51
|
Xu XG, Bednarz B, Paganetti H. A review of dosimetry studies on external-beam radiation treatment with respect to second cancer induction. Phys Med Biol 2008; 53:R193-241. [PMID: 18540047 PMCID: PMC4009374 DOI: 10.1088/0031-9155/53/13/r01] [Citation(s) in RCA: 300] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
It has been long known that patients treated with ionizing radiation carry a risk of developing a second cancer in their lifetimes. Factors contributing to the recently renewed concern about the second cancer include improved cancer survival rate, younger patient population as well as emerging treatment modalities such as intensity-modulated radiation treatment (IMRT) and proton therapy that can potentially elevate secondary exposures to healthy tissues distant from the target volume. In the past 30 years, external-beam treatment technologies have evolved significantly, and a large amount of data exist but appear to be difficult to comprehend and compare. This review article aims to provide readers with an understanding of the principles and methods related to scattered doses in radiation therapy by summarizing a large collection of dosimetry and clinical studies. Basic concepts and terminology are introduced at the beginning. That is followed by a comprehensive review of dosimetry studies for external-beam treatment modalities including classical radiation therapy, 3D-conformal x-ray therapy, intensity-modulated x-ray therapy (IMRT and tomotherapy) and proton therapy. Selected clinical data on second cancer induction among radiotherapy patients are also covered. Problems in past studies and controversial issues are discussed. The needs for future studies are presented at the end.
Collapse
Affiliation(s)
- X George Xu
- Nuclear Engineering and Engineering Physics, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | | | | |
Collapse
|
52
|
Tomelleri C, Milotti E, Dalla Pellegrina C, Perbellini O, Del Fabbro A, Scupoli MT, Chignola R. A quantitative study of growth variability of tumour cell clones in vitro. Cell Prolif 2008; 41:177-91. [PMID: 18211293 DOI: 10.1111/j.1365-2184.2007.00501.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVES In this study, we quantify growth variability of tumour cell clones from a human leukaemia cell line. MATERIALS AND METHODS We have used microplate spectrophotometry to measure growth kinetics of hundreds of individual cell clones from the Molt3 cell line. Growth rate of each clonal population has been estimated by fitting experimental data with the logistic equation. RESULTS Growth rates were observed to vary between different clones. Up to six clones with growth rates above or below mean growth rate of the parent population were further cloned and growth rates of their offspring were measured. Distribution of growth rates of the subclones did not significantly differ from that of the parent population, thus suggesting that growth variability has an epigenetic origin. To explain observed distributions of clonal growth rates, we have developed a probabilistic model, assuming that fluctuation in the number of mitochondria through successive cell cycles is the leading cause of growth variability. For fitting purposes, we have estimated experimentally by flow cytometry the average maximum number of mitochondria in Molt3 cells. The model fits nicely observed distributions in growth rates; however, cells in which mitochondria were rendered non-functional (rho(0) cells) showed only 30% reduction in clonal growth variability with respect to normal cells. CONCLUSIONS A tumour cell population is a dynamic ensemble of clones with highly variable growth rates. At least part of this variability is due to fluctuations in the initial number of mitochondria in daughter cells.
Collapse
Affiliation(s)
- C Tomelleri
- Department of Science and Technology, University of Verona, Verona, Italy
| | | | | | | | | | | | | |
Collapse
|
53
|
Bauer G. Low dose radiation and intercellular induction of apoptosis: potential implications for the control of oncogenesis. Int J Radiat Biol 2008; 83:873-88. [PMID: 18058371 DOI: 10.1080/09553000701727523] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
PURPOSE This review is focused on the potential impact of low dose radiation effects on intercellular induction of apoptosis and the underlying reactive-oxygen species (ROS)-mediated signaling pathways. RESULTS Transformed cells are subject to ROS-mediated apoptosis induction by non-transformed cells ('intercellular induction of apoptosis') and by ROS-mediated autocrine self-destruction. Sensitivity to intercellular induction of apoptosis and autocrine self-destruction are strictly correlated to the expression of the transformed state. Extracellular superoxide anions generated by transformed target cells drive the selectivity and sensitivity of this signaling system which is based on four different signaling pathways. Low dose irradiation of non-transformed cells enhances intercellular induction of apoptosis in transformed cells. This process is controlled by TGF-beta and seems to depend on the induction of peroxidase release. In addition, low dose radiation enhances superoxide anion generation of transformed target cells. CONCLUSIONS Low dose radiation-triggered enhancement of intercellular induction of apoptosis and autocrine self-destruction might represent a potential control system during carcinogenesis. It might be the underlying mechanism for the well-known inhibitory effect of low dose radiation on detectable transformation events. However, modifications of the complex intercellular ROS-based signaling system may also lead to configurations in which low dose radiation attenuates ROS-mediated apoptosis induction.
Collapse
Affiliation(s)
- Georg Bauer
- Abteilung Virologie, Institut für Medizinische Mikrobiologie und Hygiene, Universität Freiburg, Freiburg, Germany.
| |
Collapse
|
54
|
Barcellos-Hoff MH. Cancer as an emergent phenomenon in systems radiation biology. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2008; 47:33-8. [PMID: 18026977 DOI: 10.1007/s00411-007-0141-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2007] [Accepted: 10/17/2007] [Indexed: 05/13/2023]
Abstract
Radiation-induced DNA damage elicits dramatic cell signaling transitions, some of which are directed towards deciding the fate of that particular cell, while others lead to signaling to other cells. Each irradiated cell type and tissue has a characteristic pattern of radiation-induced gene expression, distinct from that of the unirradiated tissue and different from that of other irradiated tissues. It is the sum of such events, highly modulated by genotype that sometimes leads to cancer. The challenge is to determine as to which of these phenomena have persistent effect that should be incorporated into models of how radiation increases the risk of developing cancer. The application of systems biology to radiation effects may help to identify which biological responses are significant players in radiation carcinogenesis. In contrast to the radiation biology paradigm that focuses on genomic changes, systems biology seeks to integrate responses at multiple scales (e.g. molecular, cellular, organ, and organism). A key property of a system is that some phenomenon emerges as a property of the system rather than of the parts. Here, the idea that cancer in an organism can be considered as an emergent phenomenon of a perturbed system is discussed. Given the current research goal to determine the consequences of high and low radiation exposures, broadening the scope of radiation studies to include systems biology concepts should benefit risk modeling of radiation carcinogenesis.
