51
|
Elg1, a central player in genome stability. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2014; 763:267-79. [PMID: 25795125 DOI: 10.1016/j.mrrev.2014.11.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 11/15/2014] [Accepted: 11/17/2014] [Indexed: 11/20/2022]
Abstract
ELG1 is a conserved gene uncovered in a number of genetic screens in yeast aimed at identifying factors important in the maintenance of genome stability. Elg1's activity prevents gross chromosomal rearrangements, maintains proper telomere length regulation, helps repairing DNA damage created by a number of genotoxins and participates in sister chromatid cohesion. Elg1 is evolutionarily conserved, and its mammalian ortholog (also known as ATAD5) is embryonic lethal when lost in mice, acts as a tumor suppressor in mice and humans, exhibits physical interactions with components of the human Fanconi Anemia pathway and may be responsible for some of the phenotypes associated with neurofibromatosis. In this review, we summarize the information available on Elg1-related activities in yeast and mammals, and present models to explain how the different phenotypes observed in the absence of Elg1 activity are related.
Collapse
|
52
|
Abstract
Our understanding of the dynamics of replication fork-associated protein strand specificity is based largely on genetic or in vitro approaches. Yu et al. (2014) present eSPAN, a ChIP approach that reveals differences between protein abundance on nascent leading and lagging strands.
Collapse
Affiliation(s)
- Brian S Plosky
- Molecular Cell, Cell Press, 600 Technology Square, 5(th) Floor, Cambridge, MA 02139, USA.
| |
Collapse
|
53
|
Prado F. Homologous recombination maintenance of genome integrity during DNA damage tolerance. Mol Cell Oncol 2014; 1:e957039. [PMID: 27308329 PMCID: PMC4905194 DOI: 10.4161/23723548.2014.957039] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 07/18/2014] [Accepted: 07/22/2014] [Indexed: 01/01/2023]
Abstract
The DNA strand exchange protein Rad51 provides a safe mechanism for the repair of DNA breaks using the information of a homologous DNA template. Homologous recombination (HR) also plays a key role in the response to DNA damage that impairs the advance of the replication forks by providing mechanisms to circumvent the lesion and fill in the tracks of single-stranded DNA that are generated during the process of lesion bypass. These activities postpone repair of the blocking lesion to ensure that DNA replication is completed in a timely manner. Experimental evidence generated over the last few years indicates that HR participates in this DNA damage tolerance response together with additional error-free (template switch) and error-prone (translesion synthesis) mechanisms through intricate connections, which are presented here. The choice between repair and tolerance, and the mechanism of tolerance, is critical to avoid increased mutagenesis and/or genome rearrangements, which are both hallmarks of cancer.
Collapse
Affiliation(s)
- Félix Prado
- Departamento de Biología Molecular; Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER) ; Consejo Superior de Investigaciones Científicas (CSIC) ; Seville, Spain
| |
Collapse
|
54
|
Han J, Liu T, Huen MSY, Hu L, Chen Z, Huang J. SIVA1 directs the E3 ubiquitin ligase RAD18 for PCNA monoubiquitination. ACTA ACUST UNITED AC 2014; 205:811-27. [PMID: 24958773 PMCID: PMC4068132 DOI: 10.1083/jcb.201311007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Translesion DNA synthesis (TLS) is a universal DNA damage tolerance mechanism conserved from yeast to mammals. A key event in the regulation of TLS is the monoubiquitination of proliferating cell nuclear antigen (PCNA). Extensive evidence indicates that the RAD6-RAD18 ubiquitin-conjugating/ligase complex specifically monoubiquitinates PCNA and regulates TLS repair. However, the mechanism by which the RAD6-RAD18 complex is targeted to PCNA has remained elusive. In this study, we used an affinity purification approach to isolate the PCNA-containing complex and have identified SIVA1 as a critical regulator of PCNA monoubiquitination. We show that SIVA1 constitutively interacts with PCNA via a highly conserved PCNA-interacting peptide motif. Knockdown of SIVA1 compromised RAD18-dependent PCNA monoubiquitination and Polη focus formation, leading to elevated ultraviolet sensitivity and mutation. Furthermore, we demonstrate that SIVA1 interacts with RAD18 and serves as a molecular bridge between RAD18 and PCNA, thus targeting the E3 ligase activity of RAD18 onto PCNA. Collectively, our results provide evidence that the RAD18 E3 ligase requires an accessory protein for binding to its substrate PCNA.
Collapse
Affiliation(s)
- Jinhua Han
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Ting Liu
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Michael S Y Huen
- Department of Anatomy and Center for Cancer Research, The University of Hong Kong, Hong Kong, China Department of Anatomy and Center for Cancer Research, The University of Hong Kong, Hong Kong, China
| | - Lin Hu
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Zhiqiu Chen
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jun Huang
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
55
|
Leman AR, Noguchi E. The replication fork: understanding the eukaryotic replication machinery and the challenges to genome duplication. Genes (Basel) 2014; 4:1-32. [PMID: 23599899 PMCID: PMC3627427 DOI: 10.3390/genes4010001] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Eukaryotic cells must accurately and efficiently duplicate their genomes during each round of the cell cycle. Multiple linear chromosomes, an abundance of regulatory elements, and chromosome packaging are all challenges that the eukaryotic DNA replication machinery must successfully overcome. The replication machinery, the “replisome” complex, is composed of many specialized proteins with functions in supporting replication by DNA polymerases. Efficient replisome progression relies on tight coordination between the various factors of the replisome. Further, replisome progression must occur on less than ideal templates at various genomic loci. Here, we describe the functions of the major replisome components, as well as some of the obstacles to efficient DNA replication that the replisome confronts. Together, this review summarizes current understanding of the vastly complicated task of replicating eukaryotic DNA.
