51
|
Cheng YL, Choi Y, Seow WL, Manzanero S, Sobey CG, Jo DG, Arumugam TV. Evidence that neuronal Notch-1 promotes JNK/c-Jun activation and cell death following ischemic stress. Brain Res 2014; 1586:193-202. [PMID: 25168760 DOI: 10.1016/j.brainres.2014.08.054] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Revised: 08/12/2014] [Accepted: 08/18/2014] [Indexed: 10/24/2022]
Abstract
Notch signaling is a highly conserved pathway that regulates cell fate decisions during embryonic development. We have recently identified that in ischemic stroke, activity of γ-secretase and the resulting Notch activation may endanger neurons by modulating NF-κB and HIF-1α pathways. Notch signaling can also modulate MAPK-related pathways. However, the role of γ-secretase-mediated Notch signaling in activating MAPK following ischemic stroke has not been investigated. We used control and NICD1-overexpressing HEK and SH-SY5Y cell lines, and inhibitors of γ-secretase and JNK, to explore novel roles of Notch in modulating cell death following ischemic stress in vitro. Our findings indicate that expression of NICD1, JNK/cJun, p38-MAPK and the pro-apoptotic marker, cleaved caspase-3, increased during ischemic conditions. γ-Secretase inhibitors reduced ischemia-induced increase in NICD1 and JNK/p-cJun. Furthermore, NICD overexpression augmented JNK/cJun levels and cell death under these conditions. These results suggest that Notch signaling contributes to the pathogenesis of ischemic stroke, in part by promoting JNK/cJun signaling. These results provide further support for the potential use of γ-secretase inhibitors as therapy for ischemic stroke.
Collapse
Affiliation(s)
- Yi-Lin Cheng
- Department of Physiology, Yong Loo Lin School Medicine, National University of Singapore, 117597 Singapore; School of Biomedical Sciences, The University of Queensland, St Lucia QLD 4072, Australia
| | - Yuri Choi
- School of Pharmacy, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Wei Lun Seow
- Department of Physiology, Yong Loo Lin School Medicine, National University of Singapore, 117597 Singapore
| | - Silvia Manzanero
- School of Biomedical Sciences, The University of Queensland, St Lucia QLD 4072, Australia
| | | | - Dong-Gyu Jo
- School of Pharmacy, Sungkyunkwan University, Suwon 440-746, Republic of Korea.
| | - Thiruma V Arumugam
- Department of Physiology, Yong Loo Lin School Medicine, National University of Singapore, 117597 Singapore; School of Pharmacy, Sungkyunkwan University, Suwon 440-746, Republic of Korea.
| |
Collapse
|
52
|
Sturtzel C, Testori J, Schweighofer B, Bilban M, Hofer E. The transcription factor MEF2C negatively controls angiogenic sprouting of endothelial cells depending on oxygen. PLoS One 2014; 9:e101521. [PMID: 24988463 PMCID: PMC4079651 DOI: 10.1371/journal.pone.0101521] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 06/09/2014] [Indexed: 11/18/2022] Open
Abstract
The MADS box transcription factor MEF2C has been detected by us to be upregulated by the angiogenic factors VEGF-A and bFGF in endothelial cells. We have here investigated its potential role for angiogenesis. MEF2C was surprisingly found to strongly inhibit angiogenic sprouting, whereas a dominant negative mutant rather induced sprouting. The factor mainly affected migratory processes of endothelial cells, but not proliferation. In gene profiling experiments we delineated the alpha-2-macroglobulin gene to be highly upregulated by MEF2C. Further data confirmed that MEF2C in endothelial cells indeed induces alpha-2-macroglobulin mRNA as well as the secretion of alpha-2-macroglobulin and that conditioned supernatants of cells overexpressing MEF2C inhibit sprouting. Alpha-2-macroglobulin mediates, at least to a large extent, the inhibitory effects of MEF2C as is shown by knockdown of alpha-2-macroglobulin mRNA by lentiviral shRNA expression which reduces the inhibitory effect. However, under hypoxic conditions the VEGF-A/bFGF-mediated upregulation of MEF2C is reduced and the production of alpha-2-macroglobulin largely abolished. Taken together, this suggests that the MEF2C/alpha-2-macroglobulin axis functions in endothelial cells as a negative feed-back mechanism that adapts sprouting activity to the oxygen concentration thus diminishing inappropriate and excess angiogenesis.