Collapse
Affiliation(s)
- Mary Helen Barcellos-Hoff
- Life Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Bldg. 977, Berkeley, CA 94720, USA.
| |
Collapse
|
55
|
|
56
|
Trosko JE. Gap Junctional Intercellular Communication as a Biological “Rosetta Stone” in Understanding, in a Systems Biological Manner, Stem Cell Behavior, Mechanisms of Epigenetic Toxicology, Chemoprevention and Chemotherapy. J Membr Biol 2007; 218:93-100. [DOI: 10.1007/s00232-007-9072-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2007] [Accepted: 09/25/2007] [Indexed: 10/22/2022]
|
57
|
Abstract
The public fear of radiation is in part driven by the Linear No Threshold Hypothesis (LNTH), or the concept that each and every ionization increases the risk for cancer. Even if this were true, it is important to recognize that the increased risk is very small at low doses and cannot be detected. This paper demonstrates the large number of assumptions and extrapolations needed when using the LNTH to estimate low-dose cancer risk. The manuscript provides information at every level of biological organization suggesting that many of these linear assumptions do not hold. While the initial damage may be produced linearly with dose, the processing of that damage is very non-linear. Finally, the paper provides the unique prospective on radiation-induced cancer, demonstrating that it takes large amounts (total energy) of radiation delivered to large populations to detect an increase in cancer frequency. These observations are supported by both theoretical calculations and examples based on past human radiation exposure.
Collapse
Affiliation(s)
- Antone L Brooks
- Washington State University Tri-Cities, Richland, WA 99354, USA.
| | | | | |
Collapse
|
58
|
Andarawewa KL, Erickson AC, Chou WS, Costes SV, Gascard P, Mott JD, Bissell MJ, Barcellos-Hoff MH. Ionizing Radiation Predisposes Nonmalignant Human Mammary Epithelial Cells to Undergo Transforming Growth Factor β–Induced Epithelial to Mesenchymal Transition. Cancer Res 2007; 67:8662-70. [PMID: 17875706 DOI: 10.1158/0008-5472.can-07-1294] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Transforming growth factor beta1 (TGFbeta) is a tumor suppressor during the initial stage of tumorigenesis, but it can switch to a tumor promoter during neoplastic progression. Ionizing radiation (IR), both a carcinogen and a therapeutic agent, induces TGFbeta activation in vivo. We now show that IR sensitizes human mammary epithelial cells (HMEC) to undergo TGFbeta-mediated epithelial to mesenchymal transition (EMT). Nonmalignant HMEC (MCF10A, HMT3522 S1, and 184v) were irradiated with 2 Gy shortly after attachment in monolayer culture or treated with a low concentration of TGFbeta (0.4 ng/mL) or double treated. All double-treated (IR + TGFbeta) HMEC underwent a morphologic shift from cuboidal to spindle shaped. This phenotype was accompanied by a decreased expression of epithelial markers E-cadherin, beta-catenin, and ZO-1, remodeling of the actin cytoskeleton, and increased expression of mesenchymal markers N-cadherin, fibronectin, and vimentin. Furthermore, double treatment increased cell motility, promoted invasion, and disrupted acinar morphogenesis of cells subsequently plated in Matrigel. Neither radiation nor TGFbeta alone elicited EMT, although IR increased chronic TGFbeta signaling and activity. Gene expression profiling revealed that double-treated cells exhibit a specific 10-gene signature associated with Erk/mitogen-activated protein kinase (MAPK) signaling. We hypothesized that IR-induced MAPK activation primes nonmalignant HMEC to undergo TGFbeta-mediated EMT. Consistent with this, Erk phosphorylation was transiently induced by irradiation and persisted in irradiated cells treated with TGFbeta, and treatment with U0126, a MAP/Erk kinase (MEK) inhibitor, blocked the EMT phenotype. Together, these data show that the interactions between radiation-induced signaling pathways elicit heritable phenotypes that could contribute to neoplastic progression.
Collapse
Affiliation(s)
- Kumari L Andarawewa
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | | | | | | | | | | | | | | |
Collapse
|
59
|
Tai MH, Upham BL, Olson LK, Tsao MS, Reed DN, Trosko JE. Cigarette smoke components inhibited intercellular communication and differentiation in human pancreatic ductal epithelial cells. Int J Cancer 2007; 120:1855-62. [PMID: 17266035 DOI: 10.1002/ijc.22530] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Smoking is a well-documented risk factor for the development of pancreatic adenocarcinoma. Although the most abundant polycyclic aromatic hydrocarbons (PAHs) in cigarette smoke are methylated anthracenes and phenanthrenes, the epigenetic toxicity of these compounds has not been extensively studied. We previously showed that methylanthracenes, which possess a bay-like structure, affect epigenetic events such as an induced release of arachidonic acid, inhibition of gap junctional intercellular communication (GJIC) and induction of mitogen-activated protein kinases in a pluripotent rat liver epithelial stem cell line. Anthracenes with no bay-like structures were inactive. These biological effects are all molecular events associated with the promotional phase of cancer. A human immortalized, nontumorigenic pancreatic ductal epithelial cell line, H6c7, was examined to study the epigenetic toxicity of PAHs related to pancreatic cancer by using scrape-loading dye transfer, immunostaining, RT-PCR and telomerase assay methods. H6c7 cells were GJIC-incompetent and exhibited high telomerase activity when grown in growth factor and hormone-supplemented medium. In the presence of the cAMP elevating drugs (forskolin and IBMX) the cells became GJIC competent and expressed connexins. Telomerase activity was also decreased by cAMP elevating drug treatment. After induction of cAMP, 1-methylanthracene with bay-like structures inhibited GJIC, whereas the 2-methylanthracene lacking a bay-like structure had no effect on GJIC. Telomerase activity remained high in 1-methylanthracene treatment but not with 2-methylanthracene. These results indicate that a prominent component of cigarette smoke, namely methylanthracenes with distinct structural configurations, could be a potential etiological agent contributing to the epigenetic events of pancreatic cancer.