Collapse
Affiliation(s)
- Adam R. Leman
- Authors to whom correspondence should be addressed; E-Mails: (A.R.L.); (E.N.); Tel.: +1-215-762-4825 (E.N.); Fax: +1-215-762-4452 (E.N.)
| | - Eishi Noguchi
- Authors to whom correspondence should be addressed; E-Mails: (A.R.L.); (E.N.); Tel.: +1-215-762-4825 (E.N.); Fax: +1-215-762-4452 (E.N.)
| |
Collapse
|
56
|
Zech J, Dalgaard JZ. Replisome components--post-translational modifications and their effects. Semin Cell Dev Biol 2014; 30:144-53. [PMID: 24685613 DOI: 10.1016/j.semcdb.2014.03.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 03/10/2014] [Accepted: 03/23/2014] [Indexed: 12/22/2022]
Abstract
The process of DNA replication is highly regulated, but at the same time very dynamic. Once S-phase is initiated and replication elongation is occurring, the cells are committed to complete replication in order to ensure genome stability and survival. Many pathways exist to resolve situations where normal replisome progression is not possible. It is becoming more and more evident that post-translational modifications of replisome components play a key role in regulating these pathways which ensure fork progression. Here we review the known modifications of the progressing replisome and how these modifications are thought to affect DNA replication in unperturbed and perturbed S-phases.
Collapse
Affiliation(s)
- Juergen Zech
- Warwick Medical School, University of Warwick, Gibbert Hill Campus, CV47AL Coventry, UK
| | - Jacob Zeuthen Dalgaard
- Warwick Medical School, University of Warwick, Gibbert Hill Campus, CV47AL Coventry, UK.
| |
Collapse
|
57
|
Gonzalez-Huici V, Szakal B, Urulangodi M, Psakhye I, Castellucci F, Menolfi D, Rajakumara E, Fumasoni M, Bermejo R, Jentsch S, Branzei D. DNA bending facilitates the error-free DNA damage tolerance pathway and upholds genome integrity. EMBO J 2014; 33:327-40. [PMID: 24473148 PMCID: PMC3983681 DOI: 10.1002/embj.201387425] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
DNA replication is sensitive to damage in the template. To bypass lesions and complete replication, cells activate recombination-mediated (error-free) and translesion synthesis-mediated (error-prone) DNA damage tolerance pathways. Crucial for error-free DNA damage tolerance is template switching, which depends on the formation and resolution of damage-bypass intermediates consisting of sister chromatid junctions. Here we show that a chromatin architectural pathway involving the high mobility group box protein Hmo1 channels replication-associated lesions into the error-free DNA damage tolerance pathway mediated by Rad5 and PCNA polyubiquitylation, while preventing mutagenic bypass and toxic recombination. In the process of template switching, Hmo1 also promotes sister chromatid junction formation predominantly during replication. Its C-terminal tail, implicated in chromatin bending, facilitates the formation of catenations/hemicatenations and mediates the roles of Hmo1 in DNA damage tolerance pathway choice and sister chromatid junction formation. Together, the results suggest that replication-associated topological changes involving the molecular DNA bender, Hmo1, set the stage for dedicated repair reactions that limit errors during replication and impact on genome stability.
Collapse
|
58
|
Abstract
DNA repair mechanisms are critical for maintaining the integrity of genomic DNA, and their loss is associated with cancer predisposition syndromes. Studies in Saccharomyces cerevisiae have played a central role in elucidating the highly conserved mechanisms that promote eukaryotic genome stability. This review will focus on repair mechanisms that involve excision of a single strand from duplex DNA with the intact, complementary strand serving as a template to fill the resulting gap. These mechanisms are of two general types: those that remove damage from DNA and those that repair errors made during DNA synthesis. The major DNA-damage repair pathways are base excision repair and nucleotide excision repair, which, in the most simple terms, are distinguished by the extent of single-strand DNA removed together with the lesion. Mistakes made by DNA polymerases are corrected by the mismatch repair pathway, which also corrects mismatches generated when single strands of non-identical duplexes are exchanged during homologous recombination. In addition to the true repair pathways, the postreplication repair pathway allows lesions or structural aberrations that block replicative DNA polymerases to be tolerated. There are two bypass mechanisms: an error-free mechanism that involves a switch to an undamaged template for synthesis past the lesion and an error-prone mechanism that utilizes specialized translesion synthesis DNA polymerases to directly synthesize DNA across the lesion. A high level of functional redundancy exists among the pathways that deal with lesions, which minimizes the detrimental effects of endogenous and exogenous DNA damage.
