51
|
Chiang CS, Fu SY, Wang SC, Yu CF, Chen FH, Lin CM, Hong JH. Irradiation promotes an m2 macrophage phenotype in tumor hypoxia. Front Oncol 2012; 2:89. [PMID: 22888475 PMCID: PMC3412458 DOI: 10.3389/fonc.2012.00089] [Citation(s) in RCA: 156] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 07/19/2012] [Indexed: 11/16/2022] Open
Abstract
Macrophages display different phenotypes with distinct functions and can rapidly respond to environmental changes. Previous studies on TRAMP-C1 tumor model have shown that irradiation has a strong impact on tumor microenvironments. The major changes include the decrease of microvascular density, the increase of avascular hypoxia, and the aggregation of tumor-associated macrophages in avascular hypoxic regions. Similar changes were observed no matter the irradiation was given to tissue bed before tumor implantation (pre-IR tumors), or to established tumors (IR tumors). Recent results on three murine tumors, TRAMP-C1 prostate adenocarcinoma, ALTS1C1 astrocytoma, and GL261 glioma, further demonstrate that different phenotypes of inflammatory cells are spatially distributed into different microenvironments in both IR and pre-IR tumors. Regions with avascular hypoxia and central necrosis have CD11bhigh/Gr-1+ neutrophils in the center of the necrotic area. Next to them are CD11blow/F4/80+ macrophages that sit at the junctions between central necrotic and surrounding hypoxic regions. The majority of cells in the hypoxic regions are CD11blow/CD68+ macrophages. These inflammatory cell populations express different levels of Arg I. This distribution pattern, except for neutrophils, is not observed in tumors receiving chemotherapy or an anti-angiogenesis agent which also lead to avascular hypoxia. This unique distribution pattern of inflammatory cells in IR tumor sites is interfered with by targeting the expression of a chemokine protein, SDF-1α, by tumor cells, and this also increases radiation-induced tumor growth delay. This indicates that irradiated-hypoxia tissues have distinct tumor microenvironments that favor the development of M2 macrophages and that is affected by the levels of tumor-secreted SDF-1α.
Collapse
Affiliation(s)
- Chi-Shiun Chiang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University Hsinchu, Taiwan
| | | | | | | | | | | | | |
Collapse
|
52
|
Shim MS, Kwon YJ. Stimuli-responsive polymers and nanomaterials for gene delivery and imaging applications. Adv Drug Deliv Rev 2012; 64:1046-59. [PMID: 22329941 DOI: 10.1016/j.addr.2012.01.018] [Citation(s) in RCA: 286] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 01/30/2012] [Accepted: 01/30/2012] [Indexed: 12/11/2022]
Abstract
Multiple extra- and intracellular obstacles, including low stability in blood, poor cellular uptake, and inefficient endosomal escape and disassembly in the cytoplasm, have to be overcome in order to deliver nucleic acids for gene therapy. This review introduces the recent advances in tackling the key challenges in achieving efficient, targeted, and safe nonviral gene delivery using various nucleic acid-containing nanomaterials that are designed to respond to various extra- and intracellular biological stimuli (e.g., pH, redox potential, and enzyme) as well as external artificial triggers (e.g., light and ultrasound). Gene delivery in combination with molecular imaging and targeting enables diagnostic assessment, treatment monitoring and quantification of efficiency, and confirmation of cure, thus fulfilling the great promise of efficient and personalized medicine. Nanomaterials platform for combined imaging and gene therapy, nanotheragnostics, using stimuli-responsive materials is also highlighted in this review. It is clear that developing novel multifunctional nonviral vectors, which transform their physico-chemical properties in response to various stimuli in a timely and spatially controlled manner, is highly desired to translate the promise of gene therapy for the clinical success.
Collapse
|
53
|
pH-sensitive vesicles, polymeric micelles, and nanospheres prepared with polycarboxylates. Adv Drug Deliv Rev 2012; 64:979-92. [PMID: 21996056 DOI: 10.1016/j.addr.2011.09.006] [Citation(s) in RCA: 329] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2011] [Revised: 09/16/2011] [Accepted: 09/20/2011] [Indexed: 01/06/2023]
Abstract
Titratable polyanions, and more particularly polymers bearing carboxylate groups, have been used in recent years to produce a variety of pH-sensitive colloids. These polymers undergo a coil-to-globule conformational change upon a variation in pH of the surrounding environment. This conformational change can be exploited to trigger the release of a drug from a drug delivery system in a pH-dependent fashion. This review describes the current status of pH-sensitive vesicles, polymeric micelles, and nanospheres prepared with polycarboxylates and their performance as nano-scale drug delivery systems, with emphasis on our recent contribution to this field.