Collapse
Affiliation(s)
- Mei-Hui Tai
- Department of Physiology, Michigan State University, East Lansing, MI, USA.
| | | | | | | | | | | |
Collapse
|
60
|
Portess DI, Bauer G, Hill MA, O'Neill P. Low-dose irradiation of nontransformed cells stimulates the selective removal of precancerous cells via intercellular induction of apoptosis. Cancer Res 2007; 67:1246-53. [PMID: 17283161 DOI: 10.1158/0008-5472.can-06-2985] [Citation(s) in RCA: 169] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
An important stage in tumorigenesis is the ability of a precancerous cell to escape natural anticancer signals imposed on it by neighboring cells and its microenvironment. We have previously characterized a system of intercellular induction of apoptosis whereby nontransformed cells selectively remove transformed cells from coculture via cytokine and reactive oxygen/nitrogen species (ROS/RNS) signaling. We report that irradiation of nontransformed cells with low doses of either high linear energy transfer (LET) alpha-particles or low-LET gamma-rays leads to stimulation of intercellular induction of apoptosis. The use of scavengers and inhibitors confirms the involvement of ROS/RNS signaling and of the importance of transformed cell NADPH oxidase in the selectivity of the system. Doses as low as 2-mGy gamma-rays and 0.29-mGy alpha-particles were sufficient to produce an observable increase in transformed cell apoptosis. This radiation-stimulated effect saturates at very low doses (50 mGy for gamma-rays and 25 mGy for alpha-particles). The use of transforming growth factor-beta (TGF-beta) neutralizing antibody confirms a role for the cytokine in the radiation-induced signaling. The system may represent a natural anticancer mechanism stimulated by extremely low doses of ionizing radiation.
Collapse
Affiliation(s)
- Daniel I Portess
- Medical Research Council Radiation and Genome Stability Unit, Harwell, Didcot, Oxfordshire, UK
| | | | | | | |
Collapse
|
61
|
Durando M, Kass L, Piva J, Sonnenschein C, Soto AM, Luque EH, Muñoz-de-Toro M. Prenatal bisphenol A exposure induces preneoplastic lesions in the mammary gland in Wistar rats. ENVIRONMENTAL HEALTH PERSPECTIVES 2007; 115:80-6. [PMID: 17366824 PMCID: PMC1797838 DOI: 10.1289/ehp.9282] [Citation(s) in RCA: 236] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
BACKGROUND Humans are routinely exposed to bisphenol A (BPA), an estrogenic compound that leaches from dental materials, food and beverage containers, and other consumer products. Prenatal exposure to BPA has produced long-lasting and profound effects on rodent hormone-dependent tissues that are manifested 1-6 months after the end of exposure. OBJECTIVE The aim of the present work was to examine whether in utero exposure to BPA alters mammary gland development and increases its susceptibility to the carcinogen N-nitroso-N-methylurea (NMU). METHODS Pregnant Wistar rats were exposed to BPA (25 pg/kg body weight per day) or to vehicle. Female offspring were sacrificed on postnatal day (PND) 30, 50, 110, or 180. On PND50 a group of rats received a single subcarcinogenic dose of NMU (25 mg/kg) and they were sacrificed on either PND110 or PND180. RESULTS At puberty, animals exposed prenatally to BPA showed an increased proliferation/apoptosis ratio in both the epithelial and stromal compartments. During adulthood (PND110 and PND180), BPA-exposed animals showed an increased number of hyperplastic ducts and augmented stromal nuclear density. Moreover, the stroma associated with hyperplastic ducts showed signs of desmoplasia and contained an increased number of mast cells, suggesting a heightened risk of neoplastic transformation. Administration of a subcarcinogenic dose of NMU to animals exposed prenatally to BPA increased the percentage of hyperplastic ducts and induced the development of neoplastic lesions. CONCLUSIONS Our results demonstrate that the prenatal exposure to low doses of BPA perturbs mammary gland histoarchitecture and increases the carcinogenic susceptibility to a chemical challenge administered 50 days after the end of BPA exposure.
