51
|
Lavaur J, Le Nogue D, Lemaire M, Pype J, Farjot G, Hirsch EC, Michel PP. The noble gas xenon provides protection and trophic stimulation to midbrain dopamine neurons. J Neurochem 2017; 142:14-28. [PMID: 28398653 PMCID: PMC5518208 DOI: 10.1111/jnc.14041] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 04/04/2017] [Accepted: 04/05/2017] [Indexed: 01/24/2023]
Abstract
Despite its low chemical reactivity, the noble gas xenon possesses a remarkable spectrum of biological effects. In particular, xenon is a strong neuroprotectant in preclinical models of hypoxic‐ischemic brain injury. In this study, we wished to determine whether xenon retained its neuroprotective potential in experimental settings that model the progressive loss of midbrain dopamine (DA) neurons in Parkinson's disease. Using rat midbrain cultures, we established that xenon was partially protective for DA neurons through either direct or indirect effects on these neurons. So, when DA neurons were exposed to l‐trans‐pyrrolidine‐2,4‐dicarboxylic acid so as to increase ambient glutamate levels and generate slow and sustained excitotoxicity, the effect of xenon on DA neurons was direct. The vitamin E analog Trolox also partially rescued DA neurons in this setting and enhanced neuroprotection by xenon. However, in the situation where DA cell death was spontaneous, the protection of DA neurons by xenon appeared indirect as it occurred through the repression of a mechanism mediated by proliferating glial cells, presumably astrocytes and their precursor cells. Xenon also exerted trophic effects for DA neurons in this paradigm. The effects of xenon were mimicked and improved by the N‐methyl‐d‐aspartate glutamate receptor antagonist memantine and xenon itself appeared to work by antagonizing N‐methyl‐d‐aspartate receptors. Note that another noble gas argon could not reproduce xenon effects. Overall, present data indicate that xenon can provide protection and trophic support to DA neurons that are vulnerable in Parkinson's disease. This suggests that xenon might have some therapeutic value for this disorder. ![]()
Collapse
Affiliation(s)
- Jérémie Lavaur
- Sorbonne Universités, UPMC Univ Paris 06, Inserm, CNRS, Institut du Cerveau et de la Moelle épinière (ICM), Hôpital Pitié-Salpêtrière, Paris, France
| | - Déborah Le Nogue
- Sorbonne Universités, UPMC Univ Paris 06, Inserm, CNRS, Institut du Cerveau et de la Moelle épinière (ICM), Hôpital Pitié-Salpêtrière, Paris, France
| | - Marc Lemaire
- Air Liquide Santé International, Medical R&D Paris, Saclay Research Center, Jouy-en Josas, France
| | - Jan Pype
- Air Liquide Santé International, Medical R&D Paris, Saclay Research Center, Jouy-en Josas, France
| | - Géraldine Farjot
- Air Liquide Santé International, Medical R&D Paris, Saclay Research Center, Jouy-en Josas, France
| | - Etienne C Hirsch
- Sorbonne Universités, UPMC Univ Paris 06, Inserm, CNRS, Institut du Cerveau et de la Moelle épinière (ICM), Hôpital Pitié-Salpêtrière, Paris, France
| | - Patrick P Michel
- Sorbonne Universités, UPMC Univ Paris 06, Inserm, CNRS, Institut du Cerveau et de la Moelle épinière (ICM), Hôpital Pitié-Salpêtrière, Paris, France
| |
Collapse
|
52
|
Millar LJ, Shi L, Hoerder-Suabedissen A, Molnár Z. Neonatal Hypoxia Ischaemia: Mechanisms, Models, and Therapeutic Challenges. Front Cell Neurosci 2017; 11:78. [PMID: 28533743 PMCID: PMC5420571 DOI: 10.3389/fncel.2017.00078] [Citation(s) in RCA: 231] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 03/07/2017] [Indexed: 12/11/2022] Open
Abstract
Neonatal hypoxia-ischaemia (HI) is the most common cause of death and disability in human neonates, and is often associated with persistent motor, sensory, and cognitive impairment. Improved intensive care technology has increased survival without preventing neurological disorder, increasing morbidity throughout the adult population. Early preventative or neuroprotective interventions have the potential to rescue brain development in neonates, yet only one therapeutic intervention is currently licensed for use in developed countries. Recent investigations of the transient cortical layer known as subplate, especially regarding subplate's secretory role, opens up a novel set of potential molecular modulators of neonatal HI injury. This review examines the biological mechanisms of human neonatal HI, discusses evidence for the relevance of subplate-secreted molecules to this condition, and evaluates available animal models. Neuroserpin, a neuronally released neuroprotective factor, is discussed as a case study for developing new potential pharmacological interventions for use post-ischaemic injury.
Collapse
Affiliation(s)
- Lancelot J. Millar
- Molnár Group, Department of Physiology, Anatomy and Genetics, University of OxfordOxford, UK
| | - Lei Shi
- Molnár Group, Department of Physiology, Anatomy and Genetics, University of OxfordOxford, UK
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of Pharmacy, Jinan UniversityGuangzhou, China
| | | | - Zoltán Molnár
- Molnár Group, Department of Physiology, Anatomy and Genetics, University of OxfordOxford, UK
| |
Collapse
|
53
|
Abstract
BACKGROUND Mild hypothermia is an effective neuroprotective strategy for a variety of acute brain injuries. Cooling the nasopharynx may offer the capability to cool the brain selectively due to anatomic proximity of the internal carotid artery to the cavernous sinus. This study investigated the feasibility and efficiency of nasopharyngeal brain cooling by continuously blowing room temperature or cold air at different flow rates into the nostrils of normal newborn piglets. METHODS Experiments were conducted on thirty piglets (n = 30, weight = 2.7 ± 1.5 kg). Piglets were anesthetized with 1–2% isoflurane and were randomized to receive one of four different nasopharyngeal cooling treatments: I. Room temperature at a flow rate of 3–4 L min(−1) (n = 6); II. −1 ± 2 °C at a flow rate of 3–4 L min(−1) (n = 6); III. Room temperature at a flow rate of 14–15 L min(−1) (n = 6); IV. −8 ± 2 °C at a flow rate of 14–15 L min(−1) (n = 6). To control for the normal thermal regulatory response of piglets without nasopharyngeal cooling, a control group of piglets (n = 6) had their brain temperature monitored without nasopharyngeal cooling. The duration of treatment was 60 min, with additional 30 min of observation. RESULTS In group I, median cooling rate was 1.7 ± 0.9 °C/h by setting the flow rate of room temperature air to 3–4 L min(−1). Results of comparing different temperatures and flow rates in the nasopharyngeal cooling approach reveal that the brain temperature could be reduced rapidly at a rate of 5.5 ± 1.1 °C/h by blowing −8 ± 2 °C air at a flow rate of 14–15 L min(−1). CONCLUSIONS Nasopharyngeal cooling via cooled insufflated air can lower the brain temperature, with higher flows and lower temperatures of insufflated air being more effective.
Collapse
|
54
|
Netto CA, Sanches E, Odorcyk FK, Duran-Carabali LE, Weis SN. Sex-dependent consequences of neonatal brain hypoxia-ischemia in the rat. J Neurosci Res 2016; 95:409-421. [DOI: 10.1002/jnr.23828] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 06/14/2016] [Accepted: 06/20/2016] [Indexed: 12/25/2022]
Affiliation(s)
- Carlos Alexandre Netto
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde; Universidade Federal do Rio Grande do Sul; Porto Alegre Rio Grande do Sul Brazil
| | - Eduardo Sanches
- Division of Child Development and Growth, Department of Pediatrics; University of Geneva; Geneva Switzerland
| | - Felipe Kawa Odorcyk
- Postgraduate Program of Neurosciences, Instituto de Ciências Básicas da Saúde; Universidade Federal do Rio Grande do Sul; Porto Alegre Rio Grande do Sul Brazil
| | - Luz Elena Duran-Carabali
- Postgraduate Program of Physiology, Instituto de Ciências Básicas da Saúde; Universidade Federal do Rio Grande do Sul; Porto Alegre Rio Grande do Sul Brazil
| | - Simone Nardin Weis
- Department of Cellular Biology; Universidade de Brasília; Brasilia Distrito Federal Brazil
| |
Collapse
|
55
|
Fazel Bakhsheshi M, Wang Y, Keenliside L, Lee TY. A new approach to selective brain cooling by a Ranque-Hilsch vortex tube. Intensive Care Med Exp 2016; 4:32. [PMID: 27686339 PMCID: PMC5042908 DOI: 10.1186/s40635-016-0102-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 09/08/2016] [Indexed: 11/29/2022] Open
Abstract
Background Target temperature management is the single most effective intervention and the gold standard in post-resuscitation care today. However, cooling the whole body below 33–34 °C can cause severe complications. Therefore, developing a selective brain cooling (SBC) approach which can be initiated early to induce rapid cooling and maintain the target temperature over 12–24 h before slowly rewarming brain temperature by itself alone would be advantageous. Vortex tubes are simple mechanical devices generating cold air from a stream of compressed air without applied chemical or energy. This study investigated whether blowing cooled air from a vortex tube into the nasal cavities is safe and effective to selectively reduce and maintain before slowly rewarming brain temperature back to normal temperature. Methods Experiments were conducted on ten juvenile pigs. Body temperature was measured using an esophageal and a rectal temperature probe while brain temperature with an intraparenchymal thermocouple probe. Cerebral blood flow (CBF) was measured with CT perfusion. Results Brain temperature dropped below 34 °C within 30–40 min while a brain-esophageal temperature difference greater than 3 °C was maintained over 6 h. There was no evidence of nasal or nasopharynx mucosal swelling, necrosis, or hemorrhage on MRI examination. CBF first decreased and then stabilized together with brain temperature before increasing to the baseline level during rewarming. Conclusions SBC was accomplished by blowing cold air from a vortex tube into the nasal cavities. Due to its portability, the method can be used continuously in resuscitated patients in both in- and out-of-hospital situations without interruption.