Collapse
|
54
|
Wu ZW, Chien CT, Liu CY, Yan JY, Lin SY. Recent progress in copolymer-mediated siRNA delivery. J Drug Target 2012; 20:551-60. [DOI: 10.3109/1061186x.2012.699057] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
55
|
Khan M, Ong ZY, Wiradharma N, Attia ABE, Yang YY. Advanced materials for co-delivery of drugs and genes in cancer therapy. Adv Healthc Mater 2012. [PMID: 23184770 DOI: 10.1002/adhm.201200109] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
With cancer being the major cause of mortality worldwide, the continued development of safe and efficacious treatments is warranted. A better understanding of the molecular mechanism and genetic basis of tumor initiation and progression, coupled with advances in chemistry, molecular biology and engineering have led to discovery of a wide range of therapeutic agents for cancer therapy. However, multidrug-resistance, which is mainly caused by malfunction of genes, has become a major problem in chemotherapy. To overcome this problem, the simultaneous delivery of genes to cancer cells has been proposed to correct the malfunctioned genes to sensitize the cells to chemotherapeutics. This progress report summarizes key advances in drug and gene delivery with focus on the development of polymers, peptides, liposomes and inorganic materials as nanocarriers for co-delivery of small molecular drugs and macromolecular genes or proteins. In addition, challenges and future perspectives in the design of nanocarriers for the co-delivery of therapeutic drugs and genes are discussed.
Collapse
Affiliation(s)
- Majad Khan
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, Singapore 138669
| | | | | | | | | |
Collapse
|
56
|
Chenglin Y, Yiqun Y, Ye Z, Na L, Xiaoya L, Jing L, Ming J. Self-assembly and emulsification of poly{[styrene-alt-maleic acid]-co-[styrene-alt-(N-3,4-dihydroxyphenylethyl-maleamic acid)]}. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:9211-9222. [PMID: 22639900 DOI: 10.1021/la301605a] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Self-assembled polymeric micelles can be used as efficient particulate emulsifiers. To explore the relationship between the structure and the oil-water interfacial behavior of the micelle emulsifiers, a new type of amphiphilic random copolymer, poly{(styrene-alt-maleic acid)-co-[styrene-alt-(N-3,4-dihydroxyphenylethyl-maleamic acid)]} (SMA-Dopa), was synthesized, self-assembled into micelles, and used as emulsifiers. SMA-Dopa was synthesized via an aminolysis reaction between dopamine and commercial alternating copolymer poly(styrene-alt-maleic anhydride) (SMA). Dopamine moiety facilitated the self-assembly of the SMA-Dopa in selective-solvent into stable micelles, and increased the adsorption of the SMA-Dopa at the oil-water interface. Additionally, the structural transition of the self-assembled SMA-Dopa52 micelles in response to pH and salinity changes were confirmed by means of TEM, AFM, DLS, aqueous electrophoresis techniques, potentiometric titration, and pyrene fluorescence probe methods. Micelles shrunk with increasing salinity, and flocculation of the shrunken primary micelles occurred at salt concentration exceeding 0.1 M. The micelles swelled with increasing pH, and the disassociation of the SMA-Dopa52 micelles occurred at pH above approximately 6.5. The structure of the micelles plays a crucial role in the oil-water interfacial performance. Micelles with various structures were used as emulsifiers to adsorb at the styrene-water and toluene-water interfaces. The emulsifying characteristics demonstrated that self-assembled SMA-Dopa52 micelles with moderately swollen structure (at 2 < pH < 6) combine the advantages of the solid particulate emulsifiers and polymeric surfactants, possessing excellent emulsifying efficiency and good emulsion stability. Moreover, the emulsifying performance of the SMA-Dopa52 micelles could be enhanced by the addition of salt.