Collapse
Affiliation(s)
- Milena Durando
- Laboratorio de Endocrinología y Tumores Hormonodependientes, School of Biochemistry and Biological Sciences, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Laura Kass
- Laboratorio de Endocrinología y Tumores Hormonodependientes, School of Biochemistry and Biological Sciences, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Julio Piva
- Laboratorio de Endocrinología y Tumores Hormonodependientes, School of Biochemistry and Biological Sciences, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Carlos Sonnenschein
- Department of Anatomy and Cellular Biology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Ana M. Soto
- Department of Anatomy and Cellular Biology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Enrique H. Luque
- Laboratorio de Endocrinología y Tumores Hormonodependientes, School of Biochemistry and Biological Sciences, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Mónica Muñoz-de-Toro
- Laboratorio de Endocrinología y Tumores Hormonodependientes, School of Biochemistry and Biological Sciences, Universidad Nacional del Litoral, Santa Fe, Argentina
- Address correspondence to M. Muñoz-de-Toro, Laboratorio de Endocrinología y Tumores Hormonodependientes, School of Biochemistry and Biological Sciences, Casilla de Correo 242, (3000) Santa Fe, Argentina. Telephone/Fax: 54-342-4575207. E-mail:
| |
Collapse
|
62
|
Brooks AL, Couch L. DOE program--developing a scientific basis for responses to low-dose exposures: impact on dose-response relationships. Dose Response 2006; 5:11-25. [PMID: 18648552 DOI: 10.2203/dose-response.06-001.brooks] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The DOE Low Dose Radiation Research Program focuses on biological mechanisms involved in response to low doses of both low and high-LET radiation (< 0.1Gy). This research program represents a merging of new technologies with cutting edge biological techniques associated with genomics. This merger enables observation of radiation-induced cellular and molecular changes previously undetectable. These low-dose responses define mechanisms of interaction of radiation with living systems, and characterize the shape of dose-response. The research from this program suggests radiation paradigms regarding the involvement of radiation in the carcinogenic process. New biological phenomena observed at low doses include initial radiation-induced DNA damage and repair, changes in gene expression, adaptive responses and bystander effects. However, information from this cellular-molecular level cannot be directly extrapolated to risks in human populations. Links must be carefully developed between dose-response relationships at the cell and tissue levels and risk to human populations. The challenge and the ultimate goal of the Program is to determine if basic scientific data can be combined with more traditional epidemiological methods to improve the estimation of radiation risk from low level radiation exposures.
Collapse
Affiliation(s)
- Antone L Brooks
- Washington State University Tri-Cities, 2710 University Drive, Richland, WA 99354, USA
| | | |
Collapse
|
63
|
Cordes N, Seidler J, Durzok R, Geinitz H, Brakebusch C. beta1-integrin-mediated signaling essentially contributes to cell survival after radiation-induced genotoxic injury. Oncogene 2006; 25:1378-90. [PMID: 16247454 DOI: 10.1038/sj.onc.1209164] [Citation(s) in RCA: 158] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Integrin-mediated adhesion to extracellular matrix proteins confers resistance to radiation- or drug-induced genotoxic injury. To analyse the underlying mechanisms specific for beta1-integrins, wild-type beta1A-integrin-expressing GD25beta1A cells were compared to GD25beta1B cells, which express signaling-incompetent beta1B variants. Cells grown on fibronectin, collagen-III, beta1-integrin-IgG or poly-l-lysine were exposed to 0-6 Gy X-rays in presence or depletion of growth factors and phosphatidylinositol-3 kinase (PI3K) inhibitors (LY294002, wortmannin). In order to test the relevance of these findings in tumor cells, human A-172 glioma cells were examined under the same conditions after siRNA-mediated silencing of beta1-integrins. We found that beta1A-integrin-mediated adhesion to fibronectin, collagen-III or beta1-IgG was essential for cell survival after radiation-induced genotoxic injury. Mediated by PI3K, pro-survival beta1A-integrin/Akt signaling was critically involved in this process. Additionally, the beta1-integrin downstream targets p130Cas and paxillin-impaired survival-regulating PI3K-dependent JNK. In A-172 glioma cells, beta1-integrin knockdown and PI3K inhibition confirmed the central role of beta1-integrins in Akt- and p130Cas/paxillin-mediated prosurvival signaling. These findings suggest beta1-integrins as critical regulators of cell survival after radiation-induced genotoxic injury. Elucidation of the molecular circuitry of prosurvival beta1-integrin-mediated signaling in tumor cells may promote the development of innovative molecular-targeted therapeutic antitumor strategies.
Collapse
Affiliation(s)
- N Cordes
- OncoRay -- Radiation Research in Oncology, Medical Faculty Carl Gustav Carus, Technical University Dresden, Fetscherstrasse, Dresden, Germany.
| | | | | | | | | |
Collapse
|
64
|
Swift-Scanlan T, Blackford A, Argani P, Sukumar S, Fackler MJ. Two-color quantitative multiplex methylation-specific PCR. Biotechniques 2006; 40:210-9. [PMID: 16526411 DOI: 10.2144/000112097] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
In recent years, several methylation-specific PCR-based techniques have been developed to identify and characterize hypermethylation of CpG dinucleotides with the primary goal of elucidating a better understanding of the role of DNA methylation in important biological processes, such as chromosome X inactivation and carcinogenesis. The specificity of methylation-specific PCR (MSP) techniques relies on amplifying sodium bisulfite-treated DNA with primers specific to predicted sequences of unmethylated and methylated DNA within the gene of interest. In the past, unmethylated and methylated reactions were singleplex and performed in separate wells. In this paper we report a modification of the real-time quantitative multiplex MSP (QM-MSP) technique of Fackler and colleagues that can be applied to any real-time MSP experiment. Although co-amplification with multiple fluorophores is common in standard reverse transcription PCR (RT-PCR), MSP presents unique challenges both mechanistically and operationally that must be overcome in order to successfully co-amplify two methylation-specific targets. In this two-color modification, unmethylated and methylated primer/probe sets are successfully co-amplified in the same reaction using FAM- and VIC-labeled probes. Our modification decreases the cost and time of each real-time experiment by allowing increased throughput of clinical samples and by doubling either the number of genes or the number of samples that can be analyzed per real-time plate.
