51
|
Schumacher YO, Saugy M, Pottgiesser T, Robinson N. Detection of EPO doping and blood doping: the haematological module of the Athlete Biological Passport. Drug Test Anal 2012; 4:846-53. [PMID: 22374784 DOI: 10.1002/dta.406] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Revised: 11/03/2011] [Accepted: 11/21/2011] [Indexed: 11/07/2022]
Abstract
The increase of the body's capacity to transport oxygen is a prime target for doping athletes in all endurance sports. For this pupose, blood transfusions or erythropoiesis stimulating agents (ESA), such as erythropoietin, NESP, and CERA are used. As direct detection of such manipulations is difficult, biomarkers that are connected to the haematopoietic system (haemoglobin concentration, reticulocytes) are monitored over time (Athlete Biological Passport (ABP)) and analyzed using mathematical models to identify patterns suspicious of doping. With this information, athletes can either be sanctioned directly based on their profile or targeted with conventional doping tests. Key issues for the appropriate use of the ABP are correct targeting and use of all available information (e.g. whereabouts, cross sectional population data) in a forensic manner. Future developments of the passport include the correction of all concentration-based variables for shifts in plasma volume, which might considerably increase sensitivity. New passport markers from the genomic, proteomic, and metabolomic level might add further information, but need to be validated before integration into the passport procedure. A first assessment of blood data of federations that have implemented the passport show encouraging signs of a decreased blood-doping prevalence in their athletes, which adds scientific credibility to this innovative concept in the fight against ESA- and blood doping.
Collapse
|
52
|
Zheng KYZ, Zhang ZX, Guo AJY, Bi CWC, Zhu KY, Xu SL, Zhan JYX, Lau DTW, Dong TTX, Choi RCY, Tsim KWK. Salidroside stimulates the accumulation of HIF-1α protein resulted in the induction of EPO expression: a signaling via blocking the degradation pathway in kidney and liver cells. Eur J Pharmacol 2012; 679:34-9. [PMID: 22309741 DOI: 10.1016/j.ejphar.2012.01.027] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 01/15/2012] [Accepted: 01/23/2012] [Indexed: 01/06/2023]
Abstract
Rhodiolae Crenulatae Radix et Rhizoma (Rhodiola), the root and rhizome of Rhodiola crenulata (Hook. f. et Thoms.) H. Ohba, has been used as a traditional Chinese medicine (TCM) to increase the body resistance to mountain sickness in preventing hypoxia; however, the functional ingredient responsible for this adaptogenic effect has not been revealed. Here, we have identified salidroside, a glycoside predominantly found in Rhodiola, is the chemical in providing such anti-hypoxia effect. Cultured human embryonic kidney fibroblast (HEK293T) and human hepatocellular carcinoma (HepG2) were used to reveal the mechanism of this hematopoietic function mediated by salidroside. The application of salidroside in cultures induced the expression of erythropoietin (EPO) mRNA from its transcription regulatory element hypoxia response element (HRE), located on EPO gene. The application of salidroside stimulated the accumulation of hypoxia-inducible factor-1α (HIF-1α) protein, but not HIF-2α protein: the salidroside-induced HIF-1α protein was via the reduction of HIF-1α degradation but not the mRNA induction. The increased HIF-1α could account for the activation of EPO gene. These results supported the notion that hematopoietic function of Rhodiola was triggered, at least partially, by salidroside.
