51
|
Dufresnes C, Pribille M, Alard B, Gonçalves H, Amat F, Crochet PA, Dubey S, Perrin N, Fumagalli L, Vences M, Martínez-Solano I. Integrating hybrid zone analyses in species delimitation: lessons from two anuran radiations of the Western Mediterranean. Heredity (Edinb) 2020; 124:423-438. [PMID: 31959977 DOI: 10.1038/s41437-020-0294-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 01/08/2020] [Accepted: 01/10/2020] [Indexed: 12/19/2022] Open
Abstract
Molecular ecologists often rely on phylogenetic evidence for assessing the species-level systematics of newly discovered lineages. Alternatively, the extent of introgression at phylogeographic transitions can provide a more direct test to assign candidate taxa into subspecies or species categories. Here, we compared phylogenetic versus hybrid zone approaches of species delimitation in two groups of frogs from the Western Mediterranean region (Discoglossus and Pelodytes), by using genomic data (ddRAD). In both genera, coalescent analyses recovered almost all nominal taxa as "species". However, the least-diverged pairs D. g. galganoi/jeanneae and P. punctatus/hespericus admix over hundreds of kilometers, suggesting that they have not yet developed strong reproductive isolation and should be treated as conspecifics. In contrast, the comparatively older D. scovazzi/pictus and P. atlanticus/ibericus form narrow contact zones, consistent with species distinctiveness. Due to their complementarity, we recommend taxonomists to combine phylogenomics with hybrid zone analyses to scale the gray zone of speciation, i.e., the evolutionary window separating widely admixing lineages versus nascent reproductively isolated species. The radically different transitions documented here conform to the view that genetic incompatibilities accumulating with divergence generate a weak barrier to gene flow for long periods of time, until their effects multiply and the speciation process then advances rapidly. Given the variability of the gray zone among taxonomic groups, at least from our current abilities to measure it, we recommend to customize divergence thresholds within radiations to categorize lineages for which no direct test of speciation is possible.
Collapse
Affiliation(s)
- Christophe Dufresnes
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK. .,Laboratory for Conservation Biology, Department of Ecology & Evolution, University of Lausanne, Lausanne, Switzerland. .,Hintermann & Weber, Montreux, Switzerland.
| | - Manon Pribille
- Laboratory for Conservation Biology, Department of Ecology & Evolution, University of Lausanne, Lausanne, Switzerland
| | - Bérénice Alard
- CIBIO-InBIO, Campus Agrário de Vairão, Universidade do Porto, Vairão, Portugal
| | - Helena Gonçalves
- CIBIO-InBIO, Campus Agrário de Vairão, Universidade do Porto, Vairão, Portugal.,Museu de História Natural e da Ciência, Universidade do Porto, Porto, Portugal
| | - Fèlix Amat
- Àrea d'Herpetologia, Museu de Granollers-Ciències Naturals, Francesc Macià 51, 08400, Granollers, Catalonia, Spain
| | - Pierre-André Crochet
- CEFE, CNRS, University of Montpellier, University Paul Valéry Montpellier 3, EPHE, IRD, Montpellier, France
| | - Sylvain Dubey
- Hintermann & Weber, Montreux, Switzerland.,Department of Ecology & Evolution, University of Lausanne, Lausanne, Switzerland.,AgroSustain SA, Nyon, Switzerland
| | - Nicolas Perrin
- Department of Ecology & Evolution, University of Lausanne, Lausanne, Switzerland
| | - Luca Fumagalli
- Laboratory for Conservation Biology, Department of Ecology & Evolution, University of Lausanne, Lausanne, Switzerland
| | - Miguel Vences
- Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
| | - Iñigo Martínez-Solano
- Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (MNCN-CSIC), Madrid, Spain
| |
Collapse
|
52
|
An Ancient and Eroded Social Supergene Is Widespread across Formica Ants. Curr Biol 2020; 30:304-311.e4. [PMID: 31902719 DOI: 10.1016/j.cub.2019.11.032] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 08/10/2019] [Accepted: 11/11/2019] [Indexed: 12/25/2022]
Abstract
Supergenes, clusters of tightly linked genes, play a key role in the evolution of complex adaptive variation [1, 2]. Although supergenes have been identified in many species, we lack an understanding of their origin, evolution, and persistence [3]. Here, we uncover 20-40 Ma of evolutionary history of a supergene associated with polymorphic social organization in Formica ants [4]. We show that five Formica species exhibit homologous divergent haplotypes spanning 11 Mbp on chromosome 3. Despite the supergene's size, only 142 single nucleotide polymorphisms (SNPs) consistently distinguish alternative supergene haplotypes across all five species. These conserved trans-species SNPs are localized in a small number of disjunct clusters distributed across the supergene. This unexpected pattern of divergence indicates that the Formica supergene does not follow standard models of sex chromosome evolution, in which distinct evolutionary strata reflect an expanding region of suppressed recombination [5]. We propose an alternative "eroded strata model" in which clusters of conserved trans-species SNPs represent functionally important areas maintained by selection in the face of rare recombination between ancestral haplotypes. The comparison of whole-genome sequences across 10 additional Formica species reveals that the most conserved region of the supergene contains a transcription factor essential for motor neuron development in Drosophila [6]. The discovery that a very small portion of this large and ancient supergene harbors conserved trans-species SNPs linked to colony social organization suggests that the ancestral haplotypes have been eroded by recombination, with selection preserving differentiation at one or a few genes generating alternative social organization.
Collapse
|
53
|
Dufresnes C, Mazepa G, Jablonski D, Oliveira RC, Wenseleers T, Shabanov DA, Auer M, Ernst R, Koch C, Ramírez-Chaves HE, Mulder KP, Simonov E, Tiutenko A, Kryvokhyzha D, Wennekes PL, Zinenko OI, Korshunov OV, Al-Johany AM, Peregontsev EA, Masroor R, Betto-Colliard C, Denoël M, Borkin LJ, Skorinov DV, Pasynkova RA, Mazanaeva LF, Rosanov JM, Dubey S, Litvinchuk S. Fifteen shades of green: The evolution of Bufotes toads revisited. Mol Phylogenet Evol 2019; 141:106615. [DOI: 10.1016/j.ympev.2019.106615] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/14/2019] [Accepted: 09/10/2019] [Indexed: 01/01/2023]
|
54
|
Purcell J, Pruitt JN. Are personalities genetically determined? Inferences from subsocial spiders. BMC Genomics 2019; 20:867. [PMID: 31752670 PMCID: PMC6873478 DOI: 10.1186/s12864-019-6172-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 10/02/2019] [Indexed: 11/25/2022] Open
Abstract
Background Recent research has revealed that polymorphic behavioral strategies shape intra-and interspecific interactions and contribute to fitness in many animal species. A better understanding of the proximate mechanisms underlying these behavioral syndromes will enhance our grasp this phenomenon. Spiders in the genus Anelosimus exhibit inter-individual behavioral variation on several axes: individuals have consistent responses to stimuli (e.g. bold vs. shy individuals) and they are subsocial (exhibiting extended maternal care and sibling cooperation) across most of their range, but they sometimes form permanent social groups in northern temperate regions. Here, we seek genetic variants associated with boldness and with social structure in a socially polymorphic population of the spider Anelosimus studiosus. We also develop preliminary genomic resources, including a genome assembly and linkage map, that support this and future genomic research on this group. Results Remarkably, we identify a small genomic scaffold (~ 1200 bp) that harbors seven single nucleotide polymorphisms (SNPs) associated with boldness. Moreover, heterozygotes are less common than expected based on Hardy-Weinberg equilibrium, suggesting that either assortative mating or selection against heterozygotes may be occurring in this system. We find no loci significantly associated with social organization. Our draft genome assembly allows us to localize SNPs of interest in this study and to carry out genetic comparisons with other published genomes, although it remains highly fragmented. Conclusions By identifying a locus associated with a well-studied animal personality trait, this study opens up avenues for future research to link behavioral studies of animal personality with genotype and fitness.
Collapse
Affiliation(s)
- Jessica Purcell
- Department of Entomology, University of California Riverside, 900 University Ave, Riverside, CA, 92521, USA.
| | - Jonathan N Pruitt
- Department of Psychology, Neuroscience and Behaviour, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| |
Collapse
|
55
|
Sopniewski J, Shams F, Scheele BC, Kefford BJ, Ezaz T. Identifying sex-linked markers in Litoria aurea: a novel approach to understanding sex chromosome evolution in an amphibian. Sci Rep 2019; 9:16591. [PMID: 31719585 PMCID: PMC6851140 DOI: 10.1038/s41598-019-52970-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 10/25/2019] [Indexed: 01/13/2023] Open
Abstract
Few taxa exhibit the variability of sex-determining modes as amphibians. However, due to the presence of homomorphic sex chromosomes in many species, this phenomenon has been difficult to study. The Australian frog, Litoria aurea, has been relatively well studied over the past 20 years due to widespread declines largely attributable to chytrid fungus. However, it has been subject to few molecular studies and its mode of sex determination remained unknown. We applied DArTseq™ to develop sex-linked single nucleotide polymorphisms (SNPs) and restriction fragment presence/absence (PA) markers in 44 phenotypically sexed L. aurea individuals from the Molonglo River in NSW, Australia. We conclusively identified a male heterogametic (XX-XY) sex determination mode in this species, identifying 11 perfectly sex-linked SNP and six strongly sex-linked PA markers. We identified a further 47 moderately sex-linked SNP loci, likely serving as evidence indicative of XY recombination. Furthermore, within these 47 loci, a group of nine males were found to have a feminised Y chromosome that significantly differed to all other males. We postulate ancestral sex-reversal as a means for the evolution of this now pseudoautosomal region on the Y chromosome. Our findings present new evidence for the ‘fountain of youth’ hypothesis for the retention of homomorphic sex chromosomes in amphibians and describe a novel approach for the study of sex chromosome evolution in amphibia.
