spectroscopy. J Phys Chem A 2013; 117:6234-43. [PMID: 23480848 DOI: 10.1021/jp4005345] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The vibrational dephasing dynamics of the nitrosyl stretching vibration (ν(NO)) in sodium nitroprusside (SNP, Na2[Fe(CN)5NO]·2H2O) are investigated using two-dimensional infrared (2D IR) spectroscopy. The ν(NO) in SNP acts as a model system for the nitrosyl ligand found in metalloproteins which play an important role in the transportation and detection of nitric oxide (NO) in biological systems. We perform a 2D IR line shape study of the ν(NO) in the following solvents: water, deuterium oxide, methanol, ethanol, ethylene glycol, formamide, and dimethyl sulfoxide. The frequency of the ν(NO) exhibits a large vibrational solvatochromic shift of 52 cm(-1), ranging from 1884 cm(-1) in dimethyl sulfoxide to 1936 cm(-1) in water. The vibrational anharmonicity of the ν(NO) varies from 21 to 28 cm(-1) in the solvents used in this study. The frequency-frequency correlation functions (FFCFs) of the ν(NO) in SNP in each of the seven solvents are obtained by fitting the experimentally obtained 2D IR spectra using nonlinear response theory. The fits to the 2D IR line shape reveal that the spectral diffusion time scale of the ν(NO) in SNP varies from 0.8 to 4 ps and is negatively correlated with the empirical solvent polarity scales. We compare our results with the experimentally determined FFCFs of other charged vibrational probes in polar solvents and in the active sites of heme proteins. Our results suggest that the vibrational dephasing dynamics of the ν(NO) in SNP reflect the fluctuations of the nonhomogeneous electric field created by the polar solvents around the nitrosyl and cyanide ligands. The solute solvent interactions occurring at the trans-CN ligand are sensed through the π-back-bonding network along the Fe-NO bond in SNP.
Collapse
Affiliation(s)
- Jennifer F Brookes
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | | | | | | |
Collapse
|
88
|
Kumar SKK, Tamimi A, Fayer MD. Dynamics in the interior of AOT lamellae investigated with two-dimensional infrared spectroscopy. J Am Chem Soc 2013; 135:5118-26. [PMID: 23465101 DOI: 10.1021/ja312676e] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The dynamics inside the organic regions of aerosol-OT (AOT)/water mixtures in the lamellar mesophase, bicontinuous cubic (BC) phase, and in an analogous molecule without the charged sulfonate headgroup are investigated by observing spectral diffusion, orientational relaxation and population relaxation using ultrafast two-dimensional infrared (2D IR) vibrational echo spectroscopy and IR pump-probe experiments on the asymmetric CO stretch of a vibrational probe, tungsten hexacarbonyl (W(CO)6). The water layer thickness between the bilayer planes in the lamellar phase was varied. For comparison, the dynamics of W(CO)6 in the normal liquid bis(2-ethylhexyl) succinate (EHS), which is analogous to AOT but has no charged sulfonate headgroup, were also studied. The 2D IR experiments measure spectral diffusion, which results from the structural evolution of the system. Spectral diffusion is quantified by the frequency-frequency correlation function (FFCF). In addition to a homogeneous component, the FFCFs are biexponential decays with fast and slow time components of ∼12.5 and ∼150 ps in the lamellar phase. Both components of the FFCF are independent of the number of water molecules per headgroup for the lamellae, but they slow somewhat in the BC phase. The dynamics in the ordered phases are in sharp contrast to the dynamics in EHS, which displays fast and slow components of the FFCF of 5 and 80 ps, respectively. As the hydration level of AOT increases, vibrational lifetime decreases, suggesting some change in the local environment of W(CO)6 with water content.
Collapse
Affiliation(s)
- S K Karthick Kumar
- Department of Chemistry, Stanford University , Stanford, California 94305, United States
| | | | | |
Collapse
|
89
|
Lee H, Choi JH, Cho M. Vibrational solvatochromism and electrochromism. II. Multipole analysis. J Chem Phys 2013; 137:114307. [PMID: 22998262 DOI: 10.1063/1.4751477] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Small infrared probe molecules have been widely used to study local electrostatic environment in solutions and proteins. Using a variety of time- and frequency-resolved vibrational spectroscopic methods, one can accurately measure the solvation-induced vibrational frequency shifts and the timescales and amplitudes of frequency fluctuations of such IR probes. Since the corresponding frequency shifts are directly related to the local electric field and its spatial derivatives of the surrounding solvent molecules or amino acids in proteins, one can extract information on local electric field around an IR probe directly from the vibrational spectroscopic results. Here, we show that, carrying out a multipole analysis of the solvatochromic frequency shift, the solvatochromic dipole contribution to the frequency shift is not always the dominant factor. In the cases of the nitrile-, thiocyanato-, and azido-derivatized molecules, the solvatochromic quadrupole contributions to the corresponding stretch mode frequency shifts are particularly large and often comparable to the solvatochromic dipole contributions. Noting that the higher multipole moment-solvent electric field interactions are short range effects in comparison to the dipole interaction, the H-bonding interaction-induced vibrational frequency shift can be caused by such short-range multipole-field interaction effects. We anticipate that the present multipole analysis method specifically developed to describe the solvatochromic vibrational frequency shifts will be useful to understand the intermolecular interaction-induced vibrational property changes and to find out a relationship between vibrational solvatochromism and electrochromism of IR probes in condensed phases.