Collapse
Affiliation(s)
- Ken Yu-Zhong Zheng
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Segura J, Ventura R, Pascual JA. Current strategic approaches for the detection of blood doping practices. Forensic Sci Int 2011; 213:42-8. [DOI: 10.1016/j.forsciint.2011.07.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 07/12/2011] [Accepted: 07/14/2011] [Indexed: 11/29/2022]
|
54
|
|
55
|
Möller I, Thomas A, Geyer H, Schänzer W, Thevis M. Synthesis, characterisation, and mass spectrometric detection of a pegylated EPO-mimetic peptide for sports drug testing purposes. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2011; 25:2115-2123. [PMID: 21710591 DOI: 10.1002/rcm.5109] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Erythropoietin (EPO) and other erythropoiesis-stimulating agents possess a high misuse potential in elite sport due to their ability to increase the oxygen transport capacity, which plays a vital role in enhancing endurance performance. Currently, a new generation of EPO-mimetic peptides is under development from which peginesatide (also referred to as Hematide™), a pegylated homodimeric peptide of approximately 45 kDa with no structural relationship to erythropoietin, is the most advanced drug candidate undergoing phase-III clinical trials. Since preventive doping research aims at the development of detection methods before a drug receives clinical approval, a selective and sensitive assay has to be established knowing that conventional doping control assays for EPO will not succeed in detecting peginesatide. Thus, a pegylated EPO-mimetic peptide simulating the structure and properties of the lead drug candidate peginesatide was synthesised as a model compound for this new class of emerging drugs and characterised by means of gel electrophoresis, matrix-assisted laser desorption/ionisation (MALDI) mass spectrometry, as well as liquid chromatography/electrospray ionisation tandem mass spectrometry (LC/ESI-MS/MS) after proteolytic digestion. Based on these results, a mass spectrometric detection method of the product in plasma was developed targeting a pentapeptide fragment after protein precipitation and subtilisin digestion. Its fitness for purpose was evaluated by the determination of selected method characteristics focusing particularly on specificity, recovery (ca. 60%), and limit of detection (1 ng/mL).
Collapse
Affiliation(s)
- Ines Möller
- Institute of Biochemistry - Center for Preventive Doping Research, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933 Cologne, Germany
| | | | | | | | | |
Collapse
|
56
|
Murua A, Orive G, Hernández RM, Pedraz JL. Emerging technologies in the delivery of erythropoietin for therapeutics. Med Res Rev 2011; 31:284-309. [PMID: 19967731 DOI: 10.1002/med.20184] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Deciphering the function of proteins and their roles in signaling pathways is one of the main goals of biomedical research, especially from the perspective of uncovering pathways that may ultimately be exploited for therapeutic benefit. Over the last half century, a greatly expanded understanding of the biology of the glycoprotein hormone erythropoietin (Epo) has emerged from regulator of the circulating erythrocyte mass to a widely used therapeutic agent. Originally viewed as the renal hormone responsible for erythropoiesis, recent in vivo studies in animal models and clinical trials demonstrate that many other tissues locally produce Epo independent of its effects on red blood cell mass. Thus, not only its hematopoietic activity but also the recently discovered nonerythropoietic actions in addition to new drug delivery systems are being thoroughly investigated in order to fulfill the specific Epo release requirements for each therapeutic approach. The present review focuses on updating the information previously provided by similar reviews and recent experimental approaches are presented to describe the advances in Epo drug delivery achieved in the last few years and future perspectives.
Collapse
Affiliation(s)
- Ainhoa Murua
- Laboratory of Pharmacy and Pharmaceutical Technology, Networking Biomedical Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, SLFPB-EHU, Faculty of Pharmacy, University of the Basque Country, 01006, Vitoria-Gasteiz, Spain
| | | | | | | |
Collapse
|
57
|
Abstract
Erythropoiesis is the process whereby erythroid progenitor cells differentiate and divide, resulting in increased numbers of red blood cells (RBCs). RBCs contain hemoglobin, the main oxygen carrying component in blood. The large number of RBCs found in blood is required to support the prodigious consumption of oxygen by tissues as they undergo oxygen-dependent processes. Erythropoietin is a hormone that when it binds and activates Epo receptors resident on the surface of cells results in stimulation of erythropoiesis. Successful cloning of the EPO gene allowed for the first time production of recombinant human erythropoietin and other erythropoiesis stimulating agents (ESAs), which are used to treat anemia in patients. In this chapter, the control of Epo levels and erythropoiesis, the various forms of ESAs used commercially, and their physical and biological properties are discussed.