Collapse
Affiliation(s)
- Caterina Sturtzel
- Department of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Julia Testori
- Department of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Bernhard Schweighofer
- Department of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Martin Bilban
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Erhard Hofer
- Department of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
- * E-mail:
| |
Collapse
|
53
|
DOTS-Finder: a comprehensive tool for assessing driver genes in cancer genomes. Genome Med 2014; 6:44. [PMID: 25690659 PMCID: PMC4085541 DOI: 10.1186/gm563] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 06/03/2014] [Indexed: 12/16/2022] Open
Abstract
A key challenge in the analysis of cancer genomes is the identification of driver genes from the vast number of mutations present in a cohort of patients. DOTS-Finder is a new tool that allows the detection of driver genes through the sequential application of functional and frequentist approaches, and is specifically tailored to the analysis of few tumor samples. We have identified driver genes in the genomic data of 34 tumor types derived from existing exploratory projects such as The Cancer Genome Atlas and from studies investigating the usefulness of genomic information in the clinical settings. DOTS-Finder is available at
https://cgsb.genomics.iit.it/wiki/projects/DOTS-Finder/.
Collapse
|
54
|
Dominguez M. Oncogenic programmes and Notch activity: an 'organized crime'? Semin Cell Dev Biol 2014; 28:78-85. [PMID: 24780858 DOI: 10.1016/j.semcdb.2014.04.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 04/02/2014] [Indexed: 10/25/2022]
Abstract
The inappropriate Notch signalling can influence virtually all aspect of cancer, including tumour-cell growth, survival, apoptosis, angiogenesis, invasion and metastasis, although it does not do this alone. Hence, elucidating the partners of Notch that are active in cancer is now the focus of much intense research activity. The genetic toolkits available, coupled to the small size and short life of the fruit fly Drosophila melanogaster, makes this an inexpensive and effective animal model, suited to large-scale cancer gene discovery studies. The fly eye is not only a non-vital organ but its stereotyped size and disposition also means it is easy to screen for mutations that cause tumours and metastases and provides ample opportunities to test cancer theories and to unravel unanticipated nexus between Notch and other cancer genes, or to discover unforeseen Notch's partners in cancer. These studies suggest that Notch's oncogenic capacity is brought about not simply by increasing signal strength but through partnerships, whereby oncogenes gain more by cooperating than acting individually, as in a ring 'organized crime'.
Collapse
|
55
|
Hauling T, Krautz R, Markus R, Volkenhoff A, Kucerova L, Theopold U. A Drosophila immune response against Ras-induced overgrowth. Biol Open 2014; 3:250-60. [PMID: 24659248 PMCID: PMC3988794 DOI: 10.1242/bio.20146494] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Our goal is to characterize the innate immune response against the early stage of tumor development. For this, animal models where genetic changes in specific cells and tissues can be performed in a controlled way have become increasingly important, including the fruitfly Drosophila melanogaster. Many tumor mutants in Drosophila affect the germline and, as a consequence, also the immune system itself, making it difficult to ascribe their phenotype to a specific tissue. Only during the past decade, mutations have been induced systematically in somatic cells to study the control of tumorous growth by neighboring cells and by immune cells. Here we show that upon ectopic expression of a dominant-active form of the Ras oncogene (RasV12), both imaginal discs and salivary glands are affected. Particularly, the glands increase in size, express metalloproteinases and display apoptotic markers. This leads to a strong cellular response, which has many hallmarks of the granuloma-like encapsulation reaction, usually mounted by the insect against larger foreign objects. RNA sequencing of the fat body reveals a characteristic humoral immune response. In addition we also identify genes that are specifically induced upon expression of RasV12. As a proof-of-principle, we show that one of the induced genes (santa-maria), which encodes a scavenger receptor, modulates damage to the salivary glands. The list of genes we have identified provides a rich source for further functional characterization. Our hope is that this will lead to a better understanding of the earliest stage of innate immune responses against tumors with implications for mammalian immunity.