Collapse
Affiliation(s)
- Jarrod Sopniewski
- Institute for Applied Ecology, University of Canberra, Bruce 2617, Canberra, Australia.
| | - Foyez Shams
- Institute for Applied Ecology, University of Canberra, Bruce 2617, Canberra, Australia
| | - Benjamin C Scheele
- Fenner School of Environment and Society, The Australian National University, Canberra, ACT, 2601, Australia
| | - Ben J Kefford
- Institute for Applied Ecology, University of Canberra, Bruce 2617, Canberra, Australia
| | - Tariq Ezaz
- Institute for Applied Ecology, University of Canberra, Bruce 2617, Canberra, Australia.
| |
Collapse
|
56
|
Dubey S, Maddalena T, Bonny L, Jeffries DL, Dufresnes C. Population genomics of an exceptional hybridogenetic system of Pelophylax water frogs. BMC Evol Biol 2019; 19:164. [PMID: 31382876 PMCID: PMC6683362 DOI: 10.1186/s12862-019-1482-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 07/16/2019] [Indexed: 12/20/2022] Open
Abstract
Background Hybridogenesis can represent the first stage towards hybrid speciation where the hybrid taxon eventually weans off its parental species. In hybridogenetic water frogs, the hybrid Pelophylax kl. esculentus (genomes RL) usually eliminates one genome from its germline and relies on its parental species P. lessonae (genomes LL) or P. ridibundus (genomes RR) to perpetuate in so-called L-E and R-E systems. But not exclusively: some all-hybrid populations (E-E system) bypass the need for their parental species and fulfill their sexual cycle via triploid hybrid frogs. Genetic surveys are essential to understand the great diversity of these hybridogenetic dynamics and their evolution. Here we conducted such study using RAD-sequencing on Pelophylax from southern Switzerland (Ticino), a geographically-isolated region featuring different assemblages of parental P. lessonae and hybrid P. kl. esculentus. Results We found two types of hybridogenetic systems in Ticino: an L-E system in northern populations and a presumably all-hybrid E-E system in the closely-related southern populations, where P. lessonae was not detected. In the latter, we did not find evidence for triploid individuals from the population genomic data, but identified a few P. ridibundus (RR) as offspring from interhybrid crosses (LR × LR). Conclusions Assuming P. lessonae is truly absent from southern Ticino, the putative maintenance of all-hybrid populations without triploid individuals would require an unusual lability of genome elimination, namely that P. kl. esculentus from both sexes are capable of producing gametes with either L or R genomes. This could be achieved by the co-existence of L- and R- eliminating lineages or by “hybrid amphigamy”, i. e. males and females producing sperm and eggs among which both genomes are represented. These hypotheses imply that polyploidy is not the exclusive evolutionary pathway for hybrids to become reproductively independent, and challenge the classical view that hybridogenetic taxa are necessarily sexual parasites. Electronic supplementary material The online version of this article (10.1186/s12862-019-1482-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sylvain Dubey
- Hintermann & Weber SA, Avenue des Alpes 25, 1820, Montreux, Switzerland.,Department of Ecology and Evolution, University of Lausanne, Biophore Building, 1015, Lausanne, Switzerland.,Agrosustain SA, c/o Agroscope, Route de Duillier 60, 1260, Nyon, Switzerland
| | | | - Laura Bonny
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, 1015, Lausanne, Switzerland
| | - Daniel L Jeffries
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, 1015, Lausanne, Switzerland
| | | |
Collapse
|
57
|
Dufresnes C, Mazepa G, Jablonski D, Sadek RA, Litvinchuk SN. A river runs through it: tree frog genomics supports the Dead Sea Rift as a rare phylogeographical break. Biol J Linn Soc Lond 2019. [DOI: 10.1093/biolinnean/blz076] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
Phylogeographical breaks can be viewed as regional hotspots of diversity where the genetic integrity of incipient species is put to the test. We focus on an understudied species transition from the Middle East, namely the Dead Sea Rift in the Levant region, which presumably divided the tree frogs Hyla savignyi and H. felixarabica. Combining multilocus genetic analyses (mitochondrial DNA and RAD-sequencing) with ecological niche modelling, we test whether the rift effectively acts as a biogeographical barrier preventing this pair from admixing and merging. The answer is yes: despite weak signs of introgression, all parapatric populations were assigned to either species without cyto-nuclear discordance. Yet, the projected distributions under present and glacial conditions largely overlapped in the area, meaning their current parapatric ranges do not represent an ecological transition. Instead, we hypothesize that H. savignyi and H. felixarabica are maintained apart by limited opportunities for dispersal across the barren Jordan Valley, combined with advanced reproductive isolation. Therefore, the Dead Sea Rift may represent a rare phylogeographical break, and we encourage international efforts to assess its contribution to the rich biodiversity of the Middle East.
Collapse
Affiliation(s)
- Christophe Dufresnes
- Laboratory for Conservation Biology, University of Lausanne, Lausanne, Switzerland
| | - Glib Mazepa
- Department of Ecology & Evolution, University of Lausanne, Lausanne, Switzerland
- Department of Ecology and Genetics, Evolutionary Biology, Norbyvägen, Uppsala, Sweden
| | - Daniel Jablonski
- Department of Zoology, Comenius University in Bratislava, Ilkovičova, Mlynská dolina, Bratislava, Slovakia
| | - Riyad A Sadek
- Biology Department, American University of Beirut, Beirut, Lebanon
| | - Spartak N Litvinchuk
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky pr. 4, St. Petersburg, Russia
- Department of Zoology and Physiology, Dagestan State University, Makhachkala, Dagestan, Russia
| |
Collapse
|
58
|
Dufresnes C, Strachinis I, Suriadna N, Mykytynets G, Cogălniceanu D, Székely P, Vukov T, Arntzen JW, Wielstra B, Lymberakis P, Geffen E, Gafny S, Kumlutaş Y, Ilgaz Ç, Candan K, Mizsei E, Szabolcs M, Kolenda K, Smirnov N, Géniez P, Lukanov S, Crochet PA, Dubey S, Perrin N, Litvinchuk SN, Denoël M. Phylogeography of a cryptic speciation continuum in Eurasian spadefoot toads (Pelobates). Mol Ecol 2019; 28:3257-3270. [PMID: 31254307 DOI: 10.1111/mec.15133] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 03/30/2019] [Accepted: 05/17/2019] [Indexed: 12/15/2022]
Abstract
Cryptic phylogeographic diversifications provide unique models to examine the role of phylogenetic divergence on the evolution of reproductive isolation, without extrinsic factors such as ecological and behavioural differentiation. Yet, to date very few comparative studies have been attempted within such radiations. Here, we characterize a new speciation continuum in a group of widespread Eurasian amphibians, the Pelobates spadefoot toads, by conducting multilocus (restriction site associated DNA sequencing and mitochondrial DNA) phylogenetic, phylogeographic and hybrid zone analyses. Within the P. syriacus complex, we discovered species-level cryptic divergences (>5 million years ago [My]) between populations distributed in the Near-East (hereafter P. syriacus sensu stricto [s.s.]) and southeastern Europe (hereafter P. balcanicus), each featuring deep intraspecific lineages. Altogether, we could scale hybridizability to divergence time along six different stages, spanning from sympatry without gene flow (P. fuscus and P. balcanicus, >10 My), parapatry with highly restricted hybridization (P. balcanicus and P. syriacus s.s., >5 My), narrow hybrid zones (~15 km) consistent with partial reproductive isolation (P. fuscus and P. vespertinus, ~3 My), to extensive admixture between Pleistocene and refugial lineages (≤2 My). This full spectrum empirically supports a gradual build up of reproductive barriers through time, reversible up until a threshold that we estimate at ~3 My. Hence, cryptic phylogeographic lineages may fade away or become reproductively isolated species simply depending on the time they persist in allopatry, and without definite ecomorphological divergence.