Collapse
Affiliation(s)
- Yi Chenglin
- Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | | | | | | | | | | | | |
Collapse
|
57
|
Systemic delivery of therapeutic small interfering RNA using a pH-triggered amphiphilic poly-l-lysine nanocarrier to suppress prostate cancer growth in mice. Eur J Pharm Sci 2012; 45:521-32. [DOI: 10.1016/j.ejps.2011.11.024] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 11/17/2011] [Accepted: 11/28/2011] [Indexed: 11/19/2022]
|
58
|
Li Q, Zhu L, Liu R, Huang D, Jin X, Che N, Li Z, Qu X, Kang H, Huang Y. Biological stimuli responsive drug carriers based on keratin for triggerable drug delivery. ACTA ACUST UNITED AC 2012. [DOI: 10.1039/c2jm34136k] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
59
|
|
60
|
|
61
|
|
62
|
Huang WC, Chiang WH, Huang YF, Lin SC, Shih ZF, Chern CS, Chiang CS, Chiu HC. Nano-scaled pH-responsive polymeric vesicles for intracellular release of doxorubicin. J Drug Target 2011; 19:944-53. [DOI: 10.3109/1061186x.2011.632012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
63
|
Sui M, Liu W, Shen Y. Nuclear drug delivery for cancer chemotherapy. J Control Release 2011; 155:227-36. [DOI: 10.1016/j.jconrel.2011.07.041] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 07/26/2011] [Accepted: 07/29/2011] [Indexed: 10/25/2022]
|
64
|
Kumari A, Kumar V, Yadav SK. Nanocarriers: a tool to overcome biological barriers in siRNA delivery. Expert Opin Biol Ther 2011; 11:1327-1339. [PMID: 21682658 DOI: 10.1517/14712598.2011.587801] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION siRNA has poor in vivo stability and has a plasma half life of only a few minutes after intravenous administration. These problems can be overcome by conjugating/encapsulating siRNA with various nanosystems. Surface modifications of such nanosystems can further improve the cellular uptake of siRNA-nanosystems. In this review, the authors have highlighted the problems encountered in siRNA delivery, conjugation strategies and nanosystems for siRNA delivery and for improving their in vivo delivery performance. AREAS COVERED The authors briefly cover various problems encountered in siRNA delivery and discuss nanocarriers for overcoming these biological barriers. EXPERT OPINION siRNA binding and unpacking are important factors for optimizing the interactions between siRNA and nanosystems. Several crucial conjugation parameters, such as the conjugation site of siRNA, and the nature of molecules to be conjugated (charge, molecular weight and hydrophobicity), should be carefully considered for maximising delivery efficiency of siRNA conjugated nanosystems.
Collapse
Affiliation(s)
- Avnesh Kumari
- Council of Scientific and Industrial Research (CSIR), Institute of Himalayan Bioresource Technology, Biotechnology Division, Nanobiology Lab, Palampur-176061 (HP), India
| | | | | |
Collapse
|
65
|
Li H, Nelson CE, Evans BC, Duvall CL. Delivery of intracellular-acting biologics in pro-apoptotic therapies. Curr Pharm Des 2011; 17:293-319. [PMID: 21348831 DOI: 10.2174/138161211795049642] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 02/18/2011] [Indexed: 12/21/2022]
Abstract
The recent elucidation of molecular regulators of apoptosis and their roles in cellular oncogenesis has motivated the development of biomacromolecular anticancer therapeutics that can activate intracellular apoptotic signaling pathways. Pharmaceutical scientists have employed a variety of classes of biologics toward this goal, including antisense oligodeoxynucleotides, small interfering RNA, proteins, antibodies, and peptides. However, stability in the in vivo environment, tumor-specific biodistribution, cell internalization, and localization to the intracellular microenvironment where the targeted molecule is localized pose significant challenges that limit the ability to directly apply intracellular-acting, pro-apoptotic biologics for therapeutic use. Thus, approaches to improve the pharmaceutical properties of therapeutic biomacromolecules are of great significance and have included chemically modifying the bioactive molecule itself or formulation with auxiliary compounds. Recently, promising advances in delivery of pro-apoptotic biomacromolecular agents have been made using tools such as peptide "stapling", cell penetrating peptides, fusogenic peptides, liposomes, nanoparticles, smart polymers, and synergistic combinations of these components. This review will discuss the molecular mediators of cellular apoptosis, the respective mechanisms by which these mediators are dysregulated in cellular oncogenesis, the history and development of both nucleic-acid and amino-acid based drugs, and techniques to achieve intracellular delivery of these biologics. Finally, recent applications where pro-apoptotic functionality has been achieved through delivery of intracellular-acting biomacromolecular drugs will be highlighted.
