51
|
Miller MB, Fine R, Pierce AM, Gustin MS. Identifying sources of ozone to three rural locations in Nevada, USA, using ancillary gas pollutants, aerosol chemistry, and mercury. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 530-531:483-492. [PMID: 25957787 DOI: 10.1016/j.scitotenv.2015.03.146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 03/18/2015] [Accepted: 03/22/2015] [Indexed: 06/04/2023]
Abstract
Ozone (O3) is a secondary air pollutant of long standing and increasing concern for environmental and human health, and as such, the US Environmental Protection Agency will revise the National Ambient Air Quality Standard of 75 ppbv to ≤ 70 ppbv. Long term measurements at the Great Basin National Park (GBNP) indicate that O3 in remote areas of Nevada will exceed a revised standard. As part of the Nevada Rural Ozone Initiative, measurements of O3 and other air pollutants were made at 3 remote sites between February 2012 and March 2014, GBNP, Paradise Valley (PAVA), and Echo Peak (ECHO). Exceptionally high concentrations of each air pollutant were defined relative to each site as mixing ratios that exceeded the 90th percentile of all hourly data. Case studies were analyzed for all periods during which mean daily O3 exceeded the 90th percentile concurrently with a maximum 8-h average (MDA8) O3 that was "exceptionally high" for the site (65 ppbv at PAVA, 70 ppbv at ECHO and GBNP), and of potential regulatory significance. An MDA8 ≥ 65 ppbv occurred only five times at PAVA, whereas this occurred on 49 and 65 days at GBNP and ECHO, respectively. The overall correlation between O3 and other pollutants was poor, consistent with the large distance from significant primary emission sources. Mean CO at these locations exceeded concentrations reported for background sites in 2000. Trajectory residence time calculations and air pollutant concentrations indicate that exceedances at GBNP and ECHO were promoted by air masses originating from multiple sources, including wildfires, transport of pollution from southern California and the marine boundary layer, and transport of Asian pollution plumes. Results indicate that the State of Nevada will exceed a revised O3 standard due to sources that are beyond their control.
Collapse
Affiliation(s)
- Matthieu B Miller
- Department of Natural Resources and Environmental Science, University of Nevada-Reno, 1664 N. Virginia St, Reno NV, USA.
| | - Rebekka Fine
- Department of Natural Resources and Environmental Science, University of Nevada-Reno, 1664 N. Virginia St, Reno NV, USA
| | - Ashley M Pierce
- Department of Natural Resources and Environmental Science, University of Nevada-Reno, 1664 N. Virginia St, Reno NV, USA
| | - Mae S Gustin
- Department of Natural Resources and Environmental Science, University of Nevada-Reno, 1664 N. Virginia St, Reno NV, USA.
| |
Collapse
|
52
|
Fine R, Miller MB, Gustin MS. Development of a statistical model to identify spatial and meteorological drivers of elevated O3 in Nevada and its application to other rural mountainous regions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 530-531:526-533. [PMID: 25895623 DOI: 10.1016/j.scitotenv.2015.03.148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 03/17/2015] [Accepted: 03/22/2015] [Indexed: 06/04/2023]
Abstract
Measurements of O3 at relatively remote monitoring sites are useful for quantifying baseline O3, and subsequently the magnitude of O3 not controllable by local regulations. As the National Ambient Air Quality Standard (NAAQS) for O3 becomes more stringent, there is an increased need to quantify baseline O3 particularly in the Western US, where regional and global sources can significantly enhance O3 measured at surface sites, yielding baseline mixing ratios approaching or exceeding the NAAQS threshold. Past work has indicated that meteorological conditions as well as site specific spatial characteristics (e.g. elevation, basin size, gradient) are significantly correlated with O3 intercepted at rural monitoring sites. Here, we use 3 years of measurements from sites throughout rural Nevada to develop a categorical tree model to identify spatial and meteorological characteristics that are associated with elevated baseline O3. Data from other sites in the Intermountain Western US are used to test the applicability of the model for sites throughout the region. Our analyses indicate that increased elevation and basin size were associated with increased frequency of elevated O3. On a daily time scale, relative humidity had the strongest association with observed MDA8 O3. Seventy-four percent of MDA8 O3 observations>60 ppbv occurred when daily minimum relative humidity was <15%. Further, we found that including ancillary pollutant data did not improve the predictive accuracy for measurements >60 ppbv whereas including upper air meteorological measurements improved the accuracy of predicting periods when O3 was >60 ppbv. These findings indicate that transport, rather than local production, influences O3 measurements in Nevada, and that high elevation sites in rural Nevada, are representative of baseline conditions in the Intermountain Western US.