Collapse
Affiliation(s)
- Thomas Hauling
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, S-10691 Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
56
|
Abstract
Cancer was seen for a long time as a strictly cell-autonomous process in which oncogenes and tumor-suppressor mutations drive clonal cell expansions. Research in the past decade, however, paints a more integrative picture of communication and interplay between neighboring cells in tissues. It is increasingly clear as well that tumors, far from being homogenous lumps of cells, consist of different cell types that function together as complex tissue-level communities. The repertoire of interactive cell behaviors and the quantity of cellular players involved call for a social cell biology that investigates these interactions. Research into this social cell biology is critical for understanding development of normal and tumoral tissues. Such complex social cell biology interactions can be parsed in Drosophila. Techniques in Drosophila for analysis of gene function and clonal behavior allow us to generate tumors and dissect their complex interactive biology with cellular resolution. Here, we review recent Drosophila research aimed at understanding tissue-level biology and social cell interactions in tumors, highlighting the principles these studies reveal.
Collapse
|
57
|
Tipping M, Perrimon N. Drosophila as a model for context-dependent tumorigenesis. J Cell Physiol 2013; 229:27-33. [PMID: 23836429 DOI: 10.1002/jcp.24427] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 06/21/2013] [Indexed: 01/06/2023]
Abstract
Drosophila can exhibit classic hallmarks of cancer, such as evasion of apoptosis, sustained proliferation, metastasis, prolonged survival, genome instability, and metabolic reprogramming, when cancer-related genes are perturbed. In the last two decades, studies in flies have identified several tumor suppressor and oncogenes. However, the greatest strength of the fly lies in its ability to model cancer hallmarks in a variety of tissue types, which enables the study of context-dependent tumorigenesis. We review the organs and tissues that have been used to model tumor formation, and propose new strategies to maximize the potential of Drosophila in cancer research.
Collapse
Affiliation(s)
- Marla Tipping
- Department of Genetics, Harvard Medical School, Boston, Massachusetts
| | | |
Collapse
|
58
|
Maier D, Praxenthaler H, Schulz A, Preiss A. Gain of function notch phenotypes associated with ectopic expression of the Su(H) C-terminal domain illustrate separability of Notch and hairless-mediated activities. PLoS One 2013; 8:e81578. [PMID: 24282610 PMCID: PMC3839874 DOI: 10.1371/journal.pone.0081578] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 10/15/2013] [Indexed: 12/23/2022] Open
Abstract
The Notch signaling pathway is instrumental for cell fate decisions. Signals from the Notch receptor are transduced by CSL-type DNA-binding proteins. In Drosophila, this protein is named Suppressor of Hairless [Su(H)]. Together with the intracellular domain of the activated Notch receptor ICN, Su(H) assembles a transcriptional activator complex on Notch target genes. Hairless acts as the major antagonist of the Notch signaling pathway in Drosophila by means of the formation of a repressor complex together with Su(H) and several co-repressors. Su(H) is characterized by three domains, the N-terminal domain NTD, the beta-trefoil domain BTD and the C-terminal domain CTD. NTD and BTD bind to the DNA, whereas BTD and CTD bind to ICN. Hairless binds to the CTD, however, to sites different from ICN. In this work, we have addressed the question of competition and availability of Su(H) for ICN and Hairless binding in vivo. To this end, we overexpressed the CTD during fly development. We observed a strong activation of Notch signaling processes in various tissues, which may be explained by an interference of CTD with Hairless corepressor activity. Accordingly, a combined overexpression of CTD together with Hairless ameliorated the effects, unlike Su(H) which strongly enhances repression when overexpressed concomitantly with Hairless. Interestingly, in the combined overexpression CTD accumulated in the nucleus together with Hairless, whereas it is predominantly cytoplasmic on its own.