Collapse
|
59
|
Kubota T, Myung K, Donaldson AD. Is PCNA unloading the central function of the Elg1/ATAD5 replication factor C-like complex? Cell Cycle 2013; 12:2570-9. [PMID: 23907118 PMCID: PMC3865047 DOI: 10.4161/cc.25626] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Maintaining genome stability is crucial for all cells. The budding yeast Elg1 protein, the major subunit of a replication factor C-like complex, is important for genome stability, since cells lacking Elg1 exhibit increased recombination and chromosomal rearrangements. This genome maintenance function of Elg1 seems to be conserved in higher eukaryotes, since removal of the human Elg1 homolog, encoded by the ATAD5 gene, also causes genome instability leading to tumorigenesis. The fundamental molecular function of the Elg1/ATAD5-replication factor C-like complex (RLC) was, until recently, elusive, although Elg1/ATAD5-RLC was known to interact with the replication sliding clamp PCNA. Two papers have now reported that following DNA replication, the Elg1/ATAD5-RLC is required to remove PCNA from chromatin in yeast and human cells. In this Review, we summarize the evidence that Elg1/ATAD5-RLC acts as a PCNA unloader and discuss the still enigmatic relationship between the function of Elg1/ATAD5-RLC in PCNA unloading and the role of Elg1/ATAD5 in maintaining genomic stability.
Collapse
Affiliation(s)
- Takashi Kubota
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, UK
| | | | | |
Collapse
|
60
|
A genetic screen for high copy number suppressors of the synthetic lethality between elg1Δ and srs2Δ in yeast. G3-GENES GENOMES GENETICS 2013; 3:917-26. [PMID: 23704284 PMCID: PMC3656737 DOI: 10.1534/g3.113.005561] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Elg1 and Srs2 are two proteins involved in maintaining genome stability in yeast. After DNA damage, the homotrimeric clamp PCNA, which provides stability and processivity to DNA polymerases and serves as a docking platform for DNA repair enzymes, undergoes modification by the ubiquitin-like molecule SUMO. PCNA SUMOylation helps recruit Srs2 and Elg1 to the replication fork. In the absence of Elg1, both SUMOylated PCNA and Srs2 accumulate at the chromatin fraction, indicating that Elg1 is required for removing SUMOylated PCNA and Srs2 from DNA. Despite this interaction, which suggests that the two proteins work together, double mutants elg1Δ srs2Δ have severely impaired growth as haploids and exhibit synergistic sensitivity to DNA damage and a synergistic increase in gene conversion. In addition, diploid elg1Δ srs2Δ double mutants are dead, which implies that an essential function in the cell requires at least one of the two gene products for survival. To gain information about this essential function, we have carried out a high copy number suppressor screen to search for genes that, when overexpressed, suppress the synthetic lethality between elg1Δ and srs2Δ. We report the identification of 36 such genes, which are enriched for functions related to DNA- and chromatin-binding, chromatin packaging and modification, and mRNA export from the nucleus.
Collapse
|
61
|
Ulrich HD. New insights into replication clamp unloading. J Mol Biol 2013; 425:4727-32. [PMID: 23688817 DOI: 10.1016/j.jmb.2013.05.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 05/08/2013] [Accepted: 05/13/2013] [Indexed: 12/31/2022]
Abstract
The sliding clamp protein proliferating cell nuclear antigen (PCNA) is situated at the core of the eukaryotic replisome, where it acts as an interaction scaffold for numerous replication and repair factors and coordinates DNA transactions ranging from Okazaki fragment maturation to chromatin assembly and mismatch repair. PCNA is loaded onto DNA by a dedicated complex, the replication factor C, whose mechanism has been studied in detail. Until recently, however, it was unclear how PCNA is removed from DNA upon completion of DNA synthesis. Two complementary studies now present data strongly implicating the replication factor C-like complex, Elg1/ATAD5-RLC, in the unloading of PCNA during replication in yeast and human cells. They indicate that an appropriate control over PCNA's residence on the chromatin is important for maintaining genome stability. At the same time, they suggest that the interaction of Elg1/ATAD5 with SUMO, which was also reported to contribute to its role in genome maintenance, affects aspects of its function distinct from its unloading activity.
Collapse
Affiliation(s)
- Helle D Ulrich
- Cancer Research UK London Research Institute, Clare Hall Laboratories, Blanche Lane, South Mimms EN6 3LD, United Kingdom; Institute of Molecular Biology, Ackermannweg 4, 55128 Mainz, Germany.
| |
Collapse
|
62
|
Singh S, Shemesh K, Liefshitz B, Kupiec M. Genetic and physical interactions between the yeast ELG1 gene and orthologs of the Fanconi anemia pathway. Cell Cycle 2013; 12:1625-36. [PMID: 23624835 PMCID: PMC3680542 DOI: 10.4161/cc.24756] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Fanconi anemia (FA) is a human syndrome characterized by genomic instability and increased incidence of cancer. FA is a genetically heterogeneous disease caused by mutations in at least 15 different genes; several of these genes are conserved in the yeast Saccharomyces cerevisiae. Elg1 is also a conserved protein that forms an RFC-like complex, which interacts with SUMOylated PCNA. The mammalian Elg1 protein has been recently found to interact with the FA complex. Here we analyze the genetic interactions between elg1Δand mutants of the yeast FA-like pathway. We show that Elg1 physically contacts the Mhf1/Mhf2 histone-like complex and genetically interacts with MPH1 (ortholog of the FANCM helicase) and CHL1 (ortholog of the FANCJ helicase) genes. We analyze the sensitivity of double, triple, quadruple and quintuple mutants to methylmethane sulfonate (MMS) and to hydroxyurea (HU). Our results show that genetic interactions depend on the type of DNA damaging agent used and show a hierarchy: Chl1 and Elg1 play major roles in the survival to these genotoxins and exhibit synthetic fitness reduction. Mph1 plays a lesser role, and the effect of the Mhf1/2 complex is seen only in the absence of Elg1 on HU-containing medium. Finally, we dissect the relationship between yeast FA-like mutants and the replication clamp, PCNA. Our results point to an intricate network of interactions rather than a single, linear repair pathway.