Collapse
Affiliation(s)
- Rebekka Fine
- Department of Natural Resources and Environmental Science, University of Nevada-Reno, Reno, NV, USA.
| | - Matthieu B Miller
- Department of Natural Resources and Environmental Science, University of Nevada-Reno, Reno, NV, USA
| | - Mae Sexauer Gustin
- Department of Natural Resources and Environmental Science, University of Nevada-Reno, Reno, NV, USA.
| |
Collapse
|
53
|
Fine R, Miller MB, Burley J, Jaffe DA, Pierce RB, Lin M, Gustin MS. Variability and sources of surface ozone at rural sites in Nevada, USA: Results from two years of the Nevada Rural Ozone Initiative. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 530-531:471-482. [PMID: 25548133 DOI: 10.1016/j.scitotenv.2014.12.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Revised: 12/06/2014] [Accepted: 12/10/2014] [Indexed: 04/14/2023]
Abstract
Ozone (O3) has been measured at Great Basin National Park (GBNP) since September 1993. GBNP is located in a remote, rural area of eastern Nevada. Data indicate that GBNP will not comply with a more stringent National Ambient Air Quality Standard (NAAQS) for O3, which is based upon the 3-year average of the annual 4th highest Maximum Daily 8-h Average (MDA8) concentration. Trend analyses for GBNP data collected from 1993 to 2013 indicate that MDA8 O3 increased significantly for November to February, and May. The greatest increase was for May at 0.38, 0.35, and 0.46 ppb yr(-1) for the 95th, 50th, and 5th percentiles of MDA8 O3 values, respectively. With the exception of GBNP, continuous O3 monitoring in Nevada has been limited to the greater metropolitan areas. Due to the limited spatial detail of O3 measurements in rural Nevada, a network of rural monitoring sites was established beginning in July 2011. For a period ranging from July 2011 to June 2013, maximum MDA8 O3 at 6 sites occurred in the spring and summer, and ranged from 68 to 80ppb. Our analyses indicate that GBNP, in particular, is ideally positioned to intercept air containing elevated O3 derived from regional and global sources. For the 2 year period considered here, MDA8 O3 at GBNP was an average of 3.1 to 12.6 ppb higher than at other rural Nevada sites. Measured MDA8 O3 at GBNP exceeded the current regulatory threshold of 75 ppb on 7 occasions. Analyses of synoptic conditions, model tracers, and air mass back-trajectories on these days indicate that stratospheric intrusions, interstate pollution transport, wildfires, and Asian pollution contributed to elevated O3 observed at GBNP. We suggest that regional and global sources of ozone may pose challenges to achieving a more stringent O3 NAAQS in rural Nevada.
Collapse
Affiliation(s)
- Rebekka Fine
- Department of Natural Resources and Environmental Science, University of Nevada-Reno, Reno, NV, USA.
| | - Matthieu B Miller
- Department of Natural Resources and Environmental Science, University of Nevada-Reno, Reno, NV, USA
| | - Joel Burley
- Department of Chemistry, St. Mary's College of California, Moraga, CA, USA
| | - Daniel A Jaffe
- Science and Technology Program, University of Washington-Bothell, Bothell, WA, USA; Department of Atmospheric Sciences, University of Washington-Seattle, Seattle, WA, USA
| | - R Bradley Pierce
- NOAA/NESDIS Center for Satellite Application and Research, Madison, WI, USA
| | - Meiyun Lin
- Atmospheric and Oceanic Sciences, Princeton University, Princeton, NJ, USA; Geophysical Fluid Dynamics Laboratory, NOAA, Princeton, NJ, USA
| | - Mae Sexauer Gustin
- Department of Natural Resources and Environmental Science, University of Nevada-Reno, Reno, NV, USA.
| |
Collapse
|
54
|
Fine R, Miller MB, Yates EL, Iraci LT, Gustin MS. Investigating the influence of long-range transport on surface O3 in Nevada, USA, using observations from multiple measurement platforms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 530-531:493-504. [PMID: 25845306 DOI: 10.1016/j.scitotenv.2015.03.125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Revised: 03/24/2015] [Accepted: 03/28/2015] [Indexed: 06/04/2023]
Abstract
The current United States (US) National Ambient Air Quality Standard (NAAQS) for O3 (75 ppb) is expected to be revised to between 60 and 70 ppb. As the NAAQS becomes more stringent, characterizing the extent of O3 and precursors transported into the US is increasingly important. Given the high elevation, complex terrain, and location in the Intermountain West, the State of Nevada is ideally situated to intercept air transported into the US. Until recently, measurements of O3 and associated pollutants were limited to areas in and around the cities of Las Vegas and Reno. In 2011, the Nevada Rural Ozone Initiative began and through this project 13 surface monitoring sites were established. Also in 2011, the NASA Ames Alpha Jet Atmospheric eXperiment (AJAX) began making routine aircraft measurements of O3 and other greenhouse gases in Nevada. The availability of aircraft and surface measurements in a relatively rural, remote setting in the Intermountain West presented a unique opportunity to investigate sources contributing to the O3 observed in Nevada. Our analyses indicate that stratosphere to troposphere transport, long-range transport of Asian pollution, and regional emissions from urban areas and wildfires influence surface observations. The complexity of sources identified here along with the fact that O3 frequently approaches the threshold being considered for a revised NAAQS indicate that interstate and international cooperation will be necessary to achieve compliance with a more stringent regulatory standard. Further, on a seasonal basis we found no significant difference between daily 1-h maximum O3 at surface sites, which ranged in elevation from 888 to 2307 m, and aircraft measurements of O3 <2500 m which suggests that similar processes influence daytime O3 across rural Nevada and indicates that column measurements from Railroad Valley, NV are useful in understanding these processes.