Collapse
Affiliation(s)
- Mohammad Fazel Bakhsheshi
- Imaging Program, Lawson Health Research Institute, London, ON, Canada. .,Imaging Research Laboratories, Robarts Research Institute, 1151 Richmond Street North, London, ON, N6A 5B7, Canada.
| | - Yong Wang
- Imaging Program, Lawson Health Research Institute, London, ON, Canada.,Imaging Research Laboratories, Robarts Research Institute, 1151 Richmond Street North, London, ON, N6A 5B7, Canada
| | - Lynn Keenliside
- Imaging Program, Lawson Health Research Institute, London, ON, Canada.,Imaging Research Laboratories, Robarts Research Institute, 1151 Richmond Street North, London, ON, N6A 5B7, Canada
| | - Ting-Yim Lee
- Imaging Program, Lawson Health Research Institute, London, ON, Canada.,Imaging Research Laboratories, Robarts Research Institute, 1151 Richmond Street North, London, ON, N6A 5B7, Canada.,Department of Medical Imaging and Biophysics, The University of Western Ontario, London, ON, Canada
| |
Collapse
|
56
|
|
57
|
Heme Oxygenase-1 Mediates Neuroprotection Conferred by Argon in Combination with Hypothermia in Neonatal Hypoxia–Ischemia Brain Injury. Anesthesiology 2016; 125:180-92. [DOI: 10.1097/aln.0000000000001128] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Abstract
Background
Hypoxic–ischemic encephalopathy is a major cause of mortality and disability in the newborn. The authors investigated the protective effects of argon combined with hypothermia on neonatal rat hypoxic–ischemic brain injury.
Methods
In in vitro studies, rat cortical neuronal cell cultures were challenged by oxygen and glucose deprivation for 90 min and exposed to 70% Ar or N2 with 5% CO2 balanced with O2, at 33°C for 2 h. Neuronal phospho-Akt, heme oxygenase-1 and phospho-glycogen synthase kinase-3β expression, and cell death were assessed. In in vivo studies, neonatal rats were subjected to unilateral common carotid artery ligation followed by hypoxia (8% O2 balanced with N2 and CO2) for 90 min. They were exposed to 70% Ar or N2 balanced with oxygen at 33°, 35°, and 37°C for 2 h. Brain injury was assessed at 24 h or 4 weeks after treatment.
Results
In in vitro studies, argon–hypothermia treatment increased phospho-Akt and heme oxygenase-1 expression and significantly reduced the phospho-glycogen synthase kinase-3β Tyr-216 expression, cytochrome C release, and cell death in oxygen–glucose deprivation–exposed cortical neurons. In in vivo studies, argon–hypothermia treatment decreased hypoxia/ischemia-induced brain infarct size (n = 10) and both caspase-3 and nuclear factor-κB activation in the cortex and hippocampus. It also reduced hippocampal astrocyte activation and proliferation. Inhibition of phosphoinositide-3-kinase (PI3K)/Akt pathway through LY294002 attenuated cerebral protection conferred by argon–hypothermia treatment (n = 8).
Conclusion
Argon combined with hypothermia provides neuroprotection against cerebral hypoxia–ischemia damage in neonatal rats, which could serve as a new therapeutic strategy against hypoxic–ischemic encephalopathy.
Collapse
|
58
|
Xenon-mediated neuroprotection in response to sustained, low-level excitotoxic stress. Cell Death Discov 2016; 2:16018. [PMID: 27551511 PMCID: PMC4979450 DOI: 10.1038/cddiscovery.2016.18] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 01/20/2016] [Accepted: 02/03/2016] [Indexed: 02/06/2023] Open
Abstract
Noble gases such as xenon and argon have been reported to provide neuroprotection against acute brain ischemic/anoxic injuries. Herein, we wished to evaluate the protective potential of these two gases under conditions relevant to the pathogenesis of chronic neurodegenerative disorders. For that, we established cultures of neurons typically affected in Alzheimer's disease (AD) pathology, that is, cortical neurons and basal forebrain cholinergic neurons and exposed them to L-trans-pyrrolidine-2,4-dicarboxylic acid (PDC) to generate sustained, low-level excitotoxic stress. Over a period of 4 days, PDC caused a progressive loss of cortical neurons which was prevented substantially when xenon replaced nitrogen in the cell culture atmosphere. Unlike xenon, argon remained inactive. Xenon acted downstream of the inhibitory and stimulatory effects elicited by PDC on glutamate uptake and efflux, respectively. Neuroprotection by xenon was mimicked by two noncompetitive antagonists of NMDA glutamate receptors, memantine and ketamine. Each of them potentiated xenon-mediated neuroprotection when used at concentrations providing suboptimal rescue to cortical neurons but most surprisingly, no rescue at all. The survival-promoting effects of xenon persisted when NMDA was used instead of PDC to trigger neuronal death, indicating that NMDA receptor antagonism was probably accountable for xenon’s effects. An excess of glycine failed to reverse xenon neuroprotection, thus excluding a competitive interaction of xenon with the glycine-binding site of NMDA receptors. Noticeably, antioxidants such as Trolox and N-acetylcysteine reduced PDC-induced neuronal death but xenon itself lacked free radical-scavenging activity. Cholinergic neurons were also rescued efficaciously by xenon in basal forebrain cultures. Unexpectedly, however, xenon stimulated cholinergic traits and promoted the morphological differentiation of cholinergic neurons in these cultures. Memantine reproduced some of these neurotrophic effects, albeit with less efficacy than xenon. In conclusion, we demonstrate for the first time that xenon may have a therapeutic potential in AD.
Collapse
|
59
|
Abstract
An adverse outcome is still encountered in 45% of full-term neonates with perinatal asphyxia who are treated with moderate hypothermia. At present pharmacologic therapies are developed to be added to hypothermia. In the present article, these potential neuroprotective interventions are described based on the molecular pathways set in motion during fetal hypoxia and following reoxygenation and reperfusion after birth. These pathways include excessive production of excitotoxins with subsequent over-stimulation of NMDA receptors and calcium influx in neuronal cells, excessive production of reactive oxygen and nitrogen species, activation of inflammation leading to inappropriate apoptosis, and loss of neurotrophic factors. Possibilities for pharmacologic combination therapy, where each drug will be administered based on the optimal point of time in the cascade of destructive molecular reactions, may further reduce brain damage due to perinatal asphyxia.