Collapse
|
65
|
Stewart RD, Ratnayake RK, Jennings K. Microdosimetric Model for the Induction of Cell Killing through Medium‐Borne Signals. Radiat Res 2006; 165:460-9. [PMID: 16579659 DOI: 10.1667/rr3520.1] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Microbeam, medium-transfer and low-dose experiments have demonstrated that intercellular signals can initiate many of the same biological events and processes as direct exposure to ionizing radiation. These phenomena cast doubt on cell-autonomous modes of action and the linear, no-threshold carcinogenesis paradigm. To account for the effects of intercellular signals, new approaches are needed to relate dosimetric quantities to the emission and processing of signals by irradiated and unirradiated cells. In this paper, microdosimetric principles are used to develop a stochastic model to relate absorbed dose to the emission and processing of cell death signals by unirradiated cells. Our analyses of published results of medium transfer experiments performed using HPV-G human keratinocytes suggest that the emission of death signals is a bi-exponential function of dose with a distinct plateau in the 5- to 100-mGy range. However, the emission of death signals by HPV-G cells may not become fully saturated until the absorbed dose becomes larger than 0.6 Gy. Similar saturation effects have been observed in microbeam and medium-transfer experiments with other mammalian cell lines. The model predicts that the cell-killing effect of medium-borne death signals decreases exponentially as the absorbed dose becomes small compared to the frequency-mean specific energy per radiation event.
Collapse
Affiliation(s)
- R D Stewart
- School of Health Sciences, Purdue University, West Lafayette, Indiana 47907-2051, USA.
| | | | | |
Collapse
|
66
|
Witz IP, Levy-Nissenbaum O. The tumor microenvironment in the post-PAGET era. Cancer Lett 2006; 242:1-10. [PMID: 16413116 DOI: 10.1016/j.canlet.2005.12.005] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2005] [Revised: 11/29/2005] [Accepted: 12/04/2005] [Indexed: 02/07/2023]
Abstract
The research area of tumor microenvironment is considered, at present, to be an important factor in tumorigenesis and especially in tumor progression. The present mini review is focused on three principles characterizing the nature of the tumor microenvironment. We first discuss the regulatory functions of the tumor microenvironment and the complexity of the combinatorial signaling pathways operating in it. We then address the aspect that the tumor microenvironment incorporates both pro and anti malignancy factors and that a balance between these factors regulates tumor progression. Thirdly we provide evidence that the non-tumor cells in the tumor microenvironment and their products may be different from those of their counterparts residing in non-tumor microenvironments. The conclusion of this mini review is that the tumor microenvironment, by exerting regulatory functions and selective pressures drives cancer cells into one of several molecular evolution pathways thereby determining and shaping their malignancy phenotype.
Collapse
Affiliation(s)
- Isaac P Witz
- Department of Cell Research and Immunology, and the Ela Kodesz Institute for Cancer Development and Prevention, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel.
| | | |
Collapse
|
67
|
Brooks AL. Paradigm shifts in radiation biology: their impact on intervention for radiation-induced disease. Radiat Res 2005; 164:454-61. [PMID: 16187749 DOI: 10.1667/rr3324.1] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
New mechanistic cell and molecular studies on the effects of very low doses of radiation have resulted in three major paradigm shifts. First, the observation of bystander effects demonstrated that non-hit cells may respond as well as cells in which energy is deposited. Second, it was thought that gene mutations and chromosome aberrations were the most important early changes that represented the initiation phase of radiation-induced cancer. Now genomic instability that leads to the loss of genetic control appears to play a major role in the development of cancer. Finally, recent studies have demonstrated that radiation-induced changes in gene expression can be demonstrated at very low radiation doses. These changes can result in alterations in response pathways, many of which appear to be involved in protective or adaptive responses. The demonstration that unique genes are up- and down-regulated depending on the radiation type, dose and dose rate suggests that different molecular mechanisms are involved in responses to high and low radiation doses. The ability to alter radiation response by physical and chemical treatments suggests that it may be possible to intervene in the progression of radiation-induced diseases. Such intervention may decrease the cancer risk from radiation exposure. This new research also demonstrates that many nonlinear biological processes have an impact on the induction of cancer and the shape of dose-response functions. Thus, for low-LET radiation delivered at low dose rates, the linear, no-threshold hypothesis is not well supported, but it is adequately conservative in protecting against low-dose radiation risks.
Collapse
Affiliation(s)
- Antone L Brooks
- Washington State University Tri-Cities, Richland, Washington 99352, USA.
| |
Collapse
|
68
|
Kotnis A, Sarin R, Mulherkar R. Genotype, phenotype and cancer: role of low penetrance genes and environment in tumour susceptibility. J Biosci 2005; 30:93-102. [PMID: 15824445 DOI: 10.1007/bf02705154] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Role of heredity and lifestyle in sporadic cancers is well documented. Here we focus on the influence of low penetrance genes and habits, with emphasis on tobacco habit in causing head and neck cancers. Role of such gene-environment interaction can be well studied in individuals with multiple primary cancers. Thus such a biological model may elucidate that cancer causation is not solely due to genetic determinism but also significantly relies on lifestyle of the individual.
Collapse
Affiliation(s)
- Ashwin Kotnis
- Genetic Engineering, ACTREC, Tata Memorial Centre, Kharghar, Navi Mumbai 410 208, India
| | | | | |
Collapse
|
69
|
Gyémánt N, Molnár A, Spengler G, Mándi Y, Szabó M, Molnár J. Bacterial models for tumor development. Mini-review. Acta Microbiol Immunol Hung 2005; 51:321-32. [PMID: 15571072 DOI: 10.1556/amicr.51.2004.3.10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
UNLABELLED The tumor-inducing effects of Agrobacterium, Bartonella and Helicobacter bacterial species are compared step by step. An analogy for the existence of these individual steps is considered in connection with the development of cancer. The transformations of eukaryotic cells occur in particular in the type IV secretion system, i.e. involving the simultaneous transmission of DNA and protein from bacterial cells to eukaryotic cells. Thus, transfected cells facilitate the indefinite growth of tissue cells and additionally produce growth factors, triggering further bacterial multiplication. The higher numbers of bacteria then produce more transfection and the cycle repeats as long as the host lives. The main limiting factor is the frequency of bacterial infection, while the secondary rate-limiting factors are the levels of transforming growth factors and factors triggering bacteria growth. CONCLUSIONS Analogous processes are probably responsible for the tumor induction by the three different bacterial species; however, the critical points for eradication are different. The early eradication or limitation of B. henselae or H. pylori can prevent hemangiomas, stomach cancer and malignant cell proliferation. The crown gall formation by A. tumefaciens can only be avoided by prevention of the transforming activity of a single bacterial infection. Questions arise as to what is common in the three processes, and the nature of the rate-limiting step in the three different models. The frequency of transformation is the rate-limiting step, but the co-transmission of the DNA-protein complex is common in the three systems.