Collapse
Affiliation(s)
- Steve Elliott
- Department of Hematology, Amgen, Inc., Thousand Oaks, CA 91320, USA.
| |
Collapse
|
58
|
Chang Y, Maylin GM, Matsumoto G, Neades SM, Catlin DH. Screen and confirmation of PEG-epoetin β in equine plasma. Drug Test Anal 2010; 3:68-73. [DOI: 10.1002/dta.212] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2010] [Revised: 08/30/2010] [Accepted: 09/12/2010] [Indexed: 11/06/2022]
|
59
|
Nikolopoulos DD, Spiliopoulou C, Theocharis SE. Doping and musculoskeletal system: short-term and long-lasting effects of doping agents. Fundam Clin Pharmacol 2010; 25:535-63. [PMID: 21039821 DOI: 10.1111/j.1472-8206.2010.00881.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Doping is a problem that has plagued the world of competition and sports for ages. Even before the dawn of Olympic history in ancient Greece, competitors have looked for artificial means to improve athletic performance. Since ancient times, athletes have attempted to gain an unfair competitive advantage through the use of doping substances. A Prohibited List of doping substances and methods banned in sports is published yearly by the World Anti-Doping Agency. Among the substances included are steroidal and peptide hormones and their modulators, stimulants, glucocorticosteroids, β₂-agonists, diuretics and masking agents, narcotics, and cannabinoids. Blood doping, tampering, infusions, and gene doping are examples of prohibited methods indicated on the List. Apart from the unethical aspect of doping, as it abrogates fair-play's principle, it is extremely important to consider the hazards it presents to the health and well-being of athletes. The referred negative effects for the athlete's health have to do, on the one hand, by the high doses of the performance-enhancing agents and on the other hand, by the relentless, superhuman strict training that the elite or amateur athletes put their muscles, bones, and joints. The purpose of this article is to highlight the early and the long-lasting consequences of the doping abuse on bone and muscle metabolism.
Collapse
Affiliation(s)
- Dimitrios D Nikolopoulos
- Department of Forensic Medicine and Toxicology University of Athens, Medical School, Athens, Greece
| | | | | |
Collapse
|
60
|
Alternate methods to prevent protease use as a masking agent in sport. J Sci Med Sport 2010; 13:473-4. [DOI: 10.1016/j.jsams.2010.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Revised: 02/08/2010] [Accepted: 02/11/2010] [Indexed: 11/18/2022]
|
61
|
Piloto N, Teixeira HM, Teixeira-Lemos E, Parada B, Garrido P, Sereno J, Pinto R, Carvalho L, Costa E, Belo L, Santos-Silva A, Teixeira F, Reis F. Erythropoietin promotes deleterious cardiovascular effects and mortality risk in a rat model of chronic sports doping. Cardiovasc Toxicol 2010; 9:201-10. [PMID: 19859831 DOI: 10.1007/s12012-009-9054-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Athletes who abuse recombinant human erythropoietin (rhEPO) consider only the benefit to performance and usually ignore the potential short and long-term liabilities. Elevated haematocrit and dehydratation associated with intense exercise may reveal undetected cardiovascular risk, but the mechanisms underlying it remain to be fully explained. This study aimed to evaluate the cardiovascular effects of rhEPO in rats under chronic aerobic exercise. A ten week protocol was performed in four male Wistar rat groups: control--sedentary; rhEPO--50 IU kg(-1), 3 times/wk; exercised (EX)--swimming for 1 h, 3 times/wk; EX + rhEPO. One rat of the EX + rhEPO group suffered a sudden death episode during the week 8. rhEPO in trained rats promoted erythrocyte count increase, hypertension, heart hypertrophy, sympathetic and serotonergic overactivation. The suddenly died rat's tissues presented brain with vascular congestion; left ventricular hypertrophy, together with a "cardiac-liver", suggesting the hypothesis of heart failure as cause of sudden death. In conclusion, rhEPO doping in rats under chronic exercise promotes not only the expected RBC count increment, suggesting hyperviscosity, but also other serious deleterious cardiovascular and thromboembolic modifications, including mortality risk, which might be known and assumed by all sports authorities, including athletes and their physicians.