Collapse
Affiliation(s)
- Hongmei Li
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | | | | | | |
Collapse
|
66
|
|
67
|
A double-modulation strategy in cancer treatment with a chemotherapeutic agent and siRNA. Mol Ther 2011; 19:2040-7. [PMID: 21878904 DOI: 10.1038/mt.2011.174] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
5-Fluorouracil (5-FU) is broadly considered the drug of choice for treating human colorectal cancer (CRC). However, 5-FU resistance, mainly caused by the overexpression of antiapoptotic proteins such as Bcl-2, often leads ultimately to treatment failure. We here investigated the effect of Bcl-2 gene silencing, using small interfering RNA (siRNA) (siBcl-2), on the efficacy of 5-FU in CRC. Transfection of siBcl-2 by a Lipofectamine2000/siRNA lipoplex effectively downregulated Bcl-2 expression in the DLD-1 cell line (a CRC), resulting in significant cell growth inhibition in vitro upon treatment with 5-FU. For in vivo treatments, S-1, an oral formulation of Tegafur (TF), a prodrug of 5-FU, was used to mimic 5-FU infusion. The combined treatment of polyethylene glycol (PEG)-coated siBcl-2-lipoplex and S-1 showed superior tumor growth suppression in a DLD-1 xenograft model, compared to each single treatment. Surprisingly, daily S-1 treatment enhanced the accumulation of PEG-coated siBcl-2-lipoplex in tumor tissue. We propose a novel double modulation strategy in cancer treatment, in which chemotherapy enhances intratumoral siRNA delivery and the delivered siRNA enhances the chemosensitivity of tumors. Combination of siRNA-containing nanocarriers with chemotherapy may compensate for the limited delivery of siRNA to tumor tissue. In addition, such modulation strategy may be considered a promising therapeutic approach to successfully managing 5-FU-resistant tumors.
Collapse
|
68
|
Benoit DSW, Srinivasan S, Shubin AD, Stayton PS. Synthesis of folate-functionalized RAFT polymers for targeted siRNA delivery. Biomacromolecules 2011; 12:2708-14. [PMID: 21634800 PMCID: PMC3147305 DOI: 10.1021/bm200485b] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Receptor-mediated, cell-specific delivery of siRNA enables silencing of target genes in specific tissues, opening the door to powerful therapeutic options for a multitude of diseases. However, the development of delivery systems capable of targeted and effective siRNA delivery typically requires multiple steps and the use of sophisticated, orthogonal chemistries. Previously, we developed diblock copolymers consisting of dimethaminoethyl methacrylate-b-dimethylaminoethyl methacrylate-co-butyl methacrylate-co-propylacrylic acid as potent siRNA delivery systems that protect siRNA from enzymatic degradation and enable its cytosolic delivery through pH-responsive, endosomolytic behavior. (1, 2) These architectures were polymerized using a living radical polymerization method, specifically reversible addition-fragmentation chain transfer (RAFT) polymerization, which employs a chain transfer agent (CTA) to modulate the rate of reaction, resulting in polymers with low polydispersity and telechelic chain ends reflecting the chemistry of the CTA. Here we describe the straightforward, facile synthesis of a folate receptor-targeted diblock copolymer siRNA delivery system because the folate receptor is an attractive target for tumor-selective therapies as a result of its overexpression in a number of cancers. Specifically, we detail the de novo synthesis of a folate-functionalized CTA, use the folate-CTA for controlled polymerizations of diblock copolymers, and demonstrate efficient, specific cellular folate receptor interaction and in vitro gene knockdown using the folate-functionalized polymer.