Collapse
Affiliation(s)
- Shivani Singh
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Tel Aviv, Israel
| | | | | | | |
Collapse
|
63
|
Mailand N, Gibbs-Seymour I, Bekker-Jensen S. Regulation of PCNA-protein interactions for genome stability. Nat Rev Mol Cell Biol 2013; 14:269-82. [PMID: 23594953 DOI: 10.1038/nrm3562] [Citation(s) in RCA: 295] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Proliferating cell nuclear antigen (PCNA) has a central role in promoting faithful DNA replication, providing a molecular platform that facilitates the myriad protein-protein and protein-DNA interactions that occur at the replication fork. Numerous PCNA-associated proteins compete for binding to a common surface on PCNA; hence these interactions need to be tightly regulated and coordinated to ensure proper chromosome replication and integrity. Control of PCNA-protein interactions is multilayered and involves post-translational modifications, in particular ubiquitylation, accessory factors and regulated degradation of PCNA-associated proteins. This regulatory framework allows cells to maintain a fine-tuned balance between replication fidelity and processivity in response to DNA damage.
Collapse
Affiliation(s)
- Niels Mailand
- Ubiquitin Signaling Group, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark.
| | | | | |
Collapse
|
64
|
Ulrich HD, Takahashi DT. Readers of PCNA modifications. Chromosoma 2013; 122:259-74. [PMID: 23580141 PMCID: PMC3714560 DOI: 10.1007/s00412-013-0410-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 03/20/2013] [Accepted: 03/22/2013] [Indexed: 01/29/2023]
Abstract
The eukaryotic sliding clamp, proliferating cell nuclear antigen (PCNA), acts as a central coordinator of DNA transactions by providing a multivalent interaction surface for factors involved in DNA replication, repair, chromatin dynamics and cell cycle regulation. Posttranslational modifications (PTMs), such as mono- and polyubiquitylation, sumoylation, phosphorylation and acetylation, further expand the repertoire of PCNA’s binding partners. These modifications affect PCNA’s activity in the bypass of lesions during DNA replication, the regulation of alternative damage processing pathways such as homologous recombination and DNA interstrand cross-link repair, or impact on the stability of PCNA itself. In this review, we summarise our current knowledge about how the PTMs are “read” by downstream effector proteins that mediate the appropriate action. Given the variety of interaction partners responding to PCNA’s modified forms, the ensemble of PCNA modifications serves as an instructive model for the study of biological signalling through PTMs in general.
Collapse
Affiliation(s)
- Helle D Ulrich
- Clare Hall Laboratories, Cancer Research UK London Research Institute, Blanche Lane, South Mimms EN6 3LD, UK.
| | | |
Collapse
|
65
|
Affiliation(s)
- Helle D Ulrich
- Cancer Research UK London Research Institute, Clare Hall Laboratories, Blanche Lane, South Mimms, Hertfordshire EN6 3LD, UK.
| |
Collapse
|
66
|
Hedglin M, Perumal SK, Hu Z, Benkovic S. Stepwise assembly of the human replicative polymerase holoenzyme. eLife 2013; 2:e00278. [PMID: 23577232 PMCID: PMC3614016 DOI: 10.7554/elife.00278] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 02/19/2013] [Indexed: 02/06/2023] Open
Abstract
In most organisms, clamp loaders catalyze both the loading of sliding clamps onto DNA and their removal. How these opposing activities are regulated during assembly of the DNA polymerase holoenzyme remains unknown. By utilizing FRET to monitor protein-DNA interactions, we examined assembly of the human holoenzyme. The results indicate that assembly proceeds in a stepwise manner. The clamp loader (RFC) loads a sliding clamp (PCNA) onto a primer/template junction but remains transiently bound to the DNA. Unable to slide away, PCNA re-engages with RFC and is unloaded. In the presence of polymerase (polδ), loaded PCNA is captured from DNA-bound RFC which subsequently dissociates, leaving behind the holoenzyme. These studies suggest that the unloading activity of RFC maximizes the utilization of PCNA by inhibiting the build-up of free PCNA on DNA in the absence of polymerase and recycling limited PCNA to keep up with ongoing replication. DOI:http://dx.doi.org/10.7554/eLife.00278.001.
Collapse
Affiliation(s)
- Mark Hedglin
- Department of Chemistry, The Pennsylvania State University, University Park, United States
| | - Senthil K Perumal
- Department of Chemistry, The Pennsylvania State University, University Park, United States
| | - Zhenxin Hu
- Department of Chemistry, The Pennsylvania State University, University Park, United States
| | - Stephen Benkovic
- Department of Chemistry, The Pennsylvania State University, University Park, United States
| |
Collapse
|
67
|
Kubota T, Nishimura K, Kanemaki MT, Donaldson AD. The Elg1 replication factor C-like complex functions in PCNA unloading during DNA replication. Mol Cell 2013; 50:273-80. [PMID: 23499004 DOI: 10.1016/j.molcel.2013.02.012] [Citation(s) in RCA: 201] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 01/02/2013] [Accepted: 02/06/2013] [Indexed: 12/15/2022]
Abstract
The ring-shaped complex PCNA coordinates DNA replication, encircling DNA to act as a polymerase clamp and a sliding platform to recruit other replication proteins. PCNA is loaded onto DNA by replication factor C, but it has been unknown how PCNA is removed from DNA when Okazaki fragments are completed or the replication fork terminates. Here we show that the Elg1 replication factor C-like complex (Elg1-RLC) functions in PCNA unloading. Using an improved degron system we show that without Elg1, PCNA accumulates on Saccharomyces cerevisiae chromatin during replication. The accumulated PCNA can be removed from chromatin in vivo by switching on Elg1 expression. We find moreover that treating chromatin with purified Elg1-RLC causes PCNA unloading in vitro. Our results demonstrate that Elg1-RLC functions in unloading of both unmodified and SUMOylated PCNA during DNA replication, while the genome instability of an elg1Δ mutant suggests timely PCNA unloading is critical for chromosome maintenance.