Collapse
Affiliation(s)
- Frank van Bel
- Department of Neonatology, University Medical Center Utrecht, Wilhelmina Children's Hospital, Utrecht, The Netherlands.
| | - Floris Groenendaal
- Department of Neonatology, University Medical Center Utrecht, Wilhelmina Children's Hospital, Utrecht, The Netherlands
| |
Collapse
|
60
|
Treatment temperature and insult severity influence the neuroprotective effects of therapeutic hypothermia. Sci Rep 2016; 6:23430. [PMID: 26997257 PMCID: PMC4800445 DOI: 10.1038/srep23430] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 02/22/2016] [Indexed: 12/20/2022] Open
Abstract
Therapeutic hypothermia (HT) is standard care for moderate and severe neonatal hypoxic-ischaemic encephalopathy (HIE), the leading cause of permanent brain injury in term newborns. However, the optimal temperature for HT is still unknown, and few preclinical studies have compared multiple HT treatment temperatures. Additionally, HT may not benefit infants with severe encephalopathy. In a neonatal rat model of unilateral hypoxia-ischaemia (HI), the effect of five different HT temperatures was investigated after either moderate or severe injury. At postnatal-day seven, rat pups underwent moderate or severe HI followed by 5 h at normothermia (37 °C), or one of five HT temperatures: 33.5 °C, 32 °C, 30 °C, 26 °C, and 18 °C. One week after treatment, neuropathological analysis of hemispheric and hippocampal area loss, and CA1 hippocampal pyramidal neuron count, was performed. After moderate injury, a significant reduction in hemispheric and hippocampal loss on the injured side, and preservation of CA1 pyramidal neurons, was seen in the 33.5 °C, 32 °C, and 30 °C groups. Cooling below 33.5 °C did not provide additional neuroprotection. Regardless of treatment temperature, HT was not neuroprotective in the severe HI model. Based on these findings, and previous experience translating preclinical studies into clinical application, we propose that milder cooling should be considered for future clinical trials.
Collapse
|
61
|
|
62
|
Acute Blockage of Notch Signaling by DAPT Induces Neuroprotection and Neurogenesis in the Neonatal Rat Brain After Stroke. Transl Stroke Res 2015; 7:132-40. [PMID: 26691164 DOI: 10.1007/s12975-015-0441-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 12/09/2015] [Accepted: 12/13/2015] [Indexed: 02/06/2023]
Abstract
Notch signaling is critically involved in various biological events. Notch undergoes cleavage by the γ-secretase enzyme to release Notch intracellular domain that will translocate into nucleus to result in expression of target gene. γ-Secretase inhibitors have been developed as potential treatments for neurological degenerative diseases, but its effects against ischemic injury remain relatively uncertain. In the present study, we demonstrated that N-[N-(3, 5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT), a γ-secretase inhibitor not only rescued the cerebral hypoperfusion or ischemia neonatal rats from death, reduced apoptosis in penumbra, but also reduced brain infarct size. Furthermore, DAPT elicited some morphologic hallmarks such as neurogenesis and angiogenesis that related to the brain repair and functional recovery after stroke: increased accumulations of newborn cells in the peri-infarct region with a higher fraction of them adopting immature neuronal and glial markers instead of microglial markers on 5 days, enhanced vascular densities in penumbra at 14 days, and evident regulations of the gene profiles associated with neurogenesis in penumbral tissues. The current results suggest that DAPT is a potential neuroprotectants against ischemic injury in immature brain, and future treatment strategies such as clinical trials using γ-secretase inhibitors would be an attractive therapy for perinatal ischemia.
Collapse
|
63
|
Maze M. Preclinical neuroprotective actions of xenon and possible implications for human therapeutics: a narrative review. Can J Anaesth 2015; 63:212-26. [PMID: 26507536 DOI: 10.1007/s12630-015-0507-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 08/30/2015] [Accepted: 10/02/2015] [Indexed: 02/06/2023] Open
Abstract
PURPOSE The purpose of this report is to facilitate an understanding of the possible application of xenon for neuroprotection in critical care settings. This narrative review appraises the literature assessing the efficacy and safety of xenon in preclinical models of acute ongoing neurologic injury. SOURCE Databases of the published literature (MEDLINE® and EMBASE™) were appraised for peer-reviewed manuscripts addressing the use of xenon in both preclinical models and disease states of acute ongoing neurologic injury. For randomized clinical trials not yet reported, the investigators' declarations in the National Institutes of Health clinical trials website were considered. PRINCIPAL FINDINGS While not a primary focus of this review, to date, xenon cannot be distinguished as superior for surgical anesthesia over existing alternatives in adults. Nevertheless, studies in a variety of preclinical disease models from multiple laboratories have consistently shown xenon's neuroprotective properties. These properties are enhanced in settings where xenon is combined with hypothermia. Small randomized clinical trials are underway to explore xenon's efficacy and safety in clinical settings of acute neurologic injury where hypothermia is the current standard of care. CONCLUSION According to the evidence to date, the neuroprotective efficacy of xenon in preclinical models and its safety in clinical anesthesia set the stage for the launch of randomized clinical trials to determine whether these encouraging neuroprotective findings can be translated into clinical utility.
Collapse
Affiliation(s)
- Mervyn Maze
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, 1001 Potrero Avenue, Box 1363, San Francisco, CA, 94110, USA.
| |
Collapse
|
64
|
Dixon BJ, Reis C, Ho WM, Tang J, Zhang JH. Neuroprotective Strategies after Neonatal Hypoxic Ischemic Encephalopathy. Int J Mol Sci 2015; 16:22368-401. [PMID: 26389893 PMCID: PMC4613313 DOI: 10.3390/ijms160922368] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 08/31/2015] [Accepted: 09/06/2015] [Indexed: 12/21/2022] Open
Abstract
Neonatal hypoxic ischemic encephalopathy (HIE) is a devastating disease that primarily causes neuronal and white matter injury and is among the leading cause of death among infants. Currently there are no well-established treatments; thus, it is important to understand the pathophysiology of the disease and elucidate complications that are creating a gap between basic science and clinical translation. In the development of neuroprotective strategies and translation of experimental results in HIE, there are many limitations and challenges to master based on an appropriate study design, drug delivery properties, dosage, and use in neonates. We will identify understudied targets after HIE, as well as neuroprotective molecules that bring hope to future treatments such as melatonin, topiramate, xenon, interferon-beta, stem cell transplantation. This review will also discuss some of the most recent trials being conducted in the clinical setting and evaluate what directions are needed in the future.
Collapse
Affiliation(s)
- Brandon J Dixon
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA.
| | - Cesar Reis
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA.
- Department of Anesthesiology, Loma Linda University Medical Center, Loma Linda, CA 92354, USA.
| | - Wing Mann Ho
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA.
- Department of Neurosurgery, Medical University Innsbruck, Tyrol 6020, Austria.
| | - Jiping Tang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA.
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA.
- Department of Anesthesiology, Loma Linda University Medical Center, Loma Linda, CA 92354, USA.
- Department of Neurosurgery, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA.
| |
Collapse
|
65
|
Dingley J, Liu X, Gill H, Smit E, Sabir H, Tooley J, Chakkarapani E, Windsor D, Thoresen M. The feasibility of using a portable xenon delivery device to permit earlier xenon ventilation with therapeutic cooling of neonates during ambulance retrieval. Anesth Analg 2015; 120:1331-6. [PMID: 25794112 DOI: 10.1213/ane.0000000000000693] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Therapeutic hypothermia is the standard of care after perinatal asphyxia. Preclinical studies show 50% xenon improves outcome, if started early. METHODS During a 32-patient study randomized between hypothermia only and hypothermia with xenon, 5 neonates were given xenon during retrieval using a closed-circuit incubator-mounted system. RESULTS Without xenon availability during retrieval, 50% of eligible infants exceeded the 5-hour treatment window. With the transportable system, 100% were recruited. Xenon delivery lasted 55 to 120 minutes, using 174 mL/h (117.5-193.2) (median [interquartile range]), after circuit priming (1300 mL). CONCLUSIONS Xenon delivery during ambulance retrieval was feasible, reduced starting delays, and used very little gas.