Collapse
Affiliation(s)
- Nóra Gyémánt
- Department of Medical Microbiology and Immunobiology, Faculty of Medicine, Szent-Györgyi Albert Medical Centre, University of Szeged, Dóm tér 10, H-6720 Szeged, Hungary
| | | | | | | | | | | |
Collapse
|
70
|
Barcellos-Hoff MH, Medina D. New highlights on stroma-epithelial interactions in breast cancer. Breast Cancer Res 2004; 7:33-6. [PMID: 15642180 PMCID: PMC1064117 DOI: 10.1186/bcr972] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Although the stroma in which carcinomas arise has been previously regarded as a bystander to the clonal expansion and acquisition of malignant characteristics of tumor cells, it is now generally acknowledged that stromal changes are required for the establishment of cancer. In the present article, we discuss three recent publications that highlight the complex role the stroma has during the development of cancer and the potential for targeting the stroma by therapeutic approaches.
Collapse
|
71
|
Scott BR, Walker DM, Walker VE. Low-dose radiation and genotoxic chemicals can protect against stochastic biological effects. NONLINEARITY IN BIOLOGY, TOXICOLOGY, MEDICINE 2004; 2:185-211. [PMID: 19330143 PMCID: PMC2657487 DOI: 10.1080/15401420490507602] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
A protective apoptosis-mediated (PAM) process that is turned on in mammalian cells by low-dose photon (X and gamma) radiation and appears to also be turned on by the genotoxic chemical ethylene oxide is discussed. Because of the PAM process, exposure to low-dose photon radiation (and possibly also some genotoxic chemicals) can lead to a reduction in the risk of stochastic effects such as problematic mutations, neoplastic transformation (an early step in cancer occurrence), and cancer. These findings indicate a need to revise the current low-dose risk assessment paradigm for which risk of cancer is presumed to increase linearly with dose (without a threshold) after exposure to any amount of a genotoxic agent such as ionizing radiation. These findings support a view seldom mentioned in the past, that cancer risk can actually decrease, rather than increase, after exposure to low doses of photon radiation and possibly some other genotoxic agents. The PAM process (a form of natural protection) may contribute substantially to cancer prevention in humans and other mammals. However, new research is needed to improve our understanding of the process. The new research could unlock novel strategies for optimizing cancer prevention and novel protocols for low-dose therapy for cancer. With low-dose cancer therapy, normal tissue could be spared from severe damage while possibly eliminating the cancer.
Collapse
Affiliation(s)
- Bobby R Scott
- Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| | | | | |
Collapse
|
72
|
Schedin P, Elias A. Multistep tumorigenesis and the microenvironment. Breast Cancer Res 2004; 6:93-101. [PMID: 14979914 PMCID: PMC400664 DOI: 10.1186/bcr772] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2004] [Accepted: 02/03/2004] [Indexed: 02/06/2023] Open
Abstract
Early-stage cancers have long been considered to be less aggressive than late-stage cancers because it is assumed that they have accumulated fewer of the mutations that are required for full metastatic potential. For breast cancer, recent gene expression profiling data have challenged this paradigm by identifying early-stage cancers with similar gene expression profiles to fully metastatic cancers. In this review, multistep carcinogenesis is reconsidered in light of these new data. The concept that the tumor stroma plays a key role in determining whether a metastatic tumor cell will remain dormant or become invasive is discussed. Recent studies demonstrating the feasibility of targeting tumor stroma for cancer prevention and treatment are presented.
Collapse
Affiliation(s)
- Pepper Schedin
- Department of Medicine, Division of Medical Oncology and Colorado Cancer Center, University of Colorado Health Science Center, Denver, Colorado, USA.
| | | |
Collapse
|
73
|
Abstract
Under normal circumstances, adhered cells die of anoikis when detached from their extracellular matrix (ECM). Resistance to anoikis has been implicated in the progression of many human malignancies by affording an increased survival time in the absence of matrix attachment, facilitating the migration and eventual colonisation of distant sites. In this study, an anoikis-resistant variant of the human osteosarcoma cell line, SAOS-2 (SAOSar), was generated by sequential cycles of culturing under adhered and suspended conditions. It was also shown that although parental SAOS (SAOSp) cells are a heterogeneous population with varying levels of sensitivity to anoikis, the establishment of anoikis-resistant clones was not necessarily the result of mere selection of a previously resistant subpopulation. Anoikis-resistant cells were also derived from anoikis-sensitive SAOS clones by exposure to anoikis-inducing culture conditions. This suggests that lack of the normal signalling generated by attachment to the ECM could represent a driving force towards anoikis resistance. Resistance to anoikis could not be attributed to a general defect in the apoptotic pathway since apoptosis in both sensitive and resistant populations was induced after treatment with staurosporine, cycloheximide and hydrogen peroxide. This suggests that the apoptotic machinery is intact in both anoikis-sensitive and -resistant SAOS cells and that the death signal in anoikis-sensitive cells is generated by the lack of attachment, most probably by unligated integrins. Anoikis-resistant cells have circumvented this death signal and remain viable despite suspended conditions.