Collapse
Affiliation(s)
- Danielle S W Benoit
- University of Rochester, Department of Biomedical Engineering, Center for Musculoskeletal Research, 308 Robert B. Goergen Hall, Rochester, New York 14627, USA.
| | | | | | | |
Collapse
|
69
|
Azari F, Sandros MG, Tabrizian M. Self-assembled multifunctional nanoplexes for gene inhibitory therapy. Nanomedicine (Lond) 2011; 6:669-80. [DOI: 10.2217/nnm.11.23] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Aim: To enhance the stability of siRNA while improving their therapeutic properties and visualization at the target site, a novel nanoplex system was developed. Materials & Methods: The designed nanoplex system involved functionalizing siRNA with near-infrared quantum dots and loading them into histidylated glycol chitosan (GC-His). Results: Colocalization studies revealed a twofold increase in siRNA uptake after encapsulation with GC-His and nanoparticles were localized in cytoplasm, suggesting that histidine promoted their dissociation from the endosomal membranes. Furthermore, as opposed to siRNAs treated with commercial transfection reagent, siRNAs loaded within GC-His showed a marked reduction (64%) of MDM2 protein expression 24 h after transfection. Conclusion: These findings concur that GC-His/siRNA-quantum dot nanoplexes are promising multifunctional vehicles for gene inhibitory therapy.
Collapse
Affiliation(s)
- Fereshteh Azari
- Department of Biomedical Engineering, McGill University, 3775 University Street, Montreal, Quebec, H3A2B4, Canada
- Center for Biorecognition & Biosensors, McGill Institute for Advanced Materials, Montreal, Quebec, Canada
| | - Marinella G Sandros
- Department of Biomedical Engineering, McGill University, 3775 University Street, Montreal, Quebec, H3A2B4, Canada
- Center for Biorecognition & Biosensors, McGill Institute for Advanced Materials, Montreal, Quebec, Canada
| | - Maryam Tabrizian
- Faculty of Dentistry, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
70
|
Gary DJ, Lee H, Sharma R, Lee JS, Kim Y, Cui ZY, Jia D, Bowman VD, Chipman PR, Wan L, Zou Y, Mao G, Park K, Herbert BS, Konieczny SF, Won YY. Influence of nano-carrier architecture on in vitro siRNA delivery performance and in vivo biodistribution: polyplexes vs micelleplexes. ACS NANO 2011; 5:3493-505. [PMID: 21456626 PMCID: PMC3381331 DOI: 10.1021/nn102540y] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Micelle-based siRNA carriers ("micelleplexes") were prepared from the A-B-C triblock copolymer poly(ethylene glycol)-poly(n-butyl acrylate)-poly(2-(dimethylamino)ethyl methacrylate) (PEG-PnBA-PDMAEMA), and their in vitro performance and in vivo biodistribution properties were compared with the benchmark PEGylated and basic polycation systems PEG-PDMAEMA and PDMAEMA, respectively. The micelle architecture, incorporating increased PEG shielding and a larger particle size (∼50 nm) than polycation-based complexes (polyplexes; ∼10 nm), enhances siRNA delivery performance in two important aspects: in vitro gene silencing efficiency and in vivo tumor accumulation. The in vitro gene silencing efficiency of the micelleplexes (24% in HeLa cells) was significantly better than the statistically insignificant levels observed for PDMAEMA and PEG-PDMAEMA polyplexes under identical conditions. This enhancement is linked to the different mechanisms by which micelleplexes are internalized (i.e., caveolar, etc.) compared to PDMAEMA and PEG-PDMAEMA polyplexes. Folate-functionalization significantly improved micelleplex uptake but had negligible influence on gene-silencing efficiency, suggesting that this parameter is not limited by cellular internalization. In vivo biodistribution analysis revealed that siRNA delivered by micelleplexes was more effectively accumulated and retained in tumor tissues than that delivered by PEGylated polyplexes. Overall, the micelle particle size and architecture appear to improve in vitro and in vivo delivery characteristics without significantly changing other properties, such as cytotoxicity and resistance to enzymes and dissociation. The self-assembled nature of micelleplexes is expected to enable incorporation of imaging modalities inside the hydrophobic micelle core, thus combining therapeutic and diagnostic capabilities. The findings from the present study suggest that the micelleplex-type carrier architecture is a useful platform for potential theranostic and tumor-targeting applications.