Collapse
Affiliation(s)
- John Dingley
- From the *College of Medicine, Swansea University, Wales, United Kingdom; †Neonatal Neuroscience, School of Clinical Science, University of Bristol, Bristol, United Kingdom; ‡Neonatal Intensive Care Unit and §Anaesthetic Department, University Hospital Bristol, Bristol, United Kingdom; and the ∥Department of Physiology, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Toxic and protective effects of inhaled anaesthetics on the developing animal brain: systematic review and update of recent experimental work. Eur J Anaesthesiol 2015; 31:669-77. [PMID: 24922049 DOI: 10.1097/eja.0000000000000073] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Accumulating preclinical data indicate that neonatal exposure to general anaesthetics is detrimental to the central nervous system. Some studies, however, display potential protective effects of exactly the same anaesthetic agents on the immature brain. The effects of inhaled anaesthetics on the developing brain have received close attention from researchers, clinicians and the public in recent decades. OBJECTIVES To summarise the preclinical evidence reported in the last 5 years on both the deleterious effects and the neuroprotective potential in special indications, of inhaled anaesthetics on the developing brain. DESIGN A systematic review. DATA SOURCES PubMed search performed in June 2013. ELIGIBILITY CRITERIA Search terms included brain, development, inhaled anaesthetic, toxicity and protection within the scope of the last 5 years with animals. The reference lists of relevant articles and recent reviews were also hand-searched for additional studies. The type, dose and exposure duration of anaesthetics, species and age of animals, histopathologic indicators, outcomes and affected brain areas, neuro developmental test modules and outcomes, as well as other outcomes and comments were summarised. RESULTS Two hundred and nineteen relevant titles were initially revealed. In total, 81 articles were identified, with 68 articles assessing the detrimental effects induced by inhaled anaesthetics in the immature brain along with possible treatments. The remaining 13 articles focused on the protective profile of inhaled anaesthetics on perinatal hypoxic-ischaemic brain injury. Administration of inhaled anaesthetic agents to the immature brain was shown to be deleterious in several preclinical studies. In perinatal hypoxic-ischaemic brain injury models, pre- and postconditioning of inhalational anaesthetics exerted neuroprotective effects. CONCLUSION The majority of studies have linked inhaled anaesthetics to toxic effects in the neonatal brain of rodents, piglets and primates. Only a few studies, however, could demonstrate long-lasting cognitive impairment. The results of inhalational anaesthetic-induced neuroprotection in perinatal hypoxic-ischaemic brain injury are a promising basis for more research in this field. In general, prospective clinical trials are needed to further differentiate the effects of inhaled anaesthetics on the immature brain.
Collapse
|
67
|
Adding 5 h delayed xenon to delayed hypothermia treatment improves long-term function in neonatal rats surviving to adulthood. Pediatr Res 2015; 77:779-83. [PMID: 25760545 DOI: 10.1038/pr.2015.49] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 11/21/2014] [Indexed: 11/08/2022]
Abstract
BACKGROUND We previously reported that combining immediate hypothermia with immediate or 2 h delayed inhalation of an inert gas, xenon, gave additive neuroprotection in rats after a hypoxic-ischemic insult, compared to hypothermia alone. Defining the therapeutic time window for this new combined intervention is crucial in clinical practice when immediate treatment is not always feasible. The aim of this study is to investigate whether combined hypothermia and xenon still provide neuroprotection in rats after a 5 h delay for both hypothermia and xenon. METHODS Seven-day-old Wistar rat pups underwent a unilateral hypoxic-ischemic insult. Pups received 5 h of treatment starting 5 h after the insult randomized between normothermia, hypothermia, or hypothermia with 50% xenon. Surviving pups were tested for fine motor function through weeks 8-10 before being euthanized at week 11. Their hemispheric and hippocampal areas were assessed. RESULTS Both delayed hypothermia-xenon and hypothermia-only treated groups had significantly less brain tissue loss than those which underwent normothermia. The functional performance after 1 wk and adulthood was significantly better after hypothermia-xenon treatment as compared to the hypothermia-only or normothermia groups. CONCLUSION Adding 50% xenon to 5 h delayed hypothermia significantly improved functional outcome as compared to delayed hypothermia alone despite similar reductions in brain area.
Collapse
|
68
|
Ek CJ, D'Angelo B, Baburamani AA, Lehner C, Leverin AL, Smith PLP, Nilsson H, Svedin P, Hagberg H, Mallard C. Brain barrier properties and cerebral blood flow in neonatal mice exposed to cerebral hypoxia-ischemia. J Cereb Blood Flow Metab 2015; 35:818-27. [PMID: 25627141 PMCID: PMC4420855 DOI: 10.1038/jcbfm.2014.255] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 12/05/2014] [Accepted: 12/08/2014] [Indexed: 11/09/2022]
Abstract
Insults to the developing brain often result in irreparable damage resulting in long-term deficits in motor and cognitive functions. The only treatment today for hypoxic-ischemic encephalopathy (HIE) in newborns is hypothermia, which has limited clinical benefit. We have studied changes to the blood-brain barriers (BBB) as well as regional cerebral blood flow (rCBF) in a neonatal model of HIE to further understand the underlying pathologic mechanisms. Nine-day old mice pups, brain roughly equivalent to the near-term human fetus, were subjected to hypoxia-ischemia. Hypoxia-ischemia increased BBB permeability to small and large molecules within hours after the insult, which normalized in the following days. The opening of the BBB was associated with changes to BBB protein expression whereas gene transcript levels were increased showing direct molecular damage to the BBB but also suggesting compensatory mechanisms. Brain pathology was closely related to reductions in rCBF during the hypoxia as well as the areas with compromised BBB showing that these are intimately linked. The transient opening of the BBB after the insult is likely to contribute to the pathology but at the same time provides an opportunity for therapeutics to better reach the infarcted areas in the brain.
Collapse
Affiliation(s)
- C Joakim Ek
- Department of Physiology, Institute for Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Barbara D'Angelo
- Department of Physiology, Institute for Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ana A Baburamani
- 1] Department of Physiology, Institute for Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden [2] Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, UK
| | - Christine Lehner
- Spinal Cord Injury and Tissue Regeneration Center Salzburg, Department of Traumatology and Sport Injuries, Institute of Tendon and Bone Regeneration, Paracelsus Medical University, Salzburg, Austria; Austrian Cluster for Tissue Regeneration
| | - Anna-Lena Leverin
- Department of Physiology, Institute for Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Peter L P Smith
- Department of Physiology, Institute for Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Holger Nilsson
- Department of Physiology, Institute for Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Pernilla Svedin
- Department of Physiology, Institute for Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Henrik Hagberg
- 1] Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, UK [2] Departments of Obstetrics and Gynecology, Institute for Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Carina Mallard
- Department of Physiology, Institute for Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
69
|
Takenouchi T, Sugiura Y, Morikawa T, Nakanishi T, Nagahata Y, Sugioka T, Honda K, Kubo A, Hishiki T, Matsuura T, Hoshino T, Takahashi T, Suematsu M, Kajimura M. Therapeutic hypothermia achieves neuroprotection via a decrease in acetylcholine with a concurrent increase in carnitine in the neonatal hypoxia-ischemia. J Cereb Blood Flow Metab 2015; 35:794-805. [PMID: 25586144 PMCID: PMC4420853 DOI: 10.1038/jcbfm.2014.253] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 12/15/2014] [Accepted: 12/15/2014] [Indexed: 01/27/2023]
Abstract
Although therapeutic hypothermia is known to improve neurologic outcomes after perinatal cerebral hypoxia-ischemia, etiology remains unknown. To decipher the mechanisms whereby hypothermia regulates metabolic dynamics in different brain regions, we used a two-step approach: a metabolomics to target metabolic pathways responding to cooling, and a quantitative imaging mass spectrometry to reveal spatial alterations in targeted metabolites in the brain. Seven-day postnatal rats underwent the permanent ligation of the left common carotid artery followed by exposure to 8% O2 for 2.5 hours. The pups were returned to normoxic conditions at either 38 °C or 30 °C for 3 hours. The brain metabolic states were rapidly fixed using in situ freezing. The profiling of 107 metabolites showed that hypothermia diminishes the carbon biomass related to acetyl moieties, such as pyruvate and acetyl-CoA; conversely, it increases deacetylated metabolites, such as carnitine and choline. Quantitative imaging mass spectrometry demarcated that hypothermia diminishes the acetylcholine contents specifically in hippocampus and amygdala. Such decreases were associated with an inverse increase in carnitine in the same anatomic regions. These findings imply that hypothermia achieves its neuroprotective effects by mediating the cellular acetylation status through a coordinated suppression of acetyl-CoA, which resides in metabolic junctions of glycolysis, amino-acid catabolism, and ketolysis.