Collapse
Affiliation(s)
- Takashi Kubota
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK
| | | | | | | |
Collapse
|
68
|
Srs2 mediates PCNA-SUMO-dependent inhibition of DNA repair synthesis. EMBO J 2013; 32:742-55. [PMID: 23395907 PMCID: PMC3594751 DOI: 10.1038/emboj.2013.9] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 01/10/2013] [Indexed: 12/11/2022] Open
Abstract
Completion of DNA replication needs to be ensured even when challenged with fork progression problems or DNA damage. PCNA and its modifications constitute a molecular switch to control distinct repair pathways. In yeast, SUMOylated PCNA (S-PCNA) recruits Srs2 to sites of replication where Srs2 can disrupt Rad51 filaments and prevent homologous recombination (HR). We report here an unexpected additional mechanism by which S-PCNA and Srs2 block the synthesis-dependent extension of a recombination intermediate, thus limiting its potentially hazardous resolution in association with a cross-over. This new Srs2 activity requires the SUMO interaction motif at its C-terminus, but neither its translocase activity nor its interaction with Rad51. Srs2 binding to S-PCNA dissociates Polδ and Polη from the repair synthesis machinery, thus revealing a novel regulatory mechanism controlling spontaneous genome rearrangements. Our results suggest that cycling cells use the Siz1-dependent SUMOylation of PCNA to limit the extension of repair synthesis during template switch or HR and attenuate reciprocal DNA strand exchanges to maintain genome stability. An unexpected non-catalytic function of the recombination-attenuating helicase Srs2 further expands the manifold roles of PCNA modifications in ensuring genome stability.
Collapse
|
69
|
Abstract
Modification of the replicative sliding clamp, PCNA, by monoubiquitin, polyubiquitin, and SUMO contributes to the processing of DNA damage during replication. In order to investigate the properties of the relevant conjugation enzymes, their interactions, substrate recognition, and the regulation of their activities, reconstitution of the modification reactions from purified components in vitro is an instructive exercise. Here we describe the purification of the relevant enzymes and accessory proteins from E. coli or S. cerevisiae as well as protocols for setting up small-scale ubiquitylation and sumoylation reactions with budding yeast PCNA. In addition, we provide a method for the purification of monoubiquitylated PCNA for further biochemical studies.
Collapse
Affiliation(s)
- Joanne L Parker
- Clare Hall Laboratories, Cancer Research UK London Research Institute, South Mimms, UK
| | | |
Collapse
|
70
|
Lee KY, Fu H, Aladjem MI, Myung K. ATAD5 regulates the lifespan of DNA replication factories by modulating PCNA level on the chromatin. ACTA ACUST UNITED AC 2012; 200:31-44. [PMID: 23277426 PMCID: PMC3542800 DOI: 10.1083/jcb.201206084] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Reduction of ATAD5 extends the lifespan of replication factories by retaining PCNA and other replisome proteins on chromatin, leading to an increase in inactive replication factories and reduced overall replication rate. Temporal and spatial regulation of the replication factory is important for efficient DNA replication. However, the underlying molecular mechanisms are not well understood. Here, we report that ATAD5 regulates the lifespan of replication factories. Reduced expression of ATAD5 extended the lifespan of replication factories by retaining proliferating cell nuclear antigen (PCNA) and other replisome proteins on the chromatin during and even after DNA synthesis. This led to an increase of inactive replication factories with an accumulation of replisome proteins. Consequently, the overall replication rate was decreased, which resulted in the delay of S-phase progression. Prevalent detection of PCNA foci in G2 phase cells after ATAD5 depletion suggests that defects in the disassembly of replication factories persist after S phase is complete. ATAD5-mediated regulation of the replication factory and PCNA required an intact ATAD5 ATPase domain. Taken together, our data imply that ATAD5 regulates the cycle of DNA replication factories, probably through its PCNA-unloading activity.
Collapse
Affiliation(s)
- Kyoo-young Lee
- Genome Instability Section, Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
71
|
Finley D, Ulrich HD, Sommer T, Kaiser P. The ubiquitin-proteasome system of Saccharomyces cerevisiae. Genetics 2012; 192:319-60. [PMID: 23028185 PMCID: PMC3454868 DOI: 10.1534/genetics.112.140467] [Citation(s) in RCA: 332] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 07/28/2012] [Indexed: 12/14/2022] Open
Abstract
Protein modifications provide cells with exquisite temporal and spatial control of protein function. Ubiquitin is among the most important modifiers, serving both to target hundreds of proteins for rapid degradation by the proteasome, and as a dynamic signaling agent that regulates the function of covalently bound proteins. The diverse effects of ubiquitylation reflect the assembly of structurally distinct ubiquitin chains on target proteins. The resulting ubiquitin code is interpreted by an extensive family of ubiquitin receptors. Here we review the components of this regulatory network and its effects throughout the cell.