Collapse
Affiliation(s)
- Nuno Piloto
- Institute of Pharmacology & Experimental Therapeutics, IBILI, Medicine Faculty, Sub-Unit 1 (Polo III), Coimbra University, 3004-504, Coimbra, Portugal
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Abstract
Doping with endocrine drugs is quite prevalent in amateur and professional athletes. The World Anti-Doping Agency (WADA) has a list of banned drugs for athletes who compete and a strategy to detect such drugs. Some are relatively easy, anabolic steroids and erythropoietin, and others more difficult, human growth hormone (rhGH) and insulin like growth factor I (IGF-I). The use of such compounds is likely less in adolescent athletes, but the detection that much more difficult given that the baseline secretion of the endogenous hormone is shifting during pubertal development with the greatest rise in testosterone in boys occurring about the time of peak height velocity and maximal secretion of hGH and IGF-I. This review notes the rationale, physiology, performance enhancement, adverse events and the detection of doping with insulin, rhGH, rhIGF-I, erythropoietin, and anabolic-androgenic steroids.
Collapse
Affiliation(s)
- Alan D Rogol
- Riley Hospital for Children, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
63
|
Detection of pegylated epoetin β in horse plasma after intravenous administration. COMPARATIVE EXERCISE PHYSIOLOGY 2009. [DOI: 10.1017/s1755254009990171] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
64
|
Abstract
The fight against doping in sport using analytical chemistry is a mature area with a history of approximately 100 years in horse racing and at least 40 years in human sport. Over that period, the techniques used and the breadth of coverage have developed significantly. These improvements in the testing methods have been matched by the increased sophistication of the methods, drugs and therapies available to the cheat and, as a result, testing has been a reactive process constantly adapting to meet new threats. Following the inception of the World Anti-Doping Agency, research into the methods and technologies available for human doping control have received coordinated funding on an international basis. The area of biomarker research has been a major beneficiary of this funding. The aim of this article is to review recent developments in the application of biomarkers to doping control and to assess the impact this could make in the future.
Collapse
|
65
|
Abstract
This themed issue of the British Journal of Pharmacology has been compiled and edited by Ian McGrath, Regius Professor of Physiology at University of Glasgow and David Cowan, Director of the Drug Control Centre at King's College London. It contains 11 articles covering the mechanisms of action of the major groups of drugs used illicitly in sport. The articles, written by experts in how drugs work, set out where drugs can or cannot affect sporting performance, how this relates to their legitimate medicinal use, their other detrimental effects and how they can be detected. Publication coincides with Olympic year, when sport is highlighted in the public mind and much speculation is made concerning the use of drugs. The articles provide a framework of expert, accurate knowledge to inform and facilitate these debates and to help to overcome the ill-informed and dangerous anecdotal information by which sports men and women are persuaded to misuse drugs in the mistaken belief that this will improve their performance without present or future ill effects. A unique article is included by the Spedding brothers, Mike with a long career in drug discovery and Charlie, the 1984 Los Angeles Olympic Marathon Bronze Medallist and still the English National Marathon record holder. From their unique experience, they describe the insidious and unfair way that drug-assisted performance undermines the ethos of sport and endangers the vital place of sport in maintaining the health of the population.
Collapse
|
66
|
Spedding M, Spedding C. Drugs in sport: a scientist-athlete's perspective: from ambition to neurochemistry. Br J Pharmacol 2008; 154:496-501. [PMID: 18500377 PMCID: PMC2439526 DOI: 10.1038/bjp.2008.163] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Accepted: 03/25/2008] [Indexed: 12/25/2022] Open
Abstract
This article, by the United Kingdom's last Olympic Marathon Medal winner, Charlie Spedding, and his brother, the pharmacologist, Michael Spedding, covers the difficulties posed by the availability of powerful drugs to ameliorate athletic performance, from an athlete's perspective, particularly in view of the fact that performances are becoming highly optimised with less margin for further physiological improvement. The authors have had long athletic careers and argue that doping not only devalues performance but sport, and exercise, as a whole. Furthermore, the neurotrophic and metabolic changes involved in exercise and training, which can be modified by drugs, are central to health and reflect a part of the epidemic in obesity.
Collapse
Affiliation(s)
- M Spedding
- 1Institute de Recherches Servier, Neuilly sur Seine, Suresnes, France.
| | | |
Collapse
|