Collapse
Affiliation(s)
- Toshiki Takenouchi
- 1] Department of Biochemistry, Keio University School of Medicine, Tokyo, Japan [2] Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | - Yuki Sugiura
- 1] Department of Biochemistry, Keio University School of Medicine, Tokyo, Japan [2] JST Precursory Research for Embryonic Science and Technology (PRESTO) Project, Tokyo, Japan
| | - Takayuki Morikawa
- 1] Department of Biochemistry, Keio University School of Medicine, Tokyo, Japan [2] JST Exploratory Research for Advanced Technology (ERATO) Suematsu Gas Biology Project, Tokyo, Japan
| | - Tsuyoshi Nakanishi
- 1] Department of Biochemistry, Keio University School of Medicine, Tokyo, Japan [2] MS Business Unit, Shimadzu Corporation, Tokyo, Japan
| | - Yoshiko Nagahata
- 1] Department of Biochemistry, Keio University School of Medicine, Tokyo, Japan [2] JST Exploratory Research for Advanced Technology (ERATO) Suematsu Gas Biology Project, Tokyo, Japan
| | - Tadao Sugioka
- Department of Biochemistry, Keio University School of Medicine, Tokyo, Japan
| | - Kurara Honda
- 1] Department of Biochemistry, Keio University School of Medicine, Tokyo, Japan [2] JST Precursory Research for Embryonic Science and Technology (PRESTO) Project, Tokyo, Japan
| | - Akiko Kubo
- 1] Department of Biochemistry, Keio University School of Medicine, Tokyo, Japan [2] JST Exploratory Research for Advanced Technology (ERATO) Suematsu Gas Biology Project, Tokyo, Japan
| | - Takako Hishiki
- 1] Department of Biochemistry, Keio University School of Medicine, Tokyo, Japan [2] JST Exploratory Research for Advanced Technology (ERATO) Suematsu Gas Biology Project, Tokyo, Japan
| | - Tomomi Matsuura
- 1] Department of Biochemistry, Keio University School of Medicine, Tokyo, Japan [2] JST Exploratory Research for Advanced Technology (ERATO) Suematsu Gas Biology Project, Tokyo, Japan
| | - Takao Hoshino
- Department of Biochemistry, Keio University School of Medicine, Tokyo, Japan
| | - Takao Takahashi
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | - Makoto Suematsu
- 1] Department of Biochemistry, Keio University School of Medicine, Tokyo, Japan [2] JST Exploratory Research for Advanced Technology (ERATO) Suematsu Gas Biology Project, Tokyo, Japan
| | - Mayumi Kajimura
- 1] Department of Biochemistry, Keio University School of Medicine, Tokyo, Japan [2] JST Exploratory Research for Advanced Technology (ERATO) Suematsu Gas Biology Project, Tokyo, Japan
| |
Collapse
|
70
|
Merchant NM, Azzopardi DV, Edwards AD. Neonatal hypoxic ischaemic encephalopathy: current and future treatment options. Expert Opin Orphan Drugs 2015. [DOI: 10.1517/21678707.2015.1021776] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
71
|
Burnsed JC, Chavez-Valdez R, Hossain MS, Kesavan K, Martin LJ, Zhang J, Northington FJ. Hypoxia-ischemia and therapeutic hypothermia in the neonatal mouse brain--a longitudinal study. PLoS One 2015; 10:e0118889. [PMID: 25774892 PMCID: PMC4361713 DOI: 10.1371/journal.pone.0118889] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 01/08/2015] [Indexed: 11/22/2022] Open
Abstract
Therapeutic hypothermia is standard of care for infants with hypoxic ischemic encephalopathy. Murine models of hypoxic-ischemic injury exist; however, a well-established mouse model of therapeutic hypothermia following hypoxic-ischemic injury is lacking. The goal of this study was to develop a full-term-equivalent murine model of therapeutic hypothermia after hypoxia-ischemia and examine magnetic resonance imaging, behavior, and histology in a region and sex specific manner. Hypoxic-ischemic injury was induced at postnatal day 10 in C57BL6 mice using a modified Vannucci model. Mice were randomized to control, hypothermia (31˚C for 4h), or normothermia (36˚C) following hypoxic-ischemic injury and stratified by sex. T2-weighted magnetic resonance imaging was obtained at postnatal day 18 and 30 and regional and total cerebral and cerebellar volumes measured. Behavioral assessments were performed on postnatal day 14, 21, and 28. On postnatal day 18, normothermic mice had smaller cerebral volumes (p < 0.001 vs. controls and p = 0.009 vs. hypothermia), while at postnatal day 30 both injured groups had smaller volumes than controls. When stratified by sex, only normothermia treated male mice had smaller cerebral volumes (p = 0.001 vs. control; p = 0.008 vs. hypothermia) at postnatal day 18, which persisted at postnatal day 30 (p = 0.001 vs. control). Female mice had similar cerebral volumes between groups at both day 18 and 30. Cerebellar volumes of hypothermia treated male mice differed from control at day 18, but not at 30. Four hours of therapeutic hypothermia in this murine hypoxic-ischemic injury model provides sustained neuroprotection in the cerebrum of male mice. Due to variable degree of injury in female mice, response to therapeutic hypothermia is difficult to discern. Deficits in female behavior tests are not fully explained by imaging measures and likely represent injury not detectable by volume measurements alone.
Collapse
Affiliation(s)
- Jennifer C. Burnsed
- Division of Neonatology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Raul Chavez-Valdez
- Division of Neonatology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Mir Shanaz Hossain
- Division of Neonatology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Kalpashri Kesavan
- Division of Neonatology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Lee J. Martin
- Division of Neuropathology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Jiangyang Zhang
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Frances J. Northington
- Division of Neonatology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
72
|
Devroe S, Lemiere J, Van de Velde M, Gewillig M, Boshoff D, Rex S. Safety and feasibility of xenon as an adjuvant to sevoflurane anaesthesia in children undergoing interventional or diagnostic cardiac catheterization: study protocol for a randomised controlled trial. Trials 2015; 16:74. [PMID: 25886748 PMCID: PMC4350978 DOI: 10.1186/s13063-015-0587-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 02/02/2015] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Xenon has minimal haemodynamic side effects when compared to volatile or intravenous anaesthetics. Moreover, in in vitro and in animal experiments, xenon has been demonstrated to convey cardio- and neuroprotective effects. Neuroprotection could be advantageous in paediatric anaesthesia as there is growing concern, based on both laboratory studies and retrospective human clinical studies, that anaesthetics may trigger an injury in the developing brain, resulting in long-lasting neurodevelopmental consequences. Furthermore, xenon-mediated neuroprotection could help to prevent emergence delirium/agitation. Altogether, the beneficial haemodynamic profile combined with its putative organ-protective properties could render xenon an attractive option for anaesthesia of children undergoing cardiac catheterization. METHODS/DESIGN In a phase-II, mono-centre, prospective, single-blind, randomised, controlled study, we will test the hypothesis that the administration of 50% xenon as an adjuvant to general anaesthesia with sevoflurane in children undergoing elective cardiac catheterization is safe and feasible. Secondary aims include the evaluation of haemodynamic parameters during and after the procedure, emergence characteristics, and the analysis of peri-operative neuro-cognitive function. A total of 40 children ages 4 to 12 years will be recruited and randomised into two study groups, receiving either a combination of sevoflurane and xenon or sevoflurane alone. DISCUSSION Children undergoing diagnostic or interventional cardiac catheterization are a vulnerable patient population, one particularly at risk for intra-procedural haemodynamic instability. Xenon provides remarkable haemodynamic stability and potentially has cardio- and neuroprotective properties. Unfortunately, evidence is scarce on the use of xenon in the paediatric population. Our pilot study will therefore deliver important data required for prospective future clinical trials. TRIAL REGISTRATION EudraCT: 2014-002510-23 (5 September 2014).
Collapse
Affiliation(s)
- Sarah Devroe
- Department of Anaesthesiology, University Hospitals of the KU Leuven, Herestraat 49, 3000, Leuven, Belgium.
| | - Jurgen Lemiere
- Department of Child and Adolescent Psychiatry, University Hospitals of the KU Leuven, Herestraat 49, 3000, Leuven, Belgium.
- Department of Paediatric Haemato-Oncology, University Hospitals of the KU Leuven, Herestraat 49, 3000, Leuven, Belgium.
| | - Marc Van de Velde
- Department of Anaesthesiology, University Hospitals of the KU Leuven, Herestraat 49, 3000, Leuven, Belgium.
- Department of Cardiovascular Sciences, KU Leuven, Herestraat 49, 3000, Leuven, Belgium.
| | - Marc Gewillig
- Department of Paediatric and Congenital Cardiology, University Hospitals of the KU Leuven, Herestraat 49, 3000, Leuven, Belgium.
| | - Derize Boshoff
- Department of Paediatric and Congenital Cardiology, University Hospitals of the KU Leuven, Herestraat 49, 3000, Leuven, Belgium.
| | - Steffen Rex
- Department of Anaesthesiology, University Hospitals of the KU Leuven, Herestraat 49, 3000, Leuven, Belgium.