Collapse
Affiliation(s)
- Christophe Dufresnes
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK.,Hintermann & Weber SA, Montreux, Switzerland.,Laboratory for Conservation Biology, University of Lausanne, Lausanne, Switzerland
| | - Ilias Strachinis
- School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Nataliia Suriadna
- Melitopol Insitute of Ecology and Social Technologies of University "Ukraine", Melitopol, Zaporizhia, Ukraine
| | | | - Dan Cogălniceanu
- Faculty of Natural Sciences and Agricultural Sciences, University Ovidius Constanţa, Constanţa, Romania
| | - Paul Székely
- Departamento de Ciencias Biológicas, EcoSs Lab, Universidad Técnica Particular de Loja, Loja, Ecuador
| | - Tanja Vukov
- Department of Evolutionary Biology, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Jan W Arntzen
- Naturalis Biodiversity Center, Leiden, The Netherlands
| | - Ben Wielstra
- Naturalis Biodiversity Center, Leiden, The Netherlands.,Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | - Petros Lymberakis
- Natural History Museum of Crete, University of Crete, Irakleio, Crete, Greece
| | - Eli Geffen
- School of Zoology, Tel Aviv University, Tel Aviv, Israel
| | - Sarig Gafny
- School of Marine Sciences, Ruppin Academic Center, Michmoret, Israel
| | - Yusuf Kumlutaş
- Department of Biology, Faculty of Science, Dokuz Eylül University, Buca, İzmir, Turkey.,Research and Application Center for Fauna and Flora, Dokuz Eylül University, Buca, İzmir, Turkey
| | - Çetin Ilgaz
- Department of Biology, Faculty of Science, Dokuz Eylül University, Buca, İzmir, Turkey.,Research and Application Center for Fauna and Flora, Dokuz Eylül University, Buca, İzmir, Turkey
| | - Kamil Candan
- Department of Biology, Faculty of Science, Dokuz Eylül University, Buca, İzmir, Turkey.,Research and Application Center for Fauna and Flora, Dokuz Eylül University, Buca, İzmir, Turkey
| | - Edvárd Mizsei
- Department of Tisza River Research, Danube Research Institute, Centre for Ecological Research, Hungarian Academy of Sciences, Debrecen, Hungary
| | - Márton Szabolcs
- Department of Tisza River Research, Danube Research Institute, Centre for Ecological Research, Hungarian Academy of Sciences, Debrecen, Hungary
| | - Krzysztof Kolenda
- Department of Evolutionary Biology and Conservation of Vertebrates, Institute of Environmental Biology, University of Wrocław, Wrocław, Poland
| | - Nazar Smirnov
- Department of Nature, Chernivtsi Regional Museum, Chernivtsi, Ukraine
| | - Philippe Géniez
- CEFE, EPHE-PSL, CNRS, University of Montpellier, University Paul Valéry Montpellier 3, IRD, Montpellier, France
| | - Simeon Lukanov
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Pierre-André Crochet
- CEFE, CNRS, University of Montpellier, University Paul Valéry Montpellier 3, EPHE, IRD, Montpellier, France
| | - Sylvain Dubey
- Hintermann & Weber SA, Montreux, Switzerland.,Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland.,Agrosustain SA, Nyon, Switzerland
| | - Nicolas Perrin
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Spartak N Litvinchuk
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia.,Department of Zoology and Physiology, Dagestan State University, Makhachkala, Russia
| | - Mathieu Denoël
- Laboratory of Fish and Amphibian Ethology, Behavioural Biology Group, Freshwater and OCeanic science Unit of reSearch (FOCUS), University of Liège, Liège, Belgium
| |
Collapse
|
59
|
Fan H, Hu Y, Shan L, Yu L, Wang B, Li M, Wu Q, Wei F. Synteny search identifies carnivore Y chromosome for evolution of male specific genes. Integr Zool 2019; 14:224-234. [PMID: 30019860 DOI: 10.1111/1749-4877.12352] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The explosive accumulation of mammalian genomes has provided a valuable resource to characterize the evolution of the Y chromosome. Unexpectedly, the Y-chromosome sequence has been characterized in only a small handful of species, with the majority being model organisms. Thus, identification of Y-linked scaffolds from unordered genome sequences is becoming more important. Here, we used a syntenic-based approach to generate the scaffolds of the male-specific region of the Y chromosome (MSY) from the genome sequence of 6 male carnivore species. Our results identified 14, 15, 9, 28, 14 and 11 Y-linked scaffolds in polar bears, pacific walruses, red pandas, cheetahs, ferrets and tigers, covering 1.55 Mbp, 2.62 Mbp, 964 Kb, 1.75 Mb, 2.17 Mbp and 1.84 Mb MSY, respectively. All the candidate Y-linked scaffolds in 3 selected species (red pandas, polar bears and tigers) were successfully verified using polymerase chain reaction. We re-annotated 8 carnivore MSYs including these 6 Y-linked scaffolds and domestic dog and cat MSY; a total of 11 orthologous genes conserved in at least 7 of the 8 carnivores were identified. These 11 Y-linked genes have significantly higher evolutionary rates compared with their X-linked counterparts, indicating less purifying selection for MSY genes. Taken together, our study shows that the approach of synteny search is a reliable and easily affordable strategy to identify Y-linked scaffolds from unordered carnivore genomes and provides a preliminary evolutionary study for carnivore MSY genes.
Collapse
Affiliation(s)
- Huizhong Fan
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yibo Hu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| | - Lei Shan
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Lijun Yu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Bing Wang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Min Li
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Qi Wu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Fuwen Wei
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
60
|
Exaggerated heterochiasmy in a fish with sex-linked male coloration polymorphisms. Proc Natl Acad Sci U S A 2019; 116:6924-6931. [PMID: 30894479 DOI: 10.1073/pnas.1818486116] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
It is often stated that polymorphisms for mutations affecting fitness of males and females in opposite directions [sexually antagonistic (SA) polymorphisms] are the main selective force for the evolution of recombination suppression between sex chromosomes. However, empirical evidence to discriminate between different hypotheses is difficult to obtain. We report genetic mapping results in laboratory-raised families of the guppy (Poecilia reticulata), a sexually dimorphic fish with SA polymorphisms for male coloration genes, mostly on the sex chromosomes. Comparison of the genetic and physical maps shows that crossovers are distributed very differently in the two sexes (heterochiasmy); in male meiosis, they are restricted to the termini of all four chromosomes studied, including chromosome 12, which carries the sex-determining locus. Genome resequencing of male and female guppies from a population also indicates sex linkage of variants across almost the entire chromosome 12. More than 90% of the chromosome carrying the male-determining locus is therefore transmitted largely through the male lineage. A lack of heterochiasmy in a related fish species suggests that it originated recently in the lineage leading to the guppy. Our findings do not support the hypothesis that suppressed recombination evolved in response to the presence of SA polymorphisms. Instead, a low frequency of recombination on a chromosome that carries a male-determining locus and has not undergone genetic degeneration has probably facilitated the establishment of male-beneficial coloration polymorphisms.
Collapse
|
61
|
Rodrigues N, Studer T, Dufresnes C, Perrin N. Sex-Chromosome Recombination in Common Frogs Brings Water to the Fountain-of-Youth. Mol Biol Evol 2019; 35:942-948. [PMID: 29394416 DOI: 10.1093/molbev/msy008] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
According to the canonical model of sex-chromosome evolution, the degeneration of Y or W chromosomes (as observed in mammals and birds, respectively) results from an arrest of recombination in the heterogametic sex, driven by the fixation of sexually antagonistic mutations. However, sex chromosomes have remained homomorphic in many lineages of fishes, amphibians, and nonavian reptiles. According to the "fountain-of-youth" model, this homomorphy results from occasional events of sex reversal. If recombination arrest in males is controlled by maleness per se (and not by genotype), then Y chromosomes are expected to recombine in XY females, preventing their long-term degeneration. Here, we provide field support for the fountain-of-youth, by showing that sex-chromosome recombination in Rana temporaria only depends on phenotypic sex: naturally occurring XX males show the same restriction of recombination as XY males (average map length ∼2 cM), while XY females recombine as much as XX females (average map length ∼150 cM). Our results challenge several common assumptions regarding the evolution of sex chromosomes, including the role of sexually antagonistic genes as drivers of recombination arrest, and that of chromosomal inversions as underlying mechanisms.
Collapse
Affiliation(s)
- Nicolas Rodrigues
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Tania Studer
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland.,Zentrum für Molekulare Biologie, Universität Heidelberg, Heidelberg, Germany
| | - Christophe Dufresnes
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Nicolas Perrin
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
62
|
Dufresnes C, Beddek M, Skorinov DV, Fumagalli L, Perrin N, Crochet PA, Litvinchuk SN. Diversification and speciation in tree frogs from the Maghreb (Hyla meridionalis sensu lato), with description of a new African endemic. Mol Phylogenet Evol 2019; 134:291-299. [PMID: 30776435 DOI: 10.1016/j.ympev.2019.02.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/27/2019] [Accepted: 02/09/2019] [Indexed: 01/27/2023]
Abstract
Comparative molecular studies emphasized a new biogeographic paradigm for the terrestrial fauna of North Africa, one of the last uncharted ecoregions of the Western Palearctic: two independent east-west divisions across the Maghreb. Through a comprehensive phylogeography, we assessed how this model suits the genetic diversification documented for the tree frog Hyla meridionalis sensu lato. Analyses of mtDNA variation and thousands of nuclear loci confirmed the old split (low-Pliocene) between Tunisian and Algerian populations. These lineages meet but barely admix in the eastern Maghreb (Algerian-Tunisian border), a sign of putatively advanced reproductive isolation. In the western Maghreb, we report a Pleistocene divergence between Moroccan and Algerian populations. Tree frogs thus follow both predictions: a double east-west break that gave rise to two suture zones characteristic of North-African phylogeography. Moreover, some intraspecific mtDNA variation is not mirrored by the nuclear data, emphasizing that evolutionary units should always be designated by multilocus approaches. Last but not least, we describe the Tunisian lineage as a new species endemic to Africa.