Collapse
Affiliation(s)
- Dieter Maier
- Universität Hohenheim, Institut für Genetik (240), Stuttgart, Germany
- * E-mail:
| | | | - Adriana Schulz
- Universität Hohenheim, Institut für Genetik (240), Stuttgart, Germany
| | - Anette Preiss
- Universität Hohenheim, Institut für Genetik (240), Stuttgart, Germany
| |
Collapse
|
59
|
Abstract
Notch signaling is an evolutionarily conserved cell signaling pathway involved in cell fate during development, stem cell renewal and differentiation in postnatal tissues. Roles for Notch in carcinogenesis, in the biology of cancer stem cells and tumor angiogenesis have been reported. These features identify Notch as a potential therapeutic target in oncology. Based on the molecular structure of Notch receptor, Notch ligands and Notch activators, a set of Notch pathway inhibitors have been developed. Most of these inhibitors had shown anti-tumor effects in preclinical studies. At the same time, the combinatorial effect of these inhibitors with current chemotherapeutical drugs is still under study in different clinical trials. In this review, we describe the basics of Notch signaling and the role of Notch in normal and cancer stem cells as a logic way to develop different Notch inhibitors and their current stage of progress for cancer patient's treatment.
Collapse
Affiliation(s)
- Ingrid Espinoza
- University of Mississippi, Cancer Institute, Jackson, Mississippi
| | - Lucio Miele
- University of Mississippi, Cancer Institute, Jackson, Mississippi
| |
Collapse
|
60
|
Abstract
Cell-cell interactions define a quintessential aspect of multicellular development. Metazoan morphogenesis depends on a handful of fundamental, conserved cellular interaction mechanisms, one of which is defined by the Notch signaling pathway. Signals transmitted through the Notch surface receptor have a unique developmental role: Notch signaling links the fate of one cell with that of a cellular neighbor through physical interactions between the Notch receptor and the membrane-bound ligands that are expressed in an apposing cell. The developmental outcome of Notch signals is strictly dependent on the cellular context and can influence differentiation, proliferation and apoptotic cell fates. The Notch pathway is conserved across species (Artavanis-Tsakonas et al., 1999; Bray, 2006; Kopan and Ilagan, 2009). In humans, Notch malfunction has been associated with a diverse range of diseases linked to changes in cell fate and cell proliferation including cancer (Louvi and Artavanis-Tsakonas, 2012). In this Cell Science at a Glance article and the accompanying poster we summarize the molecular biology of Notch signaling, its role in development and its relevance to disease.