- Department of Cardiovascular Sciences, KU Leuven, Herestraat 49, 3000, Leuven, Belgium.
| |
Collapse
|
73
|
Brain Cooling With Ventilation of Cold Air Over Respiratory Tract in Newborn Piglets: An Experimental and Numerical Study. IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE 2015; 3:1500108. [PMID: 27170888 PMCID: PMC4848075 DOI: 10.1109/jtehm.2015.2424214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 01/30/2015] [Accepted: 03/28/2015] [Indexed: 11/20/2022]
Abstract
We investigate thermal effects of pulmonary cooling which was induced by cold air through an endotracheal tube via a ventilator on newborn piglets. A mathematical model was initially employed to compare the thermal impact of two different gas mixtures, O2-medical air (1:2) and O2-Xe (1:2), across the respiratory tract and within the brain. Following mathematical simulations, we examined the theoretical predictions with O2-medical air condition on nine anesthetized piglets which were randomized to two treatment groups: 1) control group (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}$n = 4$
\end{document}) and 2) pulmonary cooling group (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}$n = 5$
\end{document}). Numerical and experimental results using O2-medical air mixture show that brain temperature fell from 38.5 °C and 38.3 °C ± 0.3 °C to 35.7 °C ± 0.9 °C and 36.5 °C ± 0.6 °C during 3 h cooling which corresponded to a mean cooling rate of 0.9 °C/h ± 0.2 °C/h and 0.6 °C/h ± 0.1 °C/h, respectively. According to the numerical results, decreasing the metabolic rate and increasing air velocity are helpful to maximize the cooling effect. We demonstrated that pulmonary cooling by cooling of inhalation gases immediately before they enter the trachea can slowly reduce brain and core body temperature of newborn piglets. Numerical simulations show no significant differences between two different inhaled conditions, i.e., O2-medical air (1:2) and O2-Xe (1:2) with respect to cooling rate.
Collapse
|
74
|
Alderliesten T, Favie LMA, Neijzen RW, Auwärter V, Nijboer CHA, Marges REJ, Rademaker CMA, Kempf J, van Bel F, Groenendaal F. Neuroprotection by argon ventilation after perinatal asphyxia: a safety study in newborn piglets. PLoS One 2014; 9:e113575. [PMID: 25460166 PMCID: PMC4252035 DOI: 10.1371/journal.pone.0113575] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 10/25/2014] [Indexed: 11/18/2022] Open
Abstract
Hypothermia is ineffective in 45% of neonates with hypoxic-ischemic encephalopathy. Xenon has additive neuroprotective properties, but is expensive, and its application complicated. Argon gas is cheaper, easier to apply, and also has neuroprotective properties in experimental settings. The aim was to explore the safety of argon ventilation in newborn piglets. Methods Eight newborn piglets (weight 1.4–3.0 kg) were used. Heart rate, blood pressure, regional cerebral saturation, and electrocortical brain activity were measured continuously. All experiments had a 30 min. baseline period, followed by three 60 min. periods of argon ventilation alternated with 30 min argon washout periods. Two animals were ventilated with increasing concentrations of argon (1h 30%, 1 h 50%, and 1 h 80%), two were subjected to 60 min. hypoxia (FiO2 0.08) before commencing 50% argon ventilation, and two animals received hypothermia following hypoxia as well as 50% argon ventilation. Two animals served as home cage controls and were terminated immediately. Results Argon ventilation did not result in a significant change of heart rate (mean ± s.d. −3.5±3.6 bpm), blood pressure (−0.60±1.11 mmHg), cerebral oxygen saturation (0.3±0.9%), electrocortical brain activity (−0.4±0.7 µV), or blood gas values. Argon ventilation resulted in elevated argon concentrations compared to the home cage controls (34.5, 25.4, and 22.4 vs. 7.3 µl/ml). Conclusion Ventilation with up to 80% argon during normoxia, and 50% argon after hypoxia did not affect heart rate, blood pressure, cerebral saturation and electrocortical brain activity. Clinical safety studies of argon ventilation in humans seem justified.
Collapse
Affiliation(s)
- Thomas Alderliesten
- Department of Neonatology, Wilhelmina Children's Hospital/University Medical Center Utrecht, Utrecht, The Netherlands
| | - Laurent M. A. Favie
- Department of Clinical Pharmacy, Division of Laboratory Medicine and Pharmacy, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Robert W. Neijzen
- Department of Clinical Pharmacy, Division of Laboratory Medicine and Pharmacy, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Volker Auwärter
- Department of Forensic Toxicology, Institute of Forensic Medicine, University Medical Center Freiburg, Freiburg, Germany
| | - Cora H. A. Nijboer
- Laboratory of Neuroimmunology and Developmental Origins of Disease, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Roland E. J. Marges
- Department of Medical Technology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Carin M. A. Rademaker
- Department of Clinical Pharmacy, Division of Laboratory Medicine and Pharmacy, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jürgen Kempf
- Department of Forensic Toxicology, Institute of Forensic Medicine, University Medical Center Freiburg, Freiburg, Germany
| | - Frank van Bel
- Department of Clinical Pharmacy, Division of Laboratory Medicine and Pharmacy, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Floris Groenendaal
- Department of Clinical Pharmacy, Division of Laboratory Medicine and Pharmacy, University Medical Center Utrecht, Utrecht, The Netherlands
- * E-mail:
| |
Collapse
|
75
|
Lin EP, Miles L, Hughes EA, McCann JC, Vorhees CV, McAuliffe JJ, Loepke AW. A Combination of Mild Hypothermia and Sevoflurane Affords Long-Term Protection in a Modified Neonatal Mouse Model of Cerebral Hypoxia-Ischemia. Anesth Analg 2014; 119:1158-73. [DOI: 10.1213/ane.0000000000000262] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
76
|
Dingley J, Tooley J, Liu X, Scull-Brown E, Elstad M, Chakkarapani E, Sabir H, Thoresen M. Xenon ventilation during therapeutic hypothermia in neonatal encephalopathy: a feasibility study. Pediatrics 2014; 133:809-18. [PMID: 24777219 DOI: 10.1542/peds.2013-0787] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Therapeutic hypothermia has become standard of care in newborns with moderate and severe neonatal encephalopathy; however, additional interventions are needed. In experimental models, breathing xenon gas during cooling offers long-term additive neuroprotection. This is the first xenon feasibility study in cooled infants. Xenon is expensive, requiring a closed-circuit delivery system. METHODS Cooled newborns with neonatal encephalopathy were eligible for this single-arm, dose-escalation study if clinically stable, under 18 hours of age and requiring less than 35% oxygen. Xenon duration increased stepwise from 3 to 18 hours in 14 subjects; 1 received 25% xenon and 13 received 50%. Respiratory, cardiovascular, neurologic (ie, amplitude-integrated EEG, seizures), and inflammatory (C-reactive protein) effects were examined. The effects of starting or stopping xenon rapidly or slowly were studied. Three matched control subjects per xenon treated subject were selected from our cooling database. Follow-up was at 18 months using mental developmental and physical developmental indexes of the Bayley Scales of Infant Development II. RESULTS No adverse respiratory or cardiovascular effects, including post-extubation stridor, were seen. Xenon increased sedation and suppressed seizures and background electroencephalographic activity. Seizures sometimes occurred during rapid weaning of xenon but not during slow weaning. C-reactive protein levels were similar between groups. Hourly xenon consumption was 0.52 L. Three died, and 7 of 11 survivors had mental and physical developmental index scores ≥70 at follow-up. CONCLUSIONS Breathing 50% xenon for up to 18 hours with 72 hours of cooling was feasible, with no adverse effects seen with 18 months' follow-up.