Collapse
Affiliation(s)
- Christophe Dufresnes
- Hintermann & Weber SA, Montreux, Switzerland; Laboratory for Conservation Biology, University of Lausanne, Biophore Building, Lausanne, Switzerland; Department of Animal and Plant Sciences, University of Sheffield, Alfred Denny Building, Western Bank, Sheffield S10 2TN, United Kingdom.
| | - Menad Beddek
- CEFE, CNRS, University Paul Valéry Montpellier 3, EPHE, Montpellier, France; Naturalia Environnement, Site Agroparc, Avignon, France
| | - Dmitriy V Skorinov
- Institute of Cytology, Russian Academy of Sciences, Saint Petersburg, Russia
| | - Luca Fumagalli
- Laboratory for Conservation Biology, University of Lausanne, Biophore Building, Lausanne, Switzerland
| | - Nicolas Perrin
- Department of Ecology & Evolution, University of Lausanne, Biophore Building, Lausanne, Switzerland
| | | | - Spartak N Litvinchuk
- Institute of Cytology, Russian Academy of Sciences, Saint Petersburg, Russia; Dagestan State University, Makhachkala, Russia
| |
Collapse
|
63
|
Ma WJ, Veltsos P, Sermier R, Parker DJ, Perrin N. Evolutionary and developmental dynamics of sex-biased gene expression in common frogs with proto-Y chromosomes. Genome Biol 2018; 19:156. [PMID: 30290841 PMCID: PMC6173898 DOI: 10.1186/s13059-018-1548-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 09/20/2018] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The patterns of gene expression on highly differentiated sex chromosomes differ drastically from those on autosomes, due to sex-specific patterns of selection and inheritance. As a result, X chromosomes are often enriched in female-biased genes (feminization) and Z chromosomes in male-biased genes (masculinization). However, it is not known how quickly sexualization of gene expression and transcriptional degeneration evolve after sex-chromosome formation. Furthermore, little is known about how sex-biased gene expression varies throughout development. RESULTS We sample a population of common frogs (Rana temporaria) with limited sex-chromosome differentiation (proto-sex chromosome), leaky genetic sex determination evidenced by the occurrence of XX males, and delayed gonadal development, meaning that XY individuals may first develop ovaries before switching to testes. Using high-throughput RNA sequencing, we investigate the dynamics of gene expression throughout development, spanning from early embryo to froglet stages. Our results show that sex-biased expression affects different genes at different developmental stages and increases during development, reaching highest levels in XX female froglets. Additionally, sex-biased gene expression depends on phenotypic, rather than genotypic sex, with similar expression in XX and XY males; correlates with gene evolutionary rates; and is not localized to the proto-sex chromosome nor near the candidate sex-determining gene Dmrt1. CONCLUSIONS The proto-sex chromosome of common frogs does not show evidence of sexualization of gene expression, nor evidence for a faster rate of evolution. This challenges the notion that sexually antagonistic genes play a central role in the initial stages of sex-chromosome evolution.
Collapse
Affiliation(s)
- Wen-Juan Ma
- Department of Ecology and Evolution, University of Lausanne, CH 1015 Lausanne, Switzerland
- Current address: Department of Biology, Amherst College, Amherst, MA USA
| | - Paris Veltsos
- Department of Ecology and Evolution, University of Lausanne, CH 1015 Lausanne, Switzerland
| | - Roberto Sermier
- Department of Ecology and Evolution, University of Lausanne, CH 1015 Lausanne, Switzerland
| | - Darren J Parker
- Department of Ecology and Evolution, University of Lausanne, CH 1015 Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Nicolas Perrin
- Department of Ecology and Evolution, University of Lausanne, CH 1015 Lausanne, Switzerland
| |
Collapse
|
64
|
A rapid rate of sex-chromosome turnover and non-random transitions in true frogs. Nat Commun 2018; 9:4088. [PMID: 30291233 PMCID: PMC6173717 DOI: 10.1038/s41467-018-06517-2] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 08/29/2018] [Indexed: 11/24/2022] Open
Abstract
The canonical model of sex-chromosome evolution predicts that, as recombination is suppressed along sex chromosomes, gametologs will progressively differentiate, eventually becoming heteromorphic. However, there are numerous examples of homomorphic sex chromosomes across the tree of life. This homomorphy has been suggested to result from frequent sex-chromosome turnovers, yet we know little about which forces drive them. Here, we describe an extremely fast rate of turnover among 28 species of Ranidae. Transitions are not random, but converge on several chromosomes, potentially due to genes they harbour. Transitions also preserve the ancestral pattern of male heterogamety, in line with the ‘hot-potato’ model of sex-chromosome transitions, suggesting a key role for mutation-load accumulation in non-recombining genomic regions. The importance of mutation-load selection in frogs might result from the extreme heterochiasmy they exhibit, making frog sex chromosomes differentiate immediately from emergence and across their entire length. The evolutionary forces that favour transitions in sex chromosomes are not well understood. Here, Jeffries and colleagues show a very high rate of sex chromosome turnover in true frogs, which may be driven by rapid mutation-load accumulation due to the low recombination rate in males.
Collapse
|
65
|
Furman BLS, Evans BJ. Divergent Evolutionary Trajectories of Two Young, Homomorphic, and Closely Related Sex Chromosome Systems. Genome Biol Evol 2018; 10:742-755. [PMID: 29608717 PMCID: PMC5841384 DOI: 10.1093/gbe/evy045] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2018] [Indexed: 02/02/2023] Open
Abstract
There exists extraordinary variation among species in the degree and nature of sex chromosome divergence. However, much of our knowledge about sex chromosomes is based on comparisons between deeply diverged species with different ancestral sex chromosomes, making it difficult to establish how fast and why sex chromosomes acquire variable levels of divergence. To address this problem, we studied sex chromosome evolution in two species of African clawed frog (Xenopus), both of whom acquired novel systems for sex determination from a recent common ancestor, and both of whom have female (ZW/ZZ) heterogamy. Derived sex chromosomes of one species, X. laevis, have a small region of suppressed recombination that surrounds the sex determining locus, and have remained this way for millions of years. In the other species, X. borealis, a younger sex chromosome system exists on a different pair of chromosomes, but the region of suppressed recombination surrounding an unidentified sex determining gene is vast, spanning almost half of the sex chromosomes. Differences between these sex chromosome systems are also apparent in the extent of nucleotide divergence between the sex chromosomes carried by females. Our analyses also indicate that in autosomes of both of these species, recombination during oogenesis occurs more frequently and in different genomic locations than during spermatogenesis. These results demonstrate that new sex chromosomes can assume radically different evolutionary trajectories, with far-reaching genomic consequences. They also suggest that in some instances the origin of new triggers for sex determination may be coupled with rapid evolution sex chromosomes, including recombination suppression of large genomic regions.
Collapse
Affiliation(s)
| | - Ben J Evans
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
66
|
Dufresnes C, Mazepa G, Rodrigues N, Brelsford A, Litvinchuk SN, Sermier R, Lavanchy G, Betto-Colliard C, Blaser O, Borzée A, Cavoto E, Fabre G, Ghali K, Grossen C, Horn A, Leuenberger J, Phillips BC, Saunders PA, Savary R, Maddalena T, Stöck M, Dubey S, Canestrelli D, Jeffries DL. Genomic Evidence for Cryptic Speciation in Tree Frogs From the Apennine Peninsula, With Description of Hyla perrini sp. nov. Front Ecol Evol 2018. [DOI: 10.3389/fevo.2018.00144] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
67
|
Guzinski J, Ballenghien M, Daguin‐Thiébaut C, Lévêque L, Viard F. Population genomics of the introduced and cultivated Pacific kelp Undaria pinnatifida: Marinas-not farms-drive regional connectivity and establishment in natural rocky reefs. Evol Appl 2018; 11:1582-1597. [PMID: 30344629 PMCID: PMC6183462 DOI: 10.1111/eva.12647] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 05/02/2018] [Accepted: 05/09/2018] [Indexed: 01/03/2023] Open
Abstract
Ports and farms are well-known primary introduction hot spots for marine non-indigenous species (NIS). The extent to which these anthropogenic habitats are sustainable sources of propagules and influence the evolution of NIS in natural habitats was examined in the edible seaweed Undaria pinnatifida, native to Asia and introduced to Europe in the 1970s. Following its deliberate introduction 40 years ago along the French coast of the English Channel, this kelp is now found in three contrasting habitat types: farms, marinas and natural rocky reefs. In the light of the continuous spread of this NIS, it is imperative to better understand the processes behind its sustainable establishment in the wild. In addition, developing effective management plans to curtail the spread of U. pinnatifida requires determining how the three types of populations interact with one another. In addition to an analysis using microsatellite markers, we developed, for the first time in a kelp, a ddRAD-sequencing technique to genotype 738 individuals sampled in 11 rocky reefs, 12 marinas, and two farms located along ca. 1,000 km of coastline. As expected, the RAD-seq panel showed more power than the microsatellite panel for identifying fine-grained patterns. However, both panels demonstrated habitat-specific properties of the study populations. In particular, farms displayed very low genetic diversity and no inbreeding conversely to populations in marinas and natural rocky reefs. In addition, strong, but chaotic regional genetic structure, was revealed, consistent with human-mediated dispersal (e.g., leisure boating). We also uncovered a tight relationship between populations in rocky reefs and those in nearby marinas, but not with nearby farms, suggesting spillover from marinas into the wild. At last, a temporal survey spanning 20 generations showed that wild populations are now self-sustaining, albeit there was no evidence for local adaptation to any of the three habitats. These findings highlight that limiting the spread of U. pinnatifida requires efficient management policies that also target marinas.