Collapse
Affiliation(s)
- Daniel Finley
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| | - Helle D. Ulrich
- Cancer Research UK London Research Institute, Clare Hall Laboratories, South Mimms, EN6 3LD, United Kingdom
| | - Thomas Sommer
- Max-Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Peter Kaiser
- Department of Biological Chemistry, University of California, Irvine, California 92697
| |
Collapse
|
72
|
Cremona CA, Sarangi P, Zhao X. Sumoylation and the DNA damage response. Biomolecules 2012; 2:376-388. [PMID: 24926426 PMCID: PMC4030838 DOI: 10.3390/biom2030376] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 08/23/2012] [Accepted: 08/24/2012] [Indexed: 02/07/2023] Open
Abstract
The cellular response to DNA damage involves multiple pathways that work together to promote survival in the face of increased genotoxic lesions. Proteins in these pathways are often posttranslationally modified, either by small groups such as phosphate, or by protein modifiers such as ubiquitin or SUMO. The recent discovery of many more SUMO substrates that are modified at higher levels in damage conditions adds weight to the accumulated evidence suggesting that sumoylation plays an important functional role in the DNA damage response. Here we discuss the significance of DNA damage-induced sumoylation, the effects of sumoylation on repair proteins, sumoylation dynamics, and crosstalk with other posttranslational modifications in the DNA damage response.
Collapse
Affiliation(s)
- Catherine A. Cremona
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA; (C.A.C.); (P.S.)
| | - Prabha Sarangi
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA; (C.A.C.); (P.S.)
- Programs in Biochemistry, Cell, and Molecular Biology, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
| | - Xiaolan Zhao
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA; (C.A.C.); (P.S.)
- Author to whom correspondence should be addressed; ; Tel.: +1-212-639-5582; Fax: +1-646-422-2062
| |
Collapse
|
73
|
Abstract
PCNA modifications by members of the ubiquitin family are associated with a range of different transactions during replication of damaged and undamaged DNA. This chapter describes detailed protocols for the detection and isolation of ubiquitin and SUMO conjugates of PCNA from total budding yeast cell lysates, using Ni-NTA affinity chromatography under denaturing conditions. We describe approaches based on the purification of PCNA itself and on the isolation of total ubiquitin or SUMO conjugates. The chapter covers the construction of the appropriate strains, methods for the detection of modified PCNA, and the use of various DNA-damaging agents as well as mutants of PCNA and relevant conjugation enzymes to examine the cellular response to replication stress.
Collapse
Affiliation(s)
- Adelina A Davies
- Clare Hall Laboratories, Cancer Research UK London Research Institute, South Mimms, UK
| | | |
Collapse
|
74
|
Yang K, Moldovan GL, Vinciguerra P, Murai J, Takeda S, D'Andrea AD. Regulation of the Fanconi anemia pathway by a SUMO-like delivery network. Genes Dev 2011; 25:1847-58. [PMID: 21896657 DOI: 10.1101/gad.17020911] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The USP1/UAF1 complex deubiquitinates the Fanconi anemia protein FANCD2, thereby promoting homologous recombination and DNA cross-link repair. How USP1/UAF1 is targeted to the FANCD2/FANCI heterodimer has remained unknown. Here we show that UAF1 contains a tandem repeat of SUMO-like domains in its C terminus (SLD1 and SLD2). SLD2 binds directly to a SUMO-like domain-interacting motif (SIM) on FANCI. Deletion of the SLD2 sequence of UAF1 or mutation of the SIM on FANCI disrupts UAF1/FANCI binding and inhibits FANCD2 deubiquitination and DNA repair. The USP1/UAF1 complex also deubiquitinates PCNA-Ub, and deubiquitination requires the PCNA-binding protein hELG1. The SLD2 sequence of UAF1 binds to a SIM on hELG1, thus targeting the USP1/UAF1 complex to its PCNA-Ub substrate. We propose that the regulated targeting of USP1/UAF1 to its DNA repair substrates, FANCD2-Ub and PCNA-Ub, by SLD-SIM interactions coordinates homologous recombination and translesion DNA synthesis.
Collapse
Affiliation(s)
- Kailin Yang
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
75
|
Saugar I, Parker JL, Zhao S, Ulrich HD. The genome maintenance factor Mgs1 is targeted to sites of replication stress by ubiquitylated PCNA. Nucleic Acids Res 2011; 40:245-57. [PMID: 21911365 PMCID: PMC3245944 DOI: 10.1093/nar/gkr738] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mgs1, the budding yeast homolog of mammalian Werner helicase-interacting protein 1 (WRNIP1/WHIP), contributes to genome stability during undisturbed replication and in response to DNA damage. A ubiquitin-binding zinc finger (UBZ) domain directs human WRNIP1 to nuclear foci, but the functional significance of its presence and the relevant ubiquitylation targets that this domain recognizes have remained unknown. Here, we provide a mechanistic basis for the ubiquitin-binding properties of the protein. We show that in yeast an analogous domain exclusively mediates the damage-related activities of Mgs1. By means of preferential physical interactions with the ubiquitylated forms of the replicative sliding clamp, proliferating cell nuclear antigen (PCNA), the UBZ domain facilitates recruitment of Mgs1 to sites of replication stress. Mgs1 appears to interfere with the function of polymerase δ, consistent with our observation that Mgs1 inhibits the interaction between the polymerase and PCNA. Our identification of Mgs1 as a UBZ-dependent downstream effector of ubiquitylated PCNA suggests an explanation for the ambivalent role of the protein in damage processing.