Collapse
Affiliation(s)
- C M Díaz-Montero
- Department of Immunology, Unit 102, The University of Texas M.D. Anderson Cancer Center, PO Box 301402, Houston, TX 77030-1903, USA
| | | |
Collapse
|
74
|
Brenner DJ, Doll R, Goodhead DT, Hall EJ, Land CE, Little JB, Lubin JH, Preston DL, Preston RJ, Puskin JS, Ron E, Sachs RK, Samet JM, Setlow RB, Zaider M. Cancer risks attributable to low doses of ionizing radiation: assessing what we really know. Proc Natl Acad Sci U S A 2003; 100:13761-6. [PMID: 14610281 PMCID: PMC283495 DOI: 10.1073/pnas.2235592100] [Citation(s) in RCA: 1123] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
High doses of ionizing radiation clearly produce deleterious consequences in humans, including, but not exclusively, cancer induction. At very low radiation doses the situation is much less clear, but the risks of low-dose radiation are of societal importance in relation to issues as varied as screening tests for cancer, the future of nuclear power, occupational radiation exposure, frequent-flyer risks, manned space exploration, and radiological terrorism. We review the difficulties involved in quantifying the risks of low-dose radiation and address two specific questions. First, what is the lowest dose of x- or gamma-radiation for which good evidence exists of increased cancer risks in humans? The epidemiological data suggest that it is approximately 10-50 mSv for an acute exposure and approximately 50-100 mSv for a protracted exposure. Second, what is the most appropriate way to extrapolate such cancer risk estimates to still lower doses? Given that it is supported by experimentally grounded, quantifiable, biophysical arguments, a linear extrapolation of cancer risks from intermediate to very low doses currently appears to be the most appropriate methodology. This linearity assumption is not necessarily the most conservative approach, and it is likely that it will result in an underestimate of some radiation-induced cancer risks and an overestimate of others.
Collapse
Affiliation(s)
- David J Brenner
- Center for Radiological Research, Columbia University, 630 West 168th Street, New York, NY 10032, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Park CC, Henshall-Powell RL, Erickson AC, Talhouk R, Parvin B, Bissell MJ, Barcellos-Hoff MH. Ionizing radiation induces heritable disruption of epithelial cell interactions. Proc Natl Acad Sci U S A 2003; 100:10728-33. [PMID: 12960393 PMCID: PMC196872 DOI: 10.1073/pnas.1832185100] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2003] [Indexed: 02/07/2023] Open
Abstract
Ionizing radiation (IR) is a known human breast carcinogen. Although the mutagenic capacity of IR is widely acknowledged as the basis for its action as a carcinogen, we and others have shown that IR can also induce growth factors and extracellular matrix remodeling. As a consequence, we have proposed that an additional factor contributing to IR carcinogenesis is the potential disruption of critical constraints that are imposed by normal cell interactions. To test this hypothesis, we asked whether IR affected the ability of nonmalignant human mammary epithelial cells (HMEC) to undergo tissue-specific morphogenesis in culture by using confocal microscopy and imaging bioinformatics. We found that irradiated single HMEC gave rise to colonies exhibiting decreased localization of E-cadherin, beta-catenin, and connexin-43, proteins necessary for the establishment of polarity and communication. Severely compromised acinar organization was manifested by the majority of irradiated HMEC progeny as quantified by image analysis. Disrupted cell-cell communication, aberrant cell-extracellular matrix interactions, and loss of tissue-specific architecture observed in the daughters of irradiated HMEC are characteristic of neoplastic progression. These data point to a heritable, nonmutational mechanism whereby IR compromises cell polarity and multicellular organization.
Collapse
Affiliation(s)
- Catherine C Park
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | | | | | | | | | | |
Collapse
|
76
|
Tarraf C, El-Sabban M, Bassam R, Beyrouthy M, Chamoun J, Talhouk R. Functional consequence of exposure to dieldrin on mammary development and function. FOOD ADDITIVES AND CONTAMINANTS 2003; 20:819-28. [PMID: 13129777 DOI: 10.1080/0265203031000138231] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The effect of dieldrin (Dln) on the development of the mammary gland and on functional parameters of CID-9 mammary cells in culture was investigated. One-month-old Sprague-Dawley female rats were bred and received intraperitoneal injection with 2.5 or 15 microM Dln during the last trimester of their gestation. Mammary glands of 15-microM Dln-treated rats showed immature alveolar structures by day 18 of gestation and abundant adipose tissue. Dln-treated rats had a lower number of pups, and the weight of pups between days 14 and 31 of age compared with non-treated rats was significantly lower. Long-term exposure of CID-9 mammary cells, cultured under non-differentiation conditions, on plastic, or under differentiation permissive conditions, dripped with EHS-matrix, to 5 or 25 microM Dln was detrimental to cell growth. The short-term effect of Dln exposure (up to 9 h) on CID-9 cells, under the same culture conditions, did not affect their beta-casein mRNA levels, but induced apoptosis, down regulated gap junction intracellular communication and induced IL-6 and TNF-alpha expression.