Collapse
Affiliation(s)
- Jaromir Guzinski
- Laboratory Adaptation and Diversity in Marine Environments (UMR 7144 CNRS SU)CNRSSorbonne UniversitéRoscoffFrance
- Laboratory Evolutionary Biology and Ecology of Algae (UMI 3614 CNRS SU)CNRSSorbonne UniversitéRoscoffFrance
| | - Marion Ballenghien
- Laboratory Adaptation and Diversity in Marine Environments (UMR 7144 CNRS SU)CNRSSorbonne UniversitéRoscoffFrance
| | - Claire Daguin‐Thiébaut
- Laboratory Adaptation and Diversity in Marine Environments (UMR 7144 CNRS SU)CNRSSorbonne UniversitéRoscoffFrance
| | - Laurent Lévêque
- Fédération de Recherche (FR 2424 CNRS SU)CNRSSorbonne UniversitéRoscoffFrance
| | - Frédérique Viard
- Laboratory Adaptation and Diversity in Marine Environments (UMR 7144 CNRS SU)CNRSSorbonne UniversitéRoscoffFrance
| |
Collapse
|
68
|
Avril A, Purcell J, Brelsford A, Chapuisat M. Asymmetric assortative mating and queen polyandry are linked to a supergene controlling ant social organization. Mol Ecol 2018; 28:1428-1438. [PMID: 30003603 DOI: 10.1111/mec.14793] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/02/2018] [Accepted: 07/06/2018] [Indexed: 01/04/2023]
Abstract
Nonrecombining genomic variants underlie spectacular social polymorphisms, from bird mating systems to ant social organization. Because these "social supergenes" affect multiple phenotypic traits linked to survival and reproduction, explaining their persistence remains a substantial challenge. Here, we investigate how large nonrecombining genomic variants relate to colony social organization, mating system and dispersal in the Alpine silver ant, Formica selysi. The species has colonies headed by a single queen (monogynous) and colonies headed by multiple queens (polygynous). We confirmed that a supergene with alternate haplotypes-Sm and Sp-underlies this polymorphism in social structure: Females from mature monogynous colonies had the Sm/Sm genotype, while those from polygynous colonies were Sm/Sp and Sp/Sp. Queens heading monogynous colonies were exclusively mated with Sm males. In contrast, queens heading polygynous colonies were mated with Sp males and Sm males. Sm males, which are only produced by monogynous colonies, accounted for 22.9% of the matings with queens from mature polygynous colonies. This asymmetry between social forms in the degree of assortative mating generates unidirectional male-mediated gene flow from the monogynous to the polygynous social form. Biased gene flow was confirmed by a significantly higher number of private alleles in the polygynous social form. Moreover, heterozygous queens were three times as likely as homozygous queens to be multiply mated. This study reveals that the supergene variants jointly affect social organization and multiple components of the mating system that alter the transmission of the variants and thus influence the dynamics of the system.
Collapse
Affiliation(s)
- Amaury Avril
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Jessica Purcell
- Department of Entomology, University of California Riverside, Riverside, California
| | - Alan Brelsford
- Department of Evolution, Ecology, and Organismal Biology, University of California Riverside, Riverside, California
| | - Michel Chapuisat
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
69
|
Ma WJ, Veltsos P, Toups MA, Rodrigues N, Sermier R, Jeffries DL, Perrin N. Tissue Specificity and Dynamics of Sex-Biased Gene Expression in a Common Frog Population with Differentiated, Yet Homomorphic, Sex Chromosomes. Genes (Basel) 2018; 9:E294. [PMID: 29895802 PMCID: PMC6027210 DOI: 10.3390/genes9060294] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/04/2018] [Accepted: 06/11/2018] [Indexed: 02/06/2023] Open
Abstract
Sex-biased genes are central to the study of sexual selection, sexual antagonism, and sex chromosome evolution. We describe a comprehensive de novo assembled transcriptome in the common frog Rana temporaria based on five developmental stages and three adult tissues from both sexes, obtained from a population with karyotypically homomorphic but genetically differentiated sex chromosomes. This allows the study of sex-biased gene expression throughout development, and its effect on the rate of gene evolution while accounting for pleiotropic expression, which is known to negatively correlate with the evolutionary rate. Overall, sex-biased genes had little overlap among developmental stages and adult tissues. Late developmental stages and gonad tissues had the highest numbers of stage- or tissue-specific genes. We find that pleiotropic gene expression is a better predictor than sex bias for the evolutionary rate of genes, though it often interacts with sex bias. Although genetically differentiated, the sex chromosomes were not enriched in sex-biased genes, possibly due to a very recent arrest of XY recombination. These results extend our understanding of the developmental dynamics, tissue specificity, and genomic localization of sex-biased genes.
Collapse
Affiliation(s)
- Wen-Juan Ma
- Department of Ecology and Evolution, University of Lausanne, CH 1015 Lausanne, Switzerland.
| | - Paris Veltsos
- Department of Ecology and Evolution, University of Lausanne, CH 1015 Lausanne, Switzerland.
- Department of Biology, Indiana University, Jordan Hall, 1001 East Third Street, Bloomington, IN 47405, USA.
| | - Melissa A Toups
- Department of Ecology and Evolution, University of Lausanne, CH 1015 Lausanne, Switzerland.
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria.
| | - Nicolas Rodrigues
- Department of Ecology and Evolution, University of Lausanne, CH 1015 Lausanne, Switzerland.
| | - Roberto Sermier
- Department of Ecology and Evolution, University of Lausanne, CH 1015 Lausanne, Switzerland.
| | - Daniel L Jeffries
- Department of Ecology and Evolution, University of Lausanne, CH 1015 Lausanne, Switzerland.
| | - Nicolas Perrin
- Department of Ecology and Evolution, University of Lausanne, CH 1015 Lausanne, Switzerland.
| |
Collapse
|
70
|
Abstract
Recombination often differs markedly between males and females. Here we present the first analysis of sex-specific recombination in Gasterosteus sticklebacks. Using whole-genome sequencing of 15 crosses between G. aculeatus and G. nipponicus, we localized 698 crossovers with a median resolution of 2.3 kb. We also used a bioinformatic approach to infer historical sex-averaged recombination patterns for both species. Recombination is greater in females than males on all chromosomes, and overall map length is 1.64 times longer in females. The locations of crossovers differ strikingly between sexes. Crossovers cluster toward chromosome ends in males, but are distributed more evenly across chromosomes in females. Suppression of recombination near the centromeres in males causes crossovers to cluster at the ends of long arms in acrocentric chromosomes, and greatly reduces crossing over on short arms. The effect of centromeres on recombination is much weaker in females. Genomic differentiation between G. aculeatus and G. nipponicus is strongly correlated with recombination rate, and patterns of differentiation along chromosomes are strongly influenced by male-specific telomere and centromere effects. We found no evidence for fine-scale correlations between recombination and local gene content in either sex. We discuss hypotheses for the origin of sexual dimorphism in recombination and its consequences for sexually antagonistic selection and sex chromosome evolution.
Collapse
|
71
|
Charlesworth D. The Guppy Sex Chromosome System and the Sexually Antagonistic Polymorphism Hypothesis for Y Chromosome Recombination Suppression. Genes (Basel) 2018; 9:genes9050264. [PMID: 29783761 PMCID: PMC5977204 DOI: 10.3390/genes9050264] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 05/11/2018] [Accepted: 05/16/2018] [Indexed: 02/06/2023] Open
Abstract
Sex chromosomes regularly evolve suppressed recombination, distinguishing them from other chromosomes, and the reason for this has been debated for many years. It is now clear that non-recombining sex-linked regions have arisen in different ways in different organisms. A major hypothesis is that a sex-determining gene arises on a chromosome and that sexually antagonistic (SA) selection (sometimes called intra-locus sexual conflict) acting at a linked gene has led to the evolution of recombination suppression in the region, to reduce the frequency of low fitness recombinant genotypes produced. The sex chromosome system of the guppy (Poecilia reticulata) is often cited as supporting this hypothesis because SA selection has been demonstrated to act on male coloration in natural populations of this fish, and probably contributes to maintaining polymorphisms for the genetic factors involved. I review classical genetic and new molecular genetic results from the guppy, and other fish, including approaches for identifying the genome regions carrying sex-determining loci, and suggest that the guppy may exemplify a recently proposed route to sex chromosome evolution.
Collapse
Affiliation(s)
- Deborah Charlesworth
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK.
| |
Collapse
|
72
|
Haag CR, Theodosiou L, Zahab R, Lenormand T. Low recombination rates in sexual species and sex-asex transitions. Philos Trans R Soc Lond B Biol Sci 2017; 372:20160461. [PMID: 29109224 PMCID: PMC5698623 DOI: 10.1098/rstb.2016.0461] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2017] [Indexed: 12/11/2022] Open
Abstract
In most sexual, diploid eukaryotes, at least one crossover occurs between each pair of homologous chromosomes during meiosis, presumably in order to ensure proper segregation. Well-known exceptions to this rule are species in which one sex does not recombine and specific chromosomes lacking crossover. We review other possible exceptions, including species with chromosome maps of less than 50 cM in one or both sexes. We discuss the idea that low recombination rates may favour sex-asex transitions, or, alternatively may be a consequence of it. We then show that a yet undescribed species of brine shrimp Artemia from Kazakhstan (A sp. Kazakhstan), the closest known relative of the asexual Artemia parthenogenetica, has one of the shortest genetic linkage maps known. Based on a family of 42 individuals and 589 RAD markers, we find that many linkage groups are considerably shorter than 50 cM, suggesting either no obligate crossover or crossovers concentrated at terminal positions with little effect on recombination. We contrast these findings with the published map of the more distantly related sexual congener, A. franciscana, and conclude that the study of recombination in non-model systems is important to understand the evolutionary causes and consequences of recombination.This article is part of the themed issue 'Evolutionary causes and consequences of recombination rate variation in sexual organisms'.