Collapse
Affiliation(s)
- Irene Saugar
- Cancer Research UK London Research Institute, Clare Hall Laboratories, Blanche Lane, South Mimms, EN6 3LD, UK
| | | | | | | |
Collapse
|
76
|
Kirchmaier AL. Ub-family modifications at the replication fork: Regulating PCNA-interacting components. FEBS Lett 2011; 585:2920-8. [DOI: 10.1016/j.febslet.2011.08.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 08/05/2011] [Accepted: 08/05/2011] [Indexed: 11/29/2022]
|
77
|
Wang J. Cardiac function and disease: emerging role of small ubiquitin-related modifier. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2011; 3:446-57. [PMID: 21197655 PMCID: PMC3110591 DOI: 10.1002/wsbm.130] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Small ubiquitin-related modifiers, or SUMOs, have emerged as versatile regulators of many biological functions that do so by covalent attachment to a variety of substrates via enzymatic reactions. SUMO conjugation has also been shown to be involved in a number of human pathogenic processes. More recent advances in the SUMO field have indicated a potential role for SUMO conjugation pathway in cardiogenesis. This advanced review will describe the basic features of the SUMO conjugation pathway and will summarize the most recent studies implicating the influence of the sumoylation pathway in cardiac function under both physiological and pathological conditions. WIREs Syst Biol Med 2011 3 446-457 DOI: 10.1002/wsbm.130
Collapse
Affiliation(s)
- Jun Wang
- Center for Stem Cell Engineering, Department of Basic Research Laboratories, Texas Heart Institute, Houston, TX, USA.
| |
Collapse
|
78
|
Fox JT, Lee KY, Myung K. Dynamic regulation of PCNA ubiquitylation/deubiquitylation. FEBS Lett 2011; 585:2780-5. [PMID: 21640107 DOI: 10.1016/j.febslet.2011.05.053] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 05/20/2011] [Accepted: 05/23/2011] [Indexed: 12/28/2022]
Abstract
Proliferating Cell Nuclear Antigen (PCNA) ubiquitylation plays a crucial role in maintaining genomic stability during DNA replication. DNA damage stalling the DNA replication fork induces PCNA ubiquitylation that activates DNA damage bypass to prevent the collapse of DNA replication forks that could potentially produce double-strand breaks and chromosomal rearrangements. PCNA ubiquitylation dictates the mode of bypass depending on the level of ubiquitylation; monoubiquitylation and polyubiquitylation activate error-prone translesion synthesis and error-free template switching, respectively. Due to the error-prone nature of DNA damage bypass, PCNA ubiquitylation needs to be tightly regulated. Here, we review the molecular mechanisms to remove ubiquitin from PCNA including the emerging role of USP1 and ELG1 in this fascinating process.
Collapse
Affiliation(s)
- Jennifer T Fox
- Genome Instability Section, Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
79
|
León Ortiz AM, Reid RJD, Dittmar JC, Rothstein R, Nicolas A. Srs2 overexpression reveals a helicase-independent role at replication forks that requires diverse cell functions. DNA Repair (Amst) 2011; 10:506-17. [PMID: 21459050 PMCID: PMC3084345 DOI: 10.1016/j.dnarep.2011.02.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 02/18/2011] [Accepted: 02/20/2011] [Indexed: 10/18/2022]
Abstract
Srs2 is a 3'-5' DNA helicase that regulates many aspects of DNA metabolism in Saccharomyces cerevisiae. It is best known for its ability to counteract homologous recombination by dismantling Rad51 filaments, but is also involved in checkpoint activation, adaptation and recovery, and in resolution of late recombination intermediates. To further address its biological roles and uncover new genetic interactions, we examined the consequences of overexpressing SRS2 as well as two helicase-dead mutants, srs2-K41A and srs2-K41R, in the collection of 4827 yeast haploid deletion mutants. We identified 274 genes affecting a large variety of cellular functions that are required for cell growth when SRS2 or its mutants are overexpressed. Further analysis of these interactions reveals that Srs2 acts independently of its helicase function at replication forks likely through its recruitment by the sumoylated PCNA replication clamp. This helicase-independent function is responsible for the negative interactions with DNA metabolism genes and for the toxicity of SRS2 overexpression in many of the diverse cellular pathways revealed in our screens.
Collapse
Affiliation(s)
- Ana María León Ortiz
- Recombinaison and Genome Instability, Institut Curie Centre de Recherche, CNRS UMR3244, Université Pierre et Marie Curie, 26 rue d’Ulm, 75248 Paris Cedex 05, France
| | - Robert J. D. Reid
- Columbia University Medical Center, Department of Genetics & Development, 701 West 168th Street, New York, NY 10032-2704, USA
| | - John C. Dittmar
- Columbia University Medical Center, Department of Genetics & Development, 701 West 168th Street, New York, NY 10032-2704, USA
| | - Rodney Rothstein
- Columbia University Medical Center, Department of Genetics & Development, 701 West 168th Street, New York, NY 10032-2704, USA
| | - Alain Nicolas
- Recombinaison and Genome Instability, Institut Curie Centre de Recherche, CNRS UMR3244, Université Pierre et Marie Curie, 26 rue d’Ulm, 75248 Paris Cedex 05, France
| |
Collapse
|
80
|
Branzei D. Ubiquitin family modifications and template switching. FEBS Lett 2011; 585:2810-7. [PMID: 21539841 DOI: 10.1016/j.febslet.2011.04.053] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 04/21/2011] [Accepted: 04/21/2011] [Indexed: 12/21/2022]
Abstract
Homologous recombination plays an important role in the maintenance of genome integrity. Arrested forks and DNA lesions trigger strand annealing events, called template switching, which can provide for accurate damage bypass, but can also lead to chromosome rearrangements. Advances have been made in understanding the underlying mechanisms for these events and in elucidating the factors involved. Ubiquitin- and SUMO-mediated modification pathways have emerged as key players in regulating damage-induced template switching. Here I review the biological significance of template switching at the nexus of DNA replication and recombination, and the role of ubiquitin-like modifications in mediating and controlling this process.