Collapse
Affiliation(s)
- Hochan Lee
- Department of Chemistry and Research Institute for Basic Sciences, Korea University, Seoul 136-713, South Korea
| | | | | |
Collapse
|
90
|
Bloem E, Koziol K, Waldauer SA, Buchli B, Walser R, Samatanga B, Jelesarov I, Hamm P. Ligand binding studied by 2D IR spectroscopy using the azidohomoalanine label. J Phys Chem B 2012; 116:13705-12. [PMID: 23116486 DOI: 10.1021/jp3095209] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
We explore the capability of the azidohomoalanine (Aha) as a vibrational label for 2D IR spectroscopy to study the binding of the target peptide to the PDZ2 domain. The Aha label responds sensitively to its local environment and its peak extinction coefficient of 350-400 M(-1) cm(-1) is high enough to routinely measure it in the low millimolar concentration regime. The central frequency, inhomogeneous width and spectral diffusion times deduced from the 2D IR line shapes of the Aha label at various positions in the peptide sequence is discussed in relationship to the known X-ray structure of the peptide bound to the PDZ2 domain. The results suggest that the Aha label introduces only a small perturbation to the overall structure of the peptide in the binding pocket. Finally, Aha is a methionine analog that can be incorporated also into larger proteins at essentially any position using protein expression. Altogether, Aha thus fulfills the requirements a versatile label should have for studies of protein structure and dynamics by 2D IR spectroscopy.
Collapse
Affiliation(s)
- Elin Bloem
- Institute of Physical Chemistry, University of Zurich, Zurich 8057, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
91
|
Sieradzan AK, Liwo A, Hansmann UHE. Folding and self-assembly of a small protein complex. J Chem Theory Comput 2012; 8:3416-3422. [PMID: 24039552 DOI: 10.1021/ct300528r] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The synthetic homotetrameric ββα (BBAT1) protein possesses a stable quaternary structure with a ββα fold. Because of its small size (a total of 84 residues), the homotetramer is an excellent model system with which to study the self-assembly and protein-protein interactions. We find from replica exchange molecular dynamics simulations with the coarse-grain UNRES force field that the folding and association pathway consists of three well-separated steps, where that association to a tetramer precedes and facilitates folding of the four chains. At room temperature the tetramer exists in an ensemble of diverse structures. The crystal structure becomes energetically favored only when the molecule is put in a dense and crystal-like environment. The observed picture of folding promoted by association may mirror the mechanism according to which intrinsically unfolded proteins assume their functional structure.
Collapse
Affiliation(s)
- Adam K Sieradzan
- Faculty of Chemistry, University of Gdańsk, Sobieskiego 18, 80-952 Gdańsk, Poland ; Department of Chemistry and Biochemistry, Oklahoma University, Norman, OK, 73019, U.S.A
| | | | | |
Collapse
|
92
|
Chung JK, Thielges MC, Lynch SR, Fayer MD. Fast dynamics of HP35 for folded and urea-unfolded conditions. J Phys Chem B 2012; 116:11024-31. [PMID: 22909017 DOI: 10.1021/jp304058x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The changes in fast dynamics of HP35 with a double CN vibrational dynamics label (HP35-P(2)) as a function of the extent of denaturation by urea were investigated with two-dimensional infrared (2D IR) vibrational echo spectroscopy. Cyanophenylalanine (PheCN) replaces the native phenylalanine at two residues in the hydrophobic core of HP35, providing vibrational probes. NMR data show that HP35-P(2) maintains the native folded structure similar to wild type and that both PheCN residues share essentially the same environment within the peptide. A series of time-dependent 2D IR vibrational echo spectra were obtained for the folded peptide and the increasingly unfolded peptide. Analysis of the time dependence of the 2D spectra yields the system's spectral diffusion, which is caused by the sampling of accessible structures of the peptide under thermal equilibrium conditions. The structural dynamics become faster as the degree of unfolding is increased.