Collapse
Affiliation(s)
- Christoph R Haag
- Centre d'Ecologie Fonctionnelle et Evolutive (CEFE)-Unité Mixte de Recherche 5175, Centre National de la Recherche Scientifique (CNRS), Université de Montpellier-Université Paul-Valéry Montpellier-École Pratique des Hautes Études, 1919 Route de Mende, 34293 Montpellier Cedex 5, France
| | - Loukas Theodosiou
- Research Group for Community Dynamics, Max Planck Institute for Evolutionary Biology, August-Thienemann-Straße 2, 24306 Plön, Germany
| | - Roula Zahab
- Centre d'Ecologie Fonctionnelle et Evolutive (CEFE)-Unité Mixte de Recherche 5175, Centre National de la Recherche Scientifique (CNRS), Université de Montpellier-Université Paul-Valéry Montpellier-École Pratique des Hautes Études, 1919 Route de Mende, 34293 Montpellier Cedex 5, France
| | - Thomas Lenormand
- Centre d'Ecologie Fonctionnelle et Evolutive (CEFE)-Unité Mixte de Recherche 5175, Centre National de la Recherche Scientifique (CNRS), Université de Montpellier-Université Paul-Valéry Montpellier-École Pratique des Hautes Études, 1919 Route de Mende, 34293 Montpellier Cedex 5, France
| |
Collapse
|
73
|
Dexter E, Bollens SM, Cordell J, Soh HY, Rollwagen-Bollens G, Pfeifer SP, Goudet J, Vuilleumier S. A genetic reconstruction of the invasion of the calanoid copepod Pseudodiaptomus inopinus across the North American Pacific Coast. Biol Invasions 2017. [DOI: 10.1007/s10530-017-1649-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
74
|
Rodrigues N, Studer T, Dufresnes C, Ma WJ, Veltsos P, Perrin N. Dmrt1 polymorphism and sex-chromosome differentiation in Rana temporaria. Mol Ecol 2017; 26:4897-4905. [PMID: 28675502 DOI: 10.1111/mec.14222] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 04/03/2017] [Accepted: 06/12/2017] [Indexed: 01/18/2023]
Abstract
Sex-determination mechanisms vary both within and among populations of common frogs, opening opportunities to investigate the molecular pathways and ultimate causes shaping their evolution. We investigated the association between sex-chromosome differentiation (as assayed from microsatellites) and polymorphism at the candidate sex-determining gene Dmrt1 in two Alpine populations. Both populations harboured a diversity of X-linked and Y-linked Dmrt1 haplotypes. Some males had fixed male-specific alleles at all markers ("differentiated" Y chromosomes), others only at Dmrt1 ("proto-" Y chromosomes), while still others were genetically indistinguishable from females (undifferentiated X chromosomes). Besides these XX males, we also found rare XY females. The several Dmrt1 Y haplotypes differed in the probability of association with a differentiated Y chromosome, which we interpret as a result of differences in the masculinizing effects of alleles at the sex-determining locus. From our results, the polymorphism in sex-chromosome differentiation and its association with Dmrt1, previously inferred from Swedish populations, are not just idiosyncratic features of peripheral populations, but also characterize highly diverged populations in the central range. This implies that an apparently unstable pattern has been maintained over long evolutionary times.
Collapse
Affiliation(s)
- Nicolas Rodrigues
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Tania Studer
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Christophe Dufresnes
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Wen-Juan Ma
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Paris Veltsos
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Nicolas Perrin
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
75
|
Benestan L, Moore JS, Sutherland BJG, Le Luyer J, Maaroufi H, Rougeux C, Normandeau E, Rycroft N, Atema J, Harris LN, Tallman RF, Greenwood SJ, Clark FK, Bernatchez L. Sex matters in massive parallel sequencing: Evidence for biases in genetic parameter estimation and investigation of sex determination systems. Mol Ecol 2017; 26:6767-6783. [DOI: 10.1111/mec.14217] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/23/2017] [Accepted: 03/29/2017] [Indexed: 12/26/2022]
Affiliation(s)
- Laura Benestan
- Département de Biologie; Université Laval; Québec QC Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS); Université Laval; Québec QC Canada
| | - Jean-Sébastien Moore
- Département de Biologie; Université Laval; Québec QC Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS); Université Laval; Québec QC Canada
| | - Ben J. G. Sutherland
- Département de Biologie; Université Laval; Québec QC Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS); Université Laval; Québec QC Canada
| | - Jérémy Le Luyer
- Département de Biologie; Université Laval; Québec QC Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS); Université Laval; Québec QC Canada
| | - Halim Maaroufi
- Institut de Biologie Intégrative et des Systèmes (IBIS); Université Laval; Québec QC Canada
| | - Clément Rougeux
- Département de Biologie; Université Laval; Québec QC Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS); Université Laval; Québec QC Canada
| | - Eric Normandeau
- Département de Biologie; Université Laval; Québec QC Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS); Université Laval; Québec QC Canada
| | | | - Jelle Atema
- Department of Biology; Boston University; Boston MA USA
| | - Les N. Harris
- Fisheries and Oceans Canada; Freshwater Institute; Winnipeg MB Canada
| | - Ross F. Tallman
- Fisheries and Oceans Canada; Freshwater Institute; Winnipeg MB Canada
| | - Spencer J. Greenwood
- Department of Biomedical Sciences & AVC Lobster Science Centre; Atlantic Veterinary College; University of Prince Edward Island; Charlottetown PE Canada
| | - Fraser K. Clark
- Department of Biomedical Sciences & AVC Lobster Science Centre; Atlantic Veterinary College; University of Prince Edward Island; Charlottetown PE Canada
| | - Louis Bernatchez
- Département de Biologie; Université Laval; Québec QC Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS); Université Laval; Québec QC Canada
| |
Collapse
|
76
|
Rodrigues N, Dufresnes C. Using conventional F-statistics to study unconventional sex-chromosome differentiation. PeerJ 2017; 5:e3207. [PMID: 28462023 PMCID: PMC5410149 DOI: 10.7717/peerj.3207] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 03/20/2017] [Indexed: 01/23/2023] Open
Abstract
Species with undifferentiated sex chromosomes emerge as key organisms to understand the astonishing diversity of sex-determination systems. Whereas new genomic methods are widening opportunities to study these systems, the difficulty to separately characterize their X and Y homologous chromosomes poses limitations. Here we demonstrate that two simple F-statistics calculated from sex-linked genotypes, namely the genetic distance (Fst) between sexes and the inbreeding coefficient (Fis) in the heterogametic sex, can be used as reliable proxies to compare sex-chromosome differentiation between populations. We correlated these metrics using published microsatellite data from two frog species (Hyla arboreaand Rana temporaria), and show that they intimately relate to the overall amount of X–Y differentiation in populations. However, the fits for individual loci appear highly variable, suggesting that a dense genetic coverage will be needed for inferring fine-scale patterns of differentiation along sex-chromosomes. The applications of these F-statistics, which implies little sampling requirement, significantly facilitate population analyses of sex-chromosomes.
Collapse
Affiliation(s)
- Nicolas Rodrigues
- Department of Ecology & Evolution, University of Lausanne, Lausanne, Switzerland
| | - Christophe Dufresnes
- Department of Ecology & Evolution, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
77
|
Comparative High-Density Linkage Mapping Reveals Conserved Genome Structure but Variation in Levels of Heterochiasmy and Location of Recombination Cold Spots in the Common Frog. G3-GENES GENOMES GENETICS 2017; 7:637-645. [PMID: 28040782 PMCID: PMC5295608 DOI: 10.1534/g3.116.036459] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
By combining 7077 SNPs and 61 microsatellites, we present the first linkage map for some of the early diverged lineages of the common frog, Rana temporaria, and the densest linkage map to date for this species. We found high homology with the published linkage maps of the Eastern and Western lineages but with differences in the order of some markers. Homology was also strong with the genome of the Tibetan frog Nanorana parkeri and we found high synteny with the clawed frog Xenopus tropicalis. We confirmed marked heterochiasmy between sexes and detected nonrecombining regions in several groups of the male linkage map. Contrary to the expectations set by the male heterogamety of the common frog, we did not find male heterozygosity excess in the chromosome previously shown to be linked to sex determination. Finally, we found blocks of loci showing strong transmission ratio distortion. These distorted genomic regions might be related to genetic incompatibilities between the parental populations, and are promising candidates for further investigation into the genetic basis of speciation and adaptation in the common frog.