Collapse
Affiliation(s)
- Dana Branzei
- Fondazione IFOM, Istituto FIRC di Oncologia Molecolare, IFOM-IEO Campus, Via Adamello 16, 20139 Milan, Italy.
| |
Collapse
|
81
|
Kubota T, Hiraga SI, Yamada K, Lamond AI, Donaldson AD. Quantitative proteomic analysis of chromatin reveals that Ctf18 acts in the DNA replication checkpoint. Mol Cell Proteomics 2011; 10:M110.005561. [PMID: 21505101 PMCID: PMC3134068 DOI: 10.1074/mcp.m110.005561] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Yeast cells lacking Ctf18, the major subunit of an alternative Replication Factor C complex, have multiple problems with genome stability. To understand the in vivo function of the Ctf18 complex, we analyzed chromatin composition in a ctf18Δ mutant using the quantitative proteomic technique of stable isotope labeling by amino acids in cell culture. Three hundred and seven of the 491 reported chromosomal proteins were quantitated. The most marked abnormalities occurred when cells were challenged with the replication inhibitor hydroxyurea. Compared with wild type, hydroxyurea-treated ctf18Δ cells exhibited increased chromatin association of replisome progression complex components including Cdc45, Ctf4, and GINS complex subunits, the polymerase processivity clamp PCNA and the single-stranded DNA-binding complex RPA. Chromatin composition abnormalities observed in ctf18Δ cells were very similar to those of an mrc1Δ mutant, which is defective in the activating the Rad53 checkpoint kinase in response to DNA replication stress. We found that ctf18Δ cells are also defective in Rad53 activation, revealing that the Ctf18 complex is required for engagement of the DNA replication checkpoint. Inappropriate initiation of replication at late origins, because of loss of the checkpoint, probably causes the elevated level of chromatin-bound replisome proteins in the ctf18Δ mutant. The role of Ctf18 in checkpoint activation is not shared by all Replication Factor C-like complexes, because proteomic analysis revealed that cells lacking Elg1 (the major subunit of a different Replication Factor C-like complex) display a different spectrum of chromatin abnormalities. Identification of Ctf18 as a checkpoint protein highlights the usefulness of chromatin proteomic analysis for understanding the in vivo function of proteins that mediate chromatin transactions.
Collapse
Affiliation(s)
- Takashi Kubota
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | | | | | | | | |
Collapse
|
82
|
Musgrove EA, Sutherland RL. RB in breast cancer: differential effects in estrogen receptor-positive and estrogen receptor-negative disease. Cell Cycle 2011; 9:4607. [PMID: 21260944 DOI: 10.4161/cc.9.23.13889] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
83
|
Lian HY, Robertson ED, Hiraga SI, Alvino GM, Collingwood D, McCune HJ, Sridhar A, Brewer BJ, Raghuraman MK, Donaldson AD. The effect of Ku on telomere replication time is mediated by telomere length but is independent of histone tail acetylation. Mol Biol Cell 2011; 22:1753-65. [PMID: 21441303 PMCID: PMC3093326 DOI: 10.1091/mbc.e10-06-0549] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Ku controls telomere replication timing. We test the mechanism and find that Ku does not bind telomere-proximal origins directly or alter their histone acetylation state. Instead, Ku's effect on replication timing is mediated through telomere length and requires the TG1-3 repeat-counting component Rif1. DNA replication in Saccharomyces cerevisiae proceeds according to a temporal program. We have investigated the role of the telomere-binding Ku complex in specifying late replication of telomere-proximal sequences. Genome-wide analysis shows that regions extending up to 80 kb from telomeres replicate abnormally early in a yku70 mutant. We find that Ku does not appear to regulate replication time by binding replication origins directly, nor is its effect on telomere replication timing mediated by histone tail acetylation. We show that Ku instead regulates replication timing through its effect on telomere length, because deletion of the telomerase regulator Pif1 largely reverses the short telomere defect of a yku70 mutant and simultaneously rescues its replication timing defect. Consistent with this conclusion, deleting the genome integrity component Elg1 partially rescued both length and replication timing of yku70 telomeres. Telomere length–mediated control of replication timing requires the TG1–3 repeat-counting component Rif1, because a rif1 mutant replicates telomeric regions early, despite having extended TG1–3 tracts. Overall, our results suggest that the effect of Ku on telomere replication timing results from its impact on TG1–3 repeat length and support a model in which Rif1 measures telomere repeat length to ensure that telomere replication timing is correctly programmed.
Collapse
Affiliation(s)
- Hui-Yong Lian
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|