Collapse
Affiliation(s)
- Jean K Chung
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | | | | | | |
Collapse
|
93
|
Bazewicz CG, Lipkin JS, Smith EE, Liskov MT, Brewer SH. Expanding the Utility of 4-Cyano-l-Phenylalanine As a Vibrational Reporter of Protein Environments. J Phys Chem B 2012; 116:10824-31. [DOI: 10.1021/jp306886s] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Christopher G. Bazewicz
- Department of Chemistry, Franklin & Marshall College, Lancaster, Pennsylvania 17604-3003, United States
| | - Jacob S. Lipkin
- Department of Chemistry, Franklin & Marshall College, Lancaster, Pennsylvania 17604-3003, United States
| | - Emily E. Smith
- Department of Chemistry, Franklin & Marshall College, Lancaster, Pennsylvania 17604-3003, United States
| | - Melanie T. Liskov
- Department of Chemistry, Franklin & Marshall College, Lancaster, Pennsylvania 17604-3003, United States
| | - Scott H. Brewer
- Department of Chemistry, Franklin & Marshall College, Lancaster, Pennsylvania 17604-3003, United States
| |
Collapse
|
94
|
Chung JK, Thielges MC, Fayer MD. Conformational dynamics and stability of HP35 studied with 2D IR vibrational echoes. J Am Chem Soc 2012; 134:12118-24. [PMID: 22764745 DOI: 10.1021/ja303017d] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Two-dimensional infrared (2D IR) vibrational echo spectroscopy was used to measure the fast dynamics of two variants of chicken villin headpiece 35 (HP35). The CN of cyanophenylalanine residues inserted in the hydrophobic core were used as a vibrational probe. Experiments were performed on both singly (HP35-P) and doubly CN-labeled peptide (HP35-P(2)) within the wild-type sequence, as well as on HP-35 containing a singly labeled cyanophenylalanine and two norleucine mutations (HP35-P NleNle). There is a remarkable similarity between the dynamics measured in singly and doubly CN-labeled HP35, demonstrating that the presence of an additional CN vibrational probe does not significantly alter the dynamics of the small peptide. The substitution of two lysine residues by norleucines markedly improves the stability of HP35 by replacing charged with nonpolar residues, stabilizing the hydrophobic core. The results of the 2D IR experiments reveal that the dynamics of HP35-P are significantly faster than those of HP35-P NleNle. These observations suggest that the slower structural fluctuations in the hydrophobic core, indicating a more tightly structured core, may be an important contributing factor to HP35-P NleNle's increased stability.
Collapse
Affiliation(s)
- Jean K Chung
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | | | | |
Collapse
|
95
|
Anna JM, Baiz CR, Ross MR, McCanne R, Kubarych KJ. Ultrafast equilibrium and non-equilibrium chemical reaction dynamics probed with multidimensional infrared spectroscopy. INT REV PHYS CHEM 2012. [DOI: 10.1080/0144235x.2012.716610] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
96
|
Bagchi S, Fried SD, Boxer SG. A solvatochromic model calibrates nitriles' vibrational frequencies to electrostatic fields. J Am Chem Soc 2012; 134:10373-6. [PMID: 22694663 DOI: 10.1021/ja303895k] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Electrostatic interactions provide a primary connection between a protein's three-dimensional structure and its function. Infrared probes are useful because vibrational frequencies of certain chemical groups, such as nitriles, are linearly sensitive to local electrostatic field and can serve as a molecular electric field meter. IR spectroscopy has been used to study electrostatic changes or fluctuations in proteins, but measured peak frequencies have not been previously mapped to total electric fields, because of the absence of a field-frequency calibration and the complication of local chemical effects such as H-bonds. We report a solvatochromic model that provides a means to assess the H-bonding status of aromatic nitrile vibrational probes and calibrates their vibrational frequencies to electrostatic field. The analysis involves correlations between the nitrile's IR frequency and its (13)C chemical shift, whose observation is facilitated by a robust method for introducing isotopes into aromatic nitriles. The method is tested on the model protein ribonuclease S (RNase S) containing a labeled p-CN-Phe near the active site. Comparison of the measurements in RNase S against solvatochromic data gives an estimate of the average total electrostatic field at this location. The value determined agrees quantitatively with molecular dynamics simulations, suggesting broader potential for the use of IR probes in the study of protein electrostatics.
Collapse
Affiliation(s)
- Sayan Bagchi
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, USA
| | | | | |
Collapse
|