Collapse
|
78
|
Do dams also stop frogs? Assessing population connectivity of coastal tailed frogs (Ascaphus truei) in the North Cascades National Park Service Complex. CONSERV GENET 2017. [DOI: 10.1007/s10592-016-0919-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
79
|
Sutherland BJG, Gosselin T, Normandeau E, Lamothe M, Isabel N, Audet C, Bernatchez L. Salmonid Chromosome Evolution as Revealed by a Novel Method for Comparing RADseq Linkage Maps. Genome Biol Evol 2016; 8:3600-3617. [PMID: 28173098 PMCID: PMC5381510 DOI: 10.1093/gbe/evw262] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2016] [Indexed: 12/13/2022] Open
Abstract
Whole genome duplication (WGD) can provide material for evolutionary innovation. Family Salmonidae is ideal for studying the effects of WGD as the ancestral salmonid underwent WGD relatively recently, ∼65 Ma, then rediploidized and diversified. Extensive synteny between homologous chromosome arms occurs in extant salmonids, but each species has both conserved and unique chromosome arm fusions and fissions. Assembly of large, outbred eukaryotic genomes can be difficult, but structural rearrangements within such taxa can be investigated using linkage maps. RAD sequencing provides unprecedented ability to generate high-density linkage maps for nonmodel species, but can result in low numbers of homologous markers between species due to phylogenetic distance or differences in library preparation. Here, we generate a high-density linkage map (3,826 markers) for the Salvelinus genera (Brook Charr S. fontinalis), and then identify corresponding chromosome arms among the other available salmonid high-density linkage maps, including six species of Oncorhynchus, and one species for each of Salmo, Coregonus, and the nonduplicated sister group for the salmonids, Northern Pike Esox lucius for identifying post-duplicated homeologs. To facilitate this process, we developed MapComp to identify identical and proximate (i.e. nearby) markers between linkage maps using a reference genome of a related species as an intermediate, increasing the number of comparable markers between linkage maps by 5-fold. This enabled a characterization of the most likely history of retained chromosomal rearrangements post-WGD, and several conserved chromosomal inversions. Analyses of RADseq-based linkage maps from other taxa will also benefit from MapComp, available at: https://github.com/enormandeau/mapcomp/
Collapse
Affiliation(s)
- Ben J. G. Sutherland
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
| | - Thierry Gosselin
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
| | - Eric Normandeau
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
| | - Manuel Lamothe
- Centre de Foresterie des Laurentides, Ressources Naturelles Canada, Québec, QC, Canada
| | - Nathalie Isabel
- Centre de Foresterie des Laurentides, Ressources Naturelles Canada, Québec, QC, Canada
| | - Céline Audet
- Institut des Sciences de la Mer de Rimouski, Université du Québec à Rimouski, Rimouski, QC, Canada
| | - Louis Bernatchez
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
| |
Collapse
|
80
|
Shafer ABA, Peart CR, Tusso S, Maayan I, Brelsford A, Wheat CW, Wolf JBW. Bioinformatic processing of RAD‐seq data dramatically impacts downstream population genetic inference. Methods Ecol Evol 2016. [DOI: 10.1111/2041-210x.12700] [Citation(s) in RCA: 189] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Aaron B. A. Shafer
- Department of Evolutionary Biology Evolutionary Biology Centre Uppsala University Norbyvägen 18D SE‐752 36 Uppsala Sweden
- Forensic Science and Environmental & Life Sciences Trent University 2014 East Bank Dr K9J 7B8 Peterborough Canada
| | - Claire R. Peart
- Department of Evolutionary Biology Evolutionary Biology Centre Uppsala University Norbyvägen 18D SE‐752 36 Uppsala Sweden
| | - Sergio Tusso
- Department of Evolutionary Biology Evolutionary Biology Centre Uppsala University Norbyvägen 18D SE‐752 36 Uppsala Sweden
| | - Inbar Maayan
- Department of Evolutionary Biology Evolutionary Biology Centre Uppsala University Norbyvägen 18D SE‐752 36 Uppsala Sweden
| | - Alan Brelsford
- Department of Ecology and Evolution University of Lausanne CH‐1015 Lausanne Switzerland
| | | | - Jochen B. W. Wolf
- Department of Evolutionary Biology Evolutionary Biology Centre Uppsala University Norbyvägen 18D SE‐752 36 Uppsala Sweden
- Division of Evolutionary Biology Faculty of Biology Ludwig‐Maximilians University of Munich Grosshaderner Str. 2 82152 Planegg‐Martinsried Germany
| |
Collapse
|
81
|
Brelsford A, Lavanchy G, Sermier R, Rausch A, Perrin N. Identifying homomorphic sex chromosomes from wild-caught adults with limited genomic resources. Mol Ecol Resour 2016; 17:752-759. [PMID: 27790846 DOI: 10.1111/1755-0998.12624] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 08/11/2016] [Accepted: 08/16/2016] [Indexed: 11/29/2022]
Abstract
We demonstrate a genotyping-by-sequencing approach to identify homomorphic sex chromosomes and their homolog in a distantly related reference genome, based on noninvasive sampling of wild-caught individuals, in the moor frog Rana arvalis. Double-digest RADseq libraries were generated using buccal swabs from 30 males and 21 females from the same population. Search for sex-limited markers from the unfiltered data set (411 446 RAD tags) was more successful than searches from a filtered data set (33 073 RAD tags) for markers showing sex differences in heterozygosity or in allele frequencies. Altogether, we obtained 292 putatively sex-linked RAD loci, 98% of which point to male heterogamety. We could map 15 of them to the Xenopus tropicalis genome, all but one on chromosome pair 1, which seems regularly co-opted for sex determination among amphibians. The most efficient mapping strategy was a three-step hierarchical approach, where R. arvalis reads were first mapped to a low-coverage genome of Rana temporaria (17 My divergence), then the R. temporaria scaffolds to the Nanorana parkeri genome (90 My divergence), and finally the N. parkeri scaffolds to the X. tropicalis genome (210 My). We validated our conclusions with PCR primers amplifying part of Dmrt1, a candidate sex determination gene mapping to chromosome 1: a sex-diagnostic allele was present in all 30 males but in none of the 21 females. Our approach is likely to be productive in many situations where biological samples and/or genomic resources are limited.
Collapse
Affiliation(s)
- Alan Brelsford
- Department of Ecology and Evolution, Biophore, University of Lausanne, 1015, Lausanne, Switzerland
| | - Guillaume Lavanchy
- Department of Ecology and Evolution, Biophore, University of Lausanne, 1015, Lausanne, Switzerland
| | - Roberto Sermier
- Department of Ecology and Evolution, Biophore, University of Lausanne, 1015, Lausanne, Switzerland
| | - Anna Rausch
- Department of Integrative Zoology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Nicolas Perrin
- Department of Ecology and Evolution, Biophore, University of Lausanne, 1015, Lausanne, Switzerland
| |
Collapse
|
82
|
Lambert MR, Skelly DK, Ezaz T. Sex-linked markers in the North American green frog (Rana clamitans) developed using DArTseq provide early insight into sex chromosome evolution. BMC Genomics 2016; 17:844. [PMID: 27793086 PMCID: PMC5084323 DOI: 10.1186/s12864-016-3209-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 10/25/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The extent to which sex reversal is associated with transitions in sex determining systems (XX-XY, ZZ-ZW, etc.) or abnormal sexual differentiation is predominantly unexplored in amphibians. This is in large part because most amphibian taxa have homomorphic sex chromosomes, which has traditionally made it challenging to identify discordance between phenotypic and genetic sex in amphibians, despite all amphibians having a genetic component to sex determination. Recent advances in molecular techniques such as genome complexity reduction and high throughput sequencing present a valuable avenue for furthering our understanding of sex determination in amphibians and other taxa with homomorphic sex chromosomes like many fish and reptiles. RESULTS We use DArTseq as a novel approach to identify sex-linked markers in the North American green frog (Rana clamitans melanota) using lab-reared tadpoles as well as wild-caught adults from seven ponds either in undeveloped, forested habitats or suburban ponds known to be subject to contamination by anthropogenic chemicals. The DArTseq methodology identified 13 sex-linked SNP loci and eight presence-absence loci associated with males, indicating an XX-XY system. Both alleles from a single locus show partial high sequence homology to Dmrt1, a gene linked to sex determination and differentiation throughout Metazoa. Two other loci have sequence similarities to regions of the chimpanzee and human X-chromosome as well as the chicken Z-chromosome. Several loci also show geographic variation in sex-linkage, possibly indicating sex chromosome recombination. While all loci are statistically sex-linked, they show varying degrees of female heterozygosity and male homozygosity, providing further evidence that some markers are on regions of the sex chromosomes undergoing higher rates of recombination and therefore further apart from the putative sex determining locus. CONCLUSION The ease of the DArTseq platform provides a useful avenue for future research on sex reversal and sex chromosome evolution in vertebrates, particularly for non-model species with homomorphic or cryptic or nascent sex chromosomes.