Collapse
Affiliation(s)
- John Dingley
- College of Medicine, Swansea University, Swansea, United Kingdom
| | - James Tooley
- Neonatal Neuroscience, School of Clinical Sciences, University of Bristol, Bristol, United Kingdom; and
| | - Xun Liu
- Neonatal Neuroscience, School of Clinical Sciences, University of Bristol, Bristol, United Kingdom; and
| | - Emma Scull-Brown
- Neonatal Neuroscience, School of Clinical Sciences, University of Bristol, Bristol, United Kingdom; and
| | - Maja Elstad
- Department of Physiology, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Ela Chakkarapani
- Neonatal Neuroscience, School of Clinical Sciences, University of Bristol, Bristol, United Kingdom; and
| | - Hemmen Sabir
- Neonatal Neuroscience, School of Clinical Sciences, University of Bristol, Bristol, United Kingdom; and
| | - Marianne Thoresen
- Neonatal Neuroscience, School of Clinical Sciences, University of Bristol, Bristol, United Kingdom; and Department of Physiology, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
77
|
Drobyshevsky A, Jiang R, Lin L, Derrick M, Luo K, Back SA, Tan S. Unmyelinated axon loss with postnatal hypertonia after fetal hypoxia. Ann Neurol 2014; 75:533-41. [PMID: 24633673 PMCID: PMC5975649 DOI: 10.1002/ana.24115] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Revised: 01/31/2014] [Accepted: 02/03/2014] [Indexed: 12/28/2022]
Abstract
OBJECTIVE White matter (WM) injury due to myelination defects is believed to be responsible for the motor deficits seen in cerebral palsy. We tested the hypothesis that the predominant injury is to functional electrical connectivity in unmyelinated WM fibers by conducting a longitudinal study of central WM tracts in newborn rabbit kits with hypertonia in our model of cerebral palsy. METHODS Pregnant rabbits at 70% gestation underwent 40-minute uterine ischemia. Motor deficits in newborn kits, including muscle hypertonia, were assessed by neurobehavioral testing. Major central WM tracts, including internal capsule, corpus callosum, anterior commissure, and fimbria hippocampi, were investigated for structural and functional injury using diffusion tensor magnetic resonance imaging (MRI), electrophysiological recordings of fiber conductivity in perfused brain slices, electron microscopy, and immunohistochemistry of oligodendrocyte lineage. RESULTS Motor deficits were observed on postnatal day 1 (P1) when WM tracts were unmyelinated. Myelination occurred later and was obvious by P18. Hypertonia was associated with microstructural WM injury and unmyelinated axon loss at P1, diagnosed by diffusion tensor MRI and electron microscopy. Axonal conductivity from electrophysiological recordings in hypertonic P18 kits decreased only in unmyelinated fibers, despite a loss in both myelinated and unmyelinated axons. INTERPRETATION Motor deficits in cerebral palsy were associated with loss of unmyelinated WM tracts. The contribution of injury to myelinated fibers that was observed at P18 is probably a secondary etiological factor in the motor and sensory deficits in the rabbit model of cerebral palsy.
Collapse
Affiliation(s)
- Alexander Drobyshevsky
- Department of Pediatrics, NorthShore University HealthSystem Research Institute, Evanston, IL
| | | | | | | | | | | | | |
Collapse
|
78
|
Deng J, Lei C, Chen Y, Fang Z, Yang Q, Zhang H, Cai M, Shi L, Dong H, Xiong L. Neuroprotective gases – Fantasy or reality for clinical use? Prog Neurobiol 2014; 115:210-45. [DOI: 10.1016/j.pneurobio.2014.01.001] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 01/03/2014] [Accepted: 01/03/2014] [Indexed: 12/17/2022]
|
79
|
|
80
|
Abstract
This article explains the mechanisms underlying choices of pharmacotherapy for hypoxic-ischemic insults of both preterm and term babies. Some preclinical data are strong enough that clinical trials are now underway. Challenges remain in deciding the best combination therapies for each age and insult.
Collapse
Affiliation(s)
- Sandra E. Juul
- University of Washington, Department of Pediatrics, 1959 NE Pacific St, Box 356320, Seattle, Washington 98195, Telephone: (206) 221-6814; Fax: (206) 543-8926
| | - Donna M. Ferriero
- Neonatal Brain Disorders Laboratory, University of California, San Francisco, 675 Nelson Rising Lane, Room 494, Box 0663, San Francisco, California 94143, Phone: (415) 502-7319, Fax: (415) 486-2297
| |
Collapse
|
81
|
Bhalala US, Koehler RC, Kannan S. Neuroinflammation and neuroimmune dysregulation after acute hypoxic-ischemic injury of developing brain. Front Pediatr 2014; 2:144. [PMID: 25642419 PMCID: PMC4294124 DOI: 10.3389/fped.2014.00144] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 12/22/2014] [Indexed: 12/15/2022] Open
Abstract
Hypoxic-ischemic (HI) injury to developing brain results from birth asphyxia in neonates and from cardiac arrest in infants and children. It is associated with varying degrees of neurologic sequelae, depending upon the severity and length of HI. Global HI triggers a series of cellular and biochemical pathways that lead to neuronal injury. One of the key cellular pathways of neuronal injury is inflammation. The inflammatory cascade comprises activation and migration of microglia - the so-called "brain macrophages," infiltration of peripheral macrophages into the brain, and release of cytotoxic and proinflammatory cytokines. In this article, we review the inflammatory and immune mechanisms of secondary neuronal injury after global HI injury to developing brain. Specifically, we highlight the current literature on microglial activation in relation to neuronal injury, proinflammatory and anti-inflammatory/restorative pathways, the role of peripheral immune cells, and the potential use of immunomodulators as neuroprotective compounds.
Collapse
Affiliation(s)
- Utpal S Bhalala
- Department of Anesthesiology, Johns Hopkins University School of Medicine , Baltimore, MD , USA ; Department of Critical Care Medicine, Johns Hopkins University School of Medicine , Baltimore, MD , USA
| | - Raymond C Koehler
- Department of Anesthesiology, Johns Hopkins University School of Medicine , Baltimore, MD , USA ; Department of Critical Care Medicine, Johns Hopkins University School of Medicine , Baltimore, MD , USA
| | - Sujatha Kannan
- Department of Anesthesiology, Johns Hopkins University School of Medicine , Baltimore, MD , USA ; Department of Critical Care Medicine, Johns Hopkins University School of Medicine , Baltimore, MD , USA
| |
Collapse
|
82
|
Feasibility and cardiac safety of inhaled xenon in combination with therapeutic hypothermia following out-of-hospital cardiac arrest. Crit Care Med 2013; 41:2116-24. [PMID: 23896830 DOI: 10.1097/ccm.0b013e31828a4337] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OBJECTIVES Preclinical studies reveal the neuroprotective properties of xenon, especially when combined with hypothermia. The purpose of this study was to investigate the feasibility and cardiac safety of inhaled xenon treatment combined with therapeutic hypothermia in out-of-hospital cardiac arrest patients. DESIGN An open controlled and randomized single-centre clinical drug trial (clinicaltrials.gov NCT00879892). SETTING A multipurpose ICU in university hospital. PATIENTS Thirty-six adult out-of-hospital cardiac arrest patients (18-80 years old) with ventricular fibrillation or pulseless ventricular tachycardia as initial cardiac rhythm. INTERVENTIONS Patients were randomly assigned to receive either mild therapeutic hypothermia treatment with target temperature of 33°C (mild therapeutic hypothermia group, n=18) alone or in combination with xenon by inhalation, to achieve a target concentration of at least 40% (Xenon+mild therapeutic hypothermia group, n=18) for 24 hours. Thirty-three patients were evaluable (mild therapeutic hypothermia group, n=17; Xenon+mild therapeutic hypothermia group, n=16). MEASUREMENTS AND MAIN RESULTS Patients were treated and monitored according to the Utstein protocol. The release of troponin-T was determined at arrival to hospital and at 24, 48, and 72 hours after out-of-hospital cardiac arrest. The median end-tidal xenon concentration was 47% and duration of the xenon inhalation was 25.5 hours. The frequency of serious adverse events, including inhospital mortality, status epilepticus, and acute kidney injury, was similar in both groups and there were no unexpected serious adverse reactions to xenon during hospital stay. In addition, xenon did not induce significant conduction, repolarization, or rhythm abnormalities. Median dose of norepinephrine during hypothermia was lower in xenon-treated patients (mild therapeutic hypothermia group=5.30 mg vs Xenon+mild therapeutic hypothermia group=2.95 mg, p=0.06). Heart rate was significantly lower in Xenon+mild therapeutic hypothermia patients during hypothermia (p=0.04). Postarrival incremental change in troponin-T at 72 hours was significantly less in the Xenon+mild therapeutic hypothermia group (p=0.04). CONCLUSIONS Xenon treatment in combination with hypothermia is feasible and has favorable cardiac features in survivors of out-of-hospital cardiac arrest.
Collapse
|
83
|
Evidence for therapeutic intervention in the prevention of cerebral palsy: hope from animal model research. Semin Pediatr Neurol 2013; 20:75-83. [PMID: 23948682 DOI: 10.1016/j.spen.2013.06.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Knowledge translation, as defined by the Canadian Institute of Health Research, is defined as the exchange, synthesis, and ethically sound application of knowledge--within a complex system of interactions among researchers and users--to accelerate the capture of the benefits of research through improved health, more effective services and products, and a strengthened healthcare system. The requirement for this to occur lies in the ability to continue to determine mechanistic actions at the molecular level, to understand how they fit at the in vitro and in vivo levels, and for disease states, to determine their safety, efficacy, and long-term potential at the preclinical animal model level. In this regard, particularly as it relates to long-term disabilities such as cerebral palsy that begin in utero, but only express their full effect in adulthood, animal models must be used to understand and rapidly evaluate mechanisms of injury and therapeutic interventions. In this review, we hope to provide the reader with a background of animal data upon which therapeutic interventions for the prevention and treatment of cerebral palsy, benefit this community, and increasingly do so in the future.