Collapse
Affiliation(s)
- Kazuya Hori
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, LHRRB-418, Boston, MA 02115, USA
| | | | | |
Collapse
|
61
|
Da Ros VG, Gutierrez-Perez I, Ferres-Marco D, Dominguez M. Dampening the signals transduced through hedgehog via microRNA miR-7 facilitates notch-induced tumourigenesis. PLoS Biol 2013; 11:e1001554. [PMID: 23667323 PMCID: PMC3646720 DOI: 10.1371/journal.pbio.1001554] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 03/25/2013] [Indexed: 02/06/2023] Open
Abstract
Analysis of tumorigenesis in Drosophila reveals a tumor-suppressor role for Hedgehog signaling in the context of oncogenic Notch signaling. Fine-tuned Notch and Hedgehog signalling pathways via attenuators and dampers have long been recognized as important mechanisms to ensure the proper size and differentiation of many organs and tissues. This notion is further supported by identification of mutations in these pathways in human cancer cells. However, although it is common that the Notch and Hedgehog pathways influence growth and patterning within the same organ through the establishment of organizing regions, the cross-talk between these two pathways and how the distinct organizing activities are integrated during growth is poorly understood. Here, in an unbiased genetic screen in the Drosophila melanogaster eye, we found that tumour-like growth was provoked by cooperation between the microRNA miR-7 and the Notch pathway. Surprisingly, the molecular basis of this cooperation between miR-7 and Notch converged on the silencing of Hedgehog signalling. In mechanistic terms, miR-7 silenced the interference hedgehog (ihog) Hedgehog receptor, while Notch repressed expression of the brother of ihog (boi) Hedgehog receptor. Tumourigenesis was induced co-operatively following Notch activation and reduced Hedgehog signalling, either via overexpression of the microRNA or through specific down-regulation of ihog, hedgehog, smoothened, or cubitus interruptus or via overexpression of the cubitus interruptus repressor form. Conversely, increasing Hedgehog signalling prevented eye overgrowth induced by the microRNA and Notch pathway. Further, we show that blocking Hh signal transduction in clones of cells mutant for smoothened also enhance the organizing activity and growth by Delta-Notch signalling in the wing primordium. Together, these findings uncover a hitherto unsuspected tumour suppressor role for the Hedgehog signalling and reveal an unanticipated cooperative antagonism between two pathways extensively used in growth control and cancer. Growth control mechanisms ensure that organs attain the correct final size, generally averting tumour growth. This control is often linked to spatially confined domains known as organizers (conserved signalling centres), established along the dorsal-ventral and anterior-posterior axes of the organ by the Notch and Hedgehog pathways, respectively. The organizers emit signals that dictate growth, cell fate specification, and differentiation. However, how the distinct organizing signals received are integrated by cells within a growing organ remains a mystery. By studying how Delta-Notch signalling drives tumorigenesis, we identified the conserved microRNA miR-7 as a co-operative element in tumorigenesis mediated by Delta. We found that the cooperation between the microRNA and Delta-Notch pathway converged on the silencing of two obligatory and functionally redundant Hedgehog receptors, interference hedgehog and brother of ihog. Downregulation of other hedgehog pathway genes via RNA interference or genetic mosaics revealed a tumour suppressor role for Hedgehog signalling in the context of the oncogenic Notch pathway. Given the conservation of miR-7, as well as of the Notch and Hedgehog pathways, the conclusions we have drawn from these studies on Drosophila may be applicable to some human cancers.
Collapse
Affiliation(s)
| | | | | | - Maria Dominguez
- Instituto de Neurociencias, CSIC-UMH, Alicante, Spain
- * E-mail:
| |
Collapse
|
62
|
Laddha SV, Nayak S, Paul D, Reddy R, Sharma C, Jha P, Hariharan M, Agrawal A, Chowdhury S, Sarkar C, Mukhopadhyay A. Genome-wide analysis reveals downregulation of miR-379/miR-656 cluster in human cancers. Biol Direct 2013; 8:10. [PMID: 23618224 PMCID: PMC3680324 DOI: 10.1186/1745-6150-8-10] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 03/25/2013] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are non-uniformly distributed in genomes and ~30% of the miRNAs in the human genome are clustered. In this study we have focused on the imprinted miRNA cluster miR-379/miR-656 on 14q32.31 (hereafter C14) to test their coordinated function. We have analyzed expression profile of >1000 human miRNAs in >1400 samples representing seven different human tissue types obtained from cancer patients along with matched and unmatched controls. RESULTS We found 68% of the miRNAs in this cluster to be significantly downregulated in glioblastoma multiforme (GBM), 61% downregulated in kidney renal clear cell carcinoma (KIRC), 46% in breast invasive carcinoma (BRCA) and 14% in ovarian serous cystadenocarcinoma (OV). On a genome-wide scale C14 miRNAs accounted for 12-30% of the total downregulated miRNAs in different cancers. Pathway enrichment for the predicted targets of C14 miRNA was significant for cancer pathways, especially Glioma (p< 3.77x10⁻⁶, FDR<0.005). The observed downregulation was confirmed in GBM patients by real-time PCR, where 79% of C14 miRNAs (34/43) showed downregulation. In GBM samples, hypermethylation at C14 locus (p<0.003) and downregulation of MEF2, a crucial transcription factor for the cluster was observed which likely contribute to the observed downregulation of the entire miRNA cluster. CONCLUSION We provide compelling evidence that the entire C14 miRNA cluster is a tumor suppressor locus involved in multiple cancers, especially in GBM, and points toward a general mechanism of coordinated function for clustered miRNAs.