Collapse
Affiliation(s)
- Max R Lambert
- School of Forestry and Environmental Studies, Yale University, Greeley Memorial Lab, 370 Prospect St, New Haven, CT, 06511, USA.
| | - David K Skelly
- School of Forestry and Environmental Studies, Yale University, Greeley Memorial Lab, 370 Prospect St, New Haven, CT, 06511, USA
| | - Tariq Ezaz
- Institute for Applied Ecology, University of Canberra, Canberra, ACT, Australia
| |
Collapse
|
83
|
Ingley SJ, Pruitt JN, Scharf I, Purcell J. Social context, but not individual personality, alters immigrant viability in a spider with mixed social structure. Anim Behav 2016. [DOI: 10.1016/j.anbehav.2016.08.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
84
|
Purcell J, Zahnd S, Athanasiades A, Türler R, Chapuisat M, Brelsford A. Ants exhibit asymmetric hybridization in a mosaic hybrid zone. Mol Ecol 2016; 25:4866-74. [PMID: 27506180 DOI: 10.1111/mec.13799] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 07/13/2016] [Accepted: 07/14/2016] [Indexed: 02/06/2023]
Abstract
Research on hybridization between species provides unparalleled insights into the pre- and postzygotic isolating mechanisms that drive speciation. In social organisms, colony-level incompatibilities may provide additional reproductive barriers not present in solitary species, and hybrid zones offer an opportunity to identify these barriers. Here, we use genotyping-by-sequencing to sequence hundreds of markers in a hybrid zone between two socially polymorphic ant species, Formica selysi and Formica cinerea. We characterize the zone, determine the frequency of hybrid workers, infer whether hybrid queens or males are produced and investigate whether hybridization is influenced by colony social organization. We also compare cuticular hydrocarbon profiles and aggression levels between the two species. The hybrid zone exhibits a mosaic structure. The asymmetric distribution of hybrids skewed towards F. cinerea suggests a pattern of unidirectional nuclear gene flow from F. selysi into F. cinerea. The occurrence of backcrossed individuals indicates that hybrid queens and/or males are fertile, and the presence of the F. cinerea mitochondrial haplotype in 97% of hybrids shows that successful F1 hybrids will generally have F. cinerea mothers and F. selysi fathers. We found no evidence that social organization contributes to speciation, because hybrids occur in both single-queen and multiple-queen colonies. Strongly differentiated cuticular hydrocarbon profiles and heightened interspecific aggression further reveal that species recognition cues are both present and perceived. The discovery of fertile hybrids and asymmetrical gene flow is unusual in ants, and this hybrid zone will therefore provide an ideal system with which to investigate speciation in social insects.
Collapse
Affiliation(s)
- Jessica Purcell
- Department of Ecology and Evolution, University of Lausanne, 1015, Lausanne, Switzerland. .,Department of Entomology, University of California, Riverside, Riverside, CA, 92521, USA.
| | - Sacha Zahnd
- Department of Ecology and Evolution, University of Lausanne, 1015, Lausanne, Switzerland
| | - Anouk Athanasiades
- Department of Ecology and Evolution, University of Lausanne, 1015, Lausanne, Switzerland
| | - Rebecca Türler
- Department of Ecology and Evolution, University of Lausanne, 1015, Lausanne, Switzerland
| | - Michel Chapuisat
- Department of Ecology and Evolution, University of Lausanne, 1015, Lausanne, Switzerland
| | - Alan Brelsford
- Department of Ecology and Evolution, University of Lausanne, 1015, Lausanne, Switzerland.,Department of Biology, University of California, Riverside, Riverside, CA, 92521, USA
| |
Collapse
|
85
|
Guo B, Lu D, Liao WB, Merilä J. Genomewide scan for adaptive differentiation along altitudinal gradient in the Andrew's toadBufo andrewsi. Mol Ecol 2016; 25:3884-900. [PMID: 27289071 DOI: 10.1111/mec.13722] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 06/02/2016] [Indexed: 12/19/2022]
Affiliation(s)
- Baocheng Guo
- Ecological Genetics Research Unit; Department of Biosciences; University of Helsinki; P.O. Box 65 Helsinki FI-00014 Finland
| | - Di Lu
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education); China West Normal University; Nanchong 637009 China
| | - Wen Bo Liao
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education); China West Normal University; Nanchong 637009 China
| | - Juha Merilä
- Ecological Genetics Research Unit; Department of Biosciences; University of Helsinki; P.O. Box 65 Helsinki FI-00014 Finland
| |
Collapse
|
86
|
Ma WJ, Rodrigues N, Sermier R, Brelsford A, Perrin N. Dmrt1 polymorphism covaries with sex-determination patterns in Rana temporaria. Ecol Evol 2016; 6:5107-17. [PMID: 27551369 PMCID: PMC4891206 DOI: 10.1002/ece3.2209] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 04/28/2016] [Accepted: 05/02/2016] [Indexed: 01/10/2023] Open
Abstract
Patterns of sex-chromosome differentiation and gonadal development have been shown to vary among populations of Rana temporaria along a latitudinal transect in Sweden. Frogs from the northern-boreal population of Ammarnäs displayed well-differentiated X and Y haplotypes, early gonadal differentiation, and a perfect match between phenotypic and genotypic sex. In contrast, no differentiated Y haplotypes could be detected in the southern population of Tvedöra, where juveniles furthermore showed delayed gonadal differentiation. Here, we show that Dmrt1, a gene that plays a key role in sex determination and sexual development across all metazoans, displays significant sex differentiation in Tvedöra, with a Y-specific haplotype distinct from Ammarnäs. The differential segment is not only much shorter in Tvedöra than in Ammarnäs, it is also less differentiated and associates with both delayed gonadal differentiation and imperfect match between phenotypic and genotypic sex. Whereas Tvedöra juveniles with a local Y haplotype tend to ultimately develop as males, those without it may nevertheless become functional XX males, but with strongly female-biased progeny. Our findings suggest that the variance in patterns of sex determination documented in common frogs might result from a genetic polymorphism within a small genomic region that contains Dmrt1. They also substantiate the view that recurrent convergences of sex determination toward a limited set of chromosome pairs may result from the co-option of small genomic regions that harbor key genes from the sex-determination pathway.
Collapse
Affiliation(s)
- Wen-Juan Ma
- Department of Ecology and Evolution University of Lausanne CH 1015 Lausanne Switzerland
| | - Nicolas Rodrigues
- Department of Ecology and Evolution University of Lausanne CH 1015 Lausanne Switzerland
| | - Roberto Sermier
- Department of Ecology and Evolution University of Lausanne CH 1015 Lausanne Switzerland
| | - Alan Brelsford
- Department of Ecology and Evolution University of Lausanne CH 1015 Lausanne Switzerland; Present address: Department of Biology University of California at Riverside California 92521
| | - Nicolas Perrin
- Department of Ecology and Evolution University of Lausanne CH 1015 Lausanne Switzerland
| |
Collapse
|
87
|
Brelsford A, Dufresnes C, Perrin N. Trans-species variation in Dmrt1 is associated with sex determination in four European tree-frog species. Evolution 2016; 70:840-7. [PMID: 26920488 DOI: 10.1111/evo.12891] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 01/26/2016] [Accepted: 02/01/2016] [Indexed: 01/15/2023]
Abstract
Empirical studies on the relative roles of occasional XY recombination versus sex-chromosome turnover in preventing sex-chromosome differentiation may shed light on the evolutionary forces acting on sex-determination systems. Signatures of XY recombination are difficult to distinguish from those of homologous transitions (i.e., transitions in sex-determination systems that keep sex-chromosome identity): both models predict X and Y alleles at sex-linked genes to cluster by species. However, the XY-recombination model specifically predicts the reverse pattern (clustering by gametologs) for those genes that are directly involved in sex determination. Hence, the latter model can only be validated by identification of an ancestral sex-determining region (SDR) with trans-species polymorphism associated to sex. Here we combine a candidate-gene approach with a genome scan to identify a small SDR shared by four species of a monophyletic clade of European tree frogs. This SDR encompasses at least the N-terminal part of Dmrt1 and immediate upstream sequences. Our findings provide definitive evidence that sex-chromosome homomorphy in this clade results only from XY recombination, and take an important step toward the identification of the sex-determining locus. Moreover, the sex-diagnostic markers we identify will enable research on environmental sex reversal in a wider range of frog species.
Collapse
Affiliation(s)
- Alan Brelsford
- Department of Ecology and Evolution, University of Lausanne, 1015, Lausanne, Switzerland. .,Biology Department, University of California, Riverside, California, 92521.
| | - Christophe Dufresnes
- Department of Ecology and Evolution, University of Lausanne, 1015, Lausanne, Switzerland
| | - Nicolas Perrin
- Department of Ecology and Evolution, University of Lausanne, 1015, Lausanne, Switzerland
| |
Collapse
|
88
|
Brelsford A, Rodrigues N, Perrin N. High-density linkage maps fail to detect any genetic component to sex determination in a Rana temporaria family. J Evol Biol 2015; 29:220-5. [PMID: 26404414 DOI: 10.1111/jeb.12747] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 08/25/2015] [Accepted: 08/31/2015] [Indexed: 01/16/2023]
Abstract
Sex chromosome differentiation in Rana temporaria varies strikingly among populations or families: whereas some males display well-differentiated Y haplotypes at microsatellite markers on linkage group 2 (LG2), others are genetically undistinguishable from females. We analysed with RADseq markers one family from a Swiss lowland population with no differentiated sex chromosomes, and where sibship analyses had failed to detect any association between the phenotypic sex of progeny and parental haplotypes. Offspring were reared in a common tank in outdoor conditions and sexed at the froglet stage. We could map a total of 2177 SNPs (1123 in the mother, 1054 in the father), recovering in both adults 13 linkage groups (= chromosome pairs) that were strongly syntenic to Xenopus tropicalis despite > 200 My divergence. Sexes differed strikingly in the localization of crossovers, which were uniformly distributed in the female but limited to chromosome ends in the male. None of the 2177 markers showed significant association with offspring sex. Considering the very high power of our analysis, we conclude that sex determination was not genetic in this family; which factors determined sex remain to be investigated.
Collapse
Affiliation(s)
- A Brelsford
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - N Rodrigues
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - N Perrin
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|