Collapse
Affiliation(s)
- Rebekka Fine
- Department of Natural Resources and Environmental Science, University of Nevada-Reno, Reno, NV, USA.
| | - Matthieu B Miller
- Department of Natural Resources and Environmental Science, University of Nevada-Reno, Reno, NV, USA
| | - Emma L Yates
- Atmospheric Science Branch, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Laura T Iraci
- Atmospheric Science Branch, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Mae Sexauer Gustin
- Department of Natural Resources and Environmental Science, University of Nevada-Reno, Reno, NV, USA.
| |
Collapse
|
55
|
Cooper OR, Langford AO, Parrish DD, Fahey DW. Challenges of a lowered U.S. ozone standard. Science 2015; 348:1096-7. [DOI: 10.1126/science.aaa5748] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
56
|
Fiore AM, Naik V, Leibensperger EM. Air quality and climate connections. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2015; 65:645-85. [PMID: 25976481 DOI: 10.1080/10962247.2015.1040526] [Citation(s) in RCA: 157] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
UNLABELLED Multiple linkages connect air quality and climate change. Many air pollutant sources also emit carbon dioxide (CO2), the dominant anthropogenic greenhouse gas (GHG). The two main contributors to non-attainment of U.S. ambient air quality standards, ozone (O3) and particulate matter (PM), interact with radiation, forcing climate change. PM warms by absorbing sunlight (e.g., black carbon) or cools by scattering sunlight (e.g., sulfates) and interacts with clouds; these radiative and microphysical interactions can induce changes in precipitation and regional circulation patterns. Climate change is expected to degrade air quality in many polluted regions by changing air pollution meteorology (ventilation and dilution), precipitation and other removal processes, and by triggering some amplifying responses in atmospheric chemistry and in anthropogenic and natural sources. Together, these processes shape distributions and extreme episodes of O3 and PM. Global modeling indicates that as air pollution programs reduce SO2 to meet health and other air quality goals, near-term warming accelerates due to "unmasking" of warming induced by rising CO2. Air pollutant controls on CH4, a potent GHG and precursor to global O3 levels, and on sources with high black carbon (BC) to organic carbon (OC) ratios could offset near-term warming induced by SO2 emission reductions, while reducing global background O3 and regionally high levels of PM. Lowering peak warming requires decreasing atmospheric CO2, which for some source categories would also reduce co-emitted air pollutants or their precursors. Model projections for alternative climate and air quality scenarios indicate a wide range for U.S. surface O3 and fine PM, although regional projections may be confounded by interannual to decadal natural climate variability. Continued implementation of U.S. NOx emission controls guards against rising pollution levels triggered either by climate change or by global emission growth. Improved accuracy and trends in emission inventories are critical for accountability analyses of historical and projected air pollution and climate mitigation policies. IMPLICATIONS The expansion of U.S. air pollution policy to protect climate provides an opportunity for joint mitigation, with CH4 a prime target. BC reductions in developing nations would lower the global health burden, and for BC-rich sources (e.g., diesel) may lessen warming. Controls on these emissions could offset near-term warming induced by health-motivated reductions of sulfate (cooling). Wildfires, dust, and other natural PM and O3 sources may increase with climate warming, posing challenges to implementing and attaining air quality standards. Accountability analyses for recent and projected air pollution and climate control strategies should underpin estimated benefits and trade-offs of future policies.
Collapse
Affiliation(s)
- Arlene M Fiore
- a Department of Earth and Environmental Sciences and Lamont-Doherty Earth Observatory of Columbia University , Palisades , NY , USA
| | | | | |
Collapse
|
57
|
Cooper OR, Gao RS, Tarasick D, Leblanc T, Sweeney C. Long-term ozone trends at rural ozone monitoring sites across the United States, 1990-2010. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2012jd018261] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|