Collapse
Affiliation(s)
- Dana J. Gary
- School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907
| | - Hoyoung Lee
- School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907
| | - Rahul Sharma
- School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907
| | - Jae-Sung Lee
- School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907
| | - Youngwook Kim
- Medical Nanoelement Development Center, Samsung Medical Center, Seoul, Korea 135-710
| | - Zheng Yun Cui
- Medical Nanoelement Development Center, Samsung Medical Center, Seoul, Korea 135-710
| | - Di Jia
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907
| | - Valorie D. Bowman
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907
| | - Paul R. Chipman
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907
| | - Lei Wan
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan 48202
| | - Yi Zou
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan 48202
| | - Guangzhao Mao
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan 48202
| | - Keunchil Park
- Medical Nanoelement Development Center, Samsung Medical Center, Seoul, Korea 135-710
- Department of Hematology and Oncology, Samsung Medical Center, Seoul, Korea 135-710
| | - Brittney-Shea Herbert
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Stephen F. Konieczny
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907
| | - You-Yeon Won
- School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907
- To whom correspondence should be addressed.
| |
Collapse
|
71
|
McFearin CL, Sankaranarayanan J, Almutairi A. Application of fiber-optic attenuated total reflection-FT-IR methods for in situ characterization of protein delivery systems in real time. Anal Chem 2011; 83:3943-9. [PMID: 21476582 DOI: 10.1021/ac200591a] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A fiber-optic coupled attenuated total reflection (ATR)-FT-IR spectroscopy technique was applied to the study of two different therapeutic delivery systems, acid degradable hydrogels and nanoparticles. Real time exponential release of a model protein, human serum albumin (HSA), was observed from two different polymeric hydrogels formulated with a pH sensitive cross-linker. Spectroscopic examination of nanoparticles formulated with an acid degradable polymer shell and encapsulated HSA exhibited vibrational signatures characteristic of both particle and payload when exposed to lowered pH conditions, demonstrating the ability of this methodology to simultaneously measure phenomena arising from a system with a mixture of components. In addition, thorough characterization of these pH sensitive delivery vehicles without encapsulated protein was also accomplished in order to separate the effects of the payload during degradation. When in situ, real time detection in combination with the ability to specifically identify different components in a mixture without involved sample preparation and minimal sample disturbance is provided, the versatility and suitability of this type of experiment for research in the pharmaceutical field is demonstrated.
Collapse
Affiliation(s)
- Cathryn L McFearin
- School of Pharmacy and Pharmaceutical Sciences, Department of NanoEngineering, University of California at San Diego, La Jolla, California 92093, USA
| | | | | |
Collapse
|
72
|
Becker AL, Orlotti NI, Folini M, Cavalieri F, Zelikin AN, Johnston APR, Zaffaroni N, Caruso F. Redox-active polymer microcapsules for the delivery of a survivin-specific siRNA in prostate cancer cells. ACS NANO 2011; 5:1335-44. [PMID: 21226510 DOI: 10.1021/nn103044z] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
In this report, we describe the delivery of small interfering RNA (siRNA) using LbL-assembled microcapsules. The microcapsules are based on negatively charged poly(methacrylic acid) nanometer thin films containing cross-linking disulfide bonds. One system is polycation-free and another contains polylysine for siRNA complexation in the microcapsule void. When microcapsules containing a siRNA targeting survivin were delivered to PC-3 prostate cancer cells, a significant inhibition of the expression of the antiapoptotic protein was observed. However, down-regulation of survivin was also observed in PC-3 cells exposed to microcapsules embedded with a scrambled siRNA as well as in cells treated with empty microcapsules. These findings indicate a capsule-dependent off-target effect, which is supported by a reduction in the expression of other survivin-unrelated proteins. The microcapsules and their polymeric constituents do not affect cell proliferation, as determined by a metabolic assay, even after 4 days of exposure. In addition, in PC-3 cells exposed to microcapsules, we observed a marked accumulation of LC3b, a marker related to autophagy (i.e., self-digestion), a degradation pathway involved in the maintenance of cell homeostasis in response to different stresses. This evidence suggests that empty microcapsules can induce a perturbation of the intracellular environment, which causes the activation of a cell safeguard mechanism that may limit the therapeutic effect of the microcapsules in tumor cells.
Collapse
Affiliation(s)
- Alisa L Becker
- Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | | | | | | | | | | | |
Collapse
|
73
|
Smith D, Holley AC, McCormick CL. RAFT-synthesized copolymers and conjugates designed for therapeutic delivery of siRNA. Polym Chem 2011. [DOI: 10.1039/c1py00038a] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
74
|
Boyer C, Stenzel MH, Davis TP. Building nanostructures using RAFT polymerization. ACTA ACUST UNITED AC 2010. [DOI: 10.1002/pola.24482] [Citation(s) in RCA: 280] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|