Collapse
Affiliation(s)
- Saurabh V Laddha
- CSIR-Institute of Genomics & Integrative Biology, G,N, Ramachandran Knowledge Centre for Genome Informatics, Delhi, India
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Rafiq S, Tapper W, Collins A, Khan S, Politopoulos I, Gerty S, Blomqvist C, Couch FJ, Nevanlinna H, Liu J, Eccles D. Identification of inherited genetic variations influencing prognosis in early-onset breast cancer. Cancer Res 2013; 73:1883-91. [PMID: 23319801 PMCID: PMC3601979 DOI: 10.1158/0008-5472.can-12-3377] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Genome-Wide Association Studies (GWAS) have begun to investigate associations between inherited genetic variations and breast cancer prognosis. Here, we report our findings from a GWAS conducted in 536 patients with early-onset breast cancer aged 40 or less at diagnosis and with a mean follow-up period of 4.1 years (SD = 1.96). Patients were selected from the Prospective Study of Outcomes in Sporadic versus Hereditary breast cancer. A Bonferroni correction for multiple testing determined that a P value of 1.0 × 10(-7) was a statistically significant association signal. Following quality control, we identified 487,496 single nucleotide polymorphisms (SNP) for association tests in stage 1. In stage 2, 35 SNPs with the most significant associations were genotyped in 1,516 independent cases from the same early-onset cohort. In stage 2, 11 SNPs remained associated in the same direction (P ≤ 0.05). Fixed effects meta-analysis models identified one SNP associated at close to genome wide level of significance 556 kb upstream of the ARRDC3 locus [HR = 1.61; 95% confidence interval (CI), 1.33-1.96; P = 9.5 × 10(-7)]. Four further associations at or close to the PBX1, RORα, NTN1, and SYT6 loci also came close to genome-wide significance levels (P = 10(-6)). In the first ever GWAS for the identification of SNPs associated with prognosis in patients with early-onset breast cancer, we report a SNP upstream of the ARRDC3 locus as potentially associated with prognosis (median follow-up time for genotypes: CC = 4 years, CT = 3 years, and TT = 2.7 years; Wilcoxon rank-sum test CC vs. CT, P = 4 × 10(-4) and CT vs. TT, P = 0.76). Four further loci may also be associated with prognosis.
Collapse
Affiliation(s)
- Sajjad Rafiq
- Genetic Epidemiology and Bioinformatics Research Group, Human Genetics Research Division, University of Southampton School of Medicine, Southampton General Hospital, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Myocyte enhancer factor 2C in hematopoiesis and leukemia. Oncogene 2013; 33:403-10. [PMID: 23435431 DOI: 10.1038/onc.2013.56] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 01/17/2013] [Accepted: 01/18/2013] [Indexed: 12/21/2022]
Abstract
MEF2C is a selectively expressed transcription factor involved in different transcriptional complexes. Originally identified as an essential regulator of muscle development, ectopic expression of MEF2C as a result of chromosomal rearrangements is now linked to leukemia. Specifically, high MEF2C expression has been linked to mixed lineage leukemia-rearranged acute myeloid leukemia as well as to the immature subgroup of T-cell acute lymphoblastic leukemia. This review focuses on the role of MEF2C in the hematopoietic system and on aberrant MEF2C expression in human leukemia.
Collapse
|