Collapse
Affiliation(s)
- C Tarraf
- Department Biology Faculty of Arts and Sciences, American University of Beirut, PO Box 11-0236, Beirut, Lebanon
| | | | | | | | | | | |
Collapse
|
77
|
Brooks AL. Developing a scientific basis for radiation risk estimates: goal of the DOE Low Dose Research Program. HEALTH PHYSICS 2003; 85:85-93. [PMID: 12852475 DOI: 10.1097/00004032-200307000-00016] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The U.S. Department of Energy's Low Dose Radiation Research Program is a 10 y activity currently funded at $21 million per year. It focuses on biological responses to low doses (<0.1 Gy) of low-LET ionizing radiation. The overall goal of this program is to provide a sound scientific basis for the radiation protection standards. The program supports basic research that combines modern genomic, molecular, and cellular techniques with recent advances in scientific instrumentation. These combinations make it possible to detect responses and test paradigms associated with the mechanisms of low dose radiation action not previously measurable or testable. Research to date is briefly reviewed and suggests the need for some major paradigm shifts. Exposure of the extracellular matrix can modify both the pattern of gene expression and the phenotype of the cells which result in cell transformation without direct mutation. Low dose radiation exposure results in a range of dose-response relationships for changes in the number, types, and patterns of gene expression. Such studies suggest an increased role for gene expression relative to single mutations for radiation induced cancer. Low dose research using microbeams demonstrated that cells do not require a direct "hit" to result in significant biological alterations. These "bystander effects" demonstrate that "non-hit" cells respond with changes in gene expression, DNA repair, chromosome aberrations, mutations, and cell killing. Research to link genomic instability with cancer is also being conducted and will be discussed. Detection of radiosensitivity genes as markers of genetic susceptibility in individuals and populations can be used in epidemiological studies to determine how molecular changes may impact risk. It is not possible to determine how this research will influence current radiation standards. However, the Low Dose Research Program will help ensure that radiation standards are set using the best scientific data available, and that they are adequate and appropriate for the protection of workers and the public.
Collapse
Affiliation(s)
- Antone L Brooks
- Washington State University Tri-Cities, 2710 University Drive, Richland, WA 99352, USA.
| |
Collapse
|
78
|
Hsia E, Richardson TP, Nugent MA. Nuclear localization of basic fibroblast growth factor is mediated by heparan sulfate proteoglycans through protein kinase C signaling. J Cell Biochem 2003; 88:1214-25. [PMID: 12647303 DOI: 10.1002/jcb.10470] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Understanding the process of wound healing will provide valuable insight for the development of new strategies to treat diseases associated with improper regeneration, such as blindness induced by corneal scarring. Heparan sulfate proteoglycans (HSPG) are not normally expressed in the corneal stroma, but their presence at sites of injury suggests their involvement in the wound healing response. Primary cultured corneal stromal fibroblasts constitutively express HSPG and represent an injured phenotype. Recently, nuclear localization of HSPG was shown to increase in corneal stromal fibroblasts plated on fibronectin (FN), an extracellular matrix protein whose appearance in the corneal stroma correlates with injury. One possible role for the nuclear localization of HSPG is to function as a shuttle for the nuclear transport of heparin-binding growth factors, such as basic fibroblast growth factor (FGF-2). Once in the nucleus, these growth factors might directly modulate cellular activities. To investigate this hypothesis, cells were treated with (125)I-labelled FGF-2 under various conditions and fractionated. Our results show that nuclear localization of FGF-2 was increased in cells plated on FN compared to those on collagen type I (CO). Interestingly, FGF-2-stimulated proliferation was increased in cells plated on FN compared to CO and this effect was absent in the presence of heparinase III. Furthermore, pre-treatment with heparinase III decreased nuclear FGF-2, and CHO cells defective in the ability to properly synthesize heparan sulfate chains showed reduced nuclear FGF-2 indicating that the heparan sulfate chains of HSPG are critical for this process. HSPG signaling, particularly through the cytoplasmic tails of syndecans, was investigated as a potential mechanism for the nuclear localization of FGF-2. Treatment with phorbol 12-myristate-13-acetate (PMA), under conditions that caused downregulation of protein kinase Calpha (PKCalpha), decreased nuclear FGF-2. Using pharmacological inhibitors of specific PKC isozymes, we elucidated a potential mode of regulation whereby PKCalpha mediates the nuclear localization of FGF-2 and PKCdelta inhibits it. Our studies suggest a novel mechanism in which FGF-2 translocates to the nucleus in response to injury.
Collapse
Affiliation(s)
- Edward Hsia
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | |
Collapse
|
79
|
Bedford JS, Dewey WC. Radiation Research Society. 1952-2002. Historical and current highlights in radiation biology: has anything important been learned by irradiating cells? Radiat Res 2002; 158:251-91. [PMID: 12175305 DOI: 10.1667/0033-7587(2002)158[0251:hachir]2.0.co;2] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Around 30 years ago, a very prominent molecular biologist confidently proclaimed that nothing of fundamental importance has ever been learned by irradiating cells! The poor man obviously did not know about discoveries such as DNA repair, mutagenesis, connections between mutagenesis and carcinogenesis, genomic instability, transposable genetic elements, cell cycle checkpoints, or lines of evidence historically linking the genetic material with nucleic acids, or origins of the subject of oxidative stress in organisms, to name a few things of fundamental importance learned by irradiating cells that were well known even at that time. Early radiation studies were, quite naturally, phenomenological. They led to the realization that radiations could cause pronounced biological effects. This was followed by an accelerating expansion of investigations of the nature of these radiobiological phenomena, the beginnings of studies aimed toward better understanding the underlying mechanisms, and a better appreciation of the far-reaching implications for biology, and for society in general. Areas of principal importance included acute tissue and tumor responses for applications in medicine, whole-body radiation effects in plants and animals, radiation genetics and cytogenetics, mutagenesis, carcinogenesis, cellular radiation responses including cell reproductive death, cell cycle effects and checkpoint responses, underlying molecular targets leading to biological effects, DNA repair, and the genetic control of radiosensitivity. This review summarizes some of the highlights in these areas, and points to numerous examples where indeed, many things of considerable fundamental importance have been learned by irradiating cells.
Collapse
Affiliation(s)
- Joel S Bedford
- Department of Radiological Health Sciences, Colorado State University, Fort Collins, Colorado 80523-1673, USA.
| | | |
Collapse
|