Collapse
|
84
|
Postischemic Sevoflurane Offers No Additional Neuroprotective Benefit to Preischemic Dexmedetomidine. J Neurosurg Anesthesiol 2013; 25:184-90. [DOI: 10.1097/ana.0b013e3182764d2a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
85
|
Cerio FGD, Lara-Celador I, Alvarez A, Hilario E. Neuroprotective therapies after perinatal hypoxic-ischemic brain injury. Brain Sci 2013; 3:191-214. [PMID: 24961314 PMCID: PMC4061821 DOI: 10.3390/brainsci3010191] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 02/13/2013] [Accepted: 02/22/2013] [Indexed: 12/29/2022] Open
Abstract
Hypoxic-ischemic (HI) brain injury is one of the main causes of disabilities in term-born infants. It is the result of a deprivation of oxygen and glucose in the neural tissue. As one of the most important causes of brain damage in the newborn period, the neonatal HI event is a devastating condition that can lead to long-term neurological deficits or even death. The pattern of this injury occurs in two phases, the first one is a primary energy failure related to the HI event and the second phase is an energy failure that takes place some hours later. Injuries that occur in response to these events are often manifested as severe cognitive and motor disturbances over time. Due to difficulties regarding the early diagnosis and treatment of HI injury, there is an increasing need to find effective therapies as new opportunities for the reduction of brain damage and its long term effects. Some of these therapies are focused on prevention of the production of reactive oxygen species, anti-inflammatory effects, anti-apoptotic interventions and in a later stage, the stimulation of neurotrophic properties in the neonatal brain which could be targeted to promote neuronal and oligodendrocyte regeneration.
Collapse
Affiliation(s)
- Felipe Goñi de Cerio
- Biotechnology Area, GAIKER Technology Centre, Parque Tecnológico de Zamudio Ed 202, 48170 Zamudio, Vizcaya, Spain.
| | - Idoia Lara-Celador
- Department of Cell Biology and Histology, School of Medicine and Dentistry, University of the Basque Country, 48949 Leioa, Bizkaia, Spain.
| | - Antonia Alvarez
- Department of Cell Biology and Histology, School of Medicine and Dentistry, University of the Basque Country, 48949 Leioa, Bizkaia, Spain.
| | - Enrique Hilario
- Department of Cell Biology and Histology, School of Medicine and Dentistry, University of the Basque Country, 48949 Leioa, Bizkaia, Spain.
| |
Collapse
|
86
|
Esencan E, Yuksel S, Tosun YB, Robinot A, Solaroglu I, Zhang JH. XENON in medical area: emphasis on neuroprotection in hypoxia and anesthesia. Med Gas Res 2013; 3:4. [PMID: 23369273 PMCID: PMC3626616 DOI: 10.1186/2045-9912-3-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 01/25/2013] [Indexed: 01/03/2023] Open
Abstract
Xenon is a medical gas capable of establishing neuroprotection, inducing anesthesia as well as serving in modern laser technology and nuclear medicine as a contrast agent. In spite of its high cost, its lack of side effects, safe cardiovascular and organoprotective profile and effective neuroprotective role after hypoxic-ischemic injury (HI) favor its applications in clinics. Xenon performs its anesthetic and neuroprotective functions through binding to glycine site of glutamatergic N-methyl-D-aspartate (NMDA) receptor competitively and blocking it. This blockage inhibits the overstimulation of NMDA receptors, thus preventing their following downstream calcium accumulating cascades. Xenon is also used in combination therapies together with hypothermia or sevoflurane. The neuroprotective effects of xenon and hypothermia cooperate synergistically whether they are applied synchronously or asynchronously. Distinguishing properties of Xenon promise for innovations in medical gas field once further studies are fulfilled and Xenon’s high cost is overcome.
Collapse
Affiliation(s)
- Ecem Esencan
- Departments of Neurosurgery and Physiology, Loma Linda University, Loma Linda, CA, USA.
| | | | | | | | | | | |
Collapse
|
87
|
Jacobs SE, Berg M, Hunt R, Tarnow-Mordi WO, Inder TE, Davis PG. Cooling for newborns with hypoxic ischaemic encephalopathy. Cochrane Database Syst Rev 2013; 2013:CD003311. [PMID: 23440789 PMCID: PMC7003568 DOI: 10.1002/14651858.cd003311.pub3] [Citation(s) in RCA: 832] [Impact Index Per Article: 69.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Newborn animal studies and pilot studies in humans suggest that mild hypothermia following peripartum hypoxia-ischaemia in newborn infants may reduce neurological sequelae without adverse effects. OBJECTIVES To determine the effect of therapeutic hypothermia in encephalopathic asphyxiated newborn infants on mortality, long-term neurodevelopmental disability and clinically important side effects. SEARCH METHODS We used the standard search strategy of the Cochrane Neonatal Review Group as outlined in The Cochrane Library (Issue 2, 2007). Randomised controlled trials evaluating therapeutic hypothermia in term and late preterm newborns with hypoxic ischaemic encephalopathy were identified by searching the Oxford Database of Perinatal Trials, the Cochrane Central Register of Controlled Trials (CENTRAL, The Cochrane Library, 2007, Issue 2), MEDLINE (1966 to June 2007), previous reviews including cross-references, abstracts, conferences, symposia proceedings, expert informants and journal handsearching. We updated this search in May 2012. SELECTION CRITERIA We included randomised controlled trials comparing the use of therapeutic hypothermia with standard care in encephalopathic term or late preterm infants with evidence of peripartum asphyxia and without recognisable major congenital anomalies. The primary outcome measure was death or long-term major neurodevelopmental disability. Other outcomes included adverse effects of cooling and 'early' indicators of neurodevelopmental outcome. DATA COLLECTION AND ANALYSIS Four review authors independently selected, assessed the quality of and extracted data from the included studies. Study authors were contacted for further information. Meta-analyses were performed using risk ratios (RR) and risk differences (RD) for dichotomous data, and weighted mean difference for continuous data with 95% confidence intervals (CI). MAIN RESULTS We included 11 randomised controlled trials in this updated review, comprising 1505 term and late preterm infants with moderate/severe encephalopathy and evidence of intrapartum asphyxia. Therapeutic hypothermia resulted in a statistically significant and clinically important reduction in the combined outcome of mortality or major neurodevelopmental disability to 18 months of age (typical RR 0.75 (95% CI 0.68 to 0.83); typical RD -0.15, 95% CI -0.20 to -0.10); number needed to treat for an additional beneficial outcome (NNTB) 7 (95% CI 5 to 10) (8 studies, 1344 infants). Cooling also resulted in statistically significant reductions in mortality (typical RR 0.75 (95% CI 0.64 to 0.88), typical RD -0.09 (95% CI -0.13 to -0.04); NNTB 11 (95% CI 8 to 25) (11 studies, 1468 infants) and in neurodevelopmental disability in survivors (typical RR 0.77 (95% CI 0.63 to 0.94), typical RD -0.13 (95% CI -0.19 to -0.07); NNTB 8 (95% CI 5 to 14) (8 studies, 917 infants). Some adverse effects of hypothermia included an increase sinus bradycardia and a significant increase in thrombocytopenia. AUTHORS' CONCLUSIONS There is evidence from the 11 randomised controlled trials included in this systematic review (N = 1505 infants) that therapeutic hypothermia is beneficial in term and late preterm newborns with hypoxic ischaemic encephalopathy. Cooling reduces mortality without increasing major disability in survivors. The benefits of cooling on survival and neurodevelopment outweigh the short-term adverse effects. Hypothermia should be instituted in term and late preterm infants with moderate-to-severe hypoxic ischaemic encephalopathy if identified before six hours of age. Further trials to determine the appropriate techniques of cooling, including refinement of patient selection, duration of cooling and method of providing therapeutic hypothermia, will refine our understanding of this intervention.
Collapse
Affiliation(s)
- Susan E Jacobs
- Neonatal Services, Royal Women’s Hospital, Parkville, Melbourne, Australia.
| | | | | | | | | | | |
Collapse
|
88
|
Lobo N, Yang B, Rizvi M, Ma D. Hypothermia and xenon: Novel noble guardians in hypoxic-ischemic encephalopathy? J Neurosci Res 2013; 91:473-8. [DOI: 10.1002/jnr.23178] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 09/25/2012] [Accepted: 10/19/2012] [Indexed: 01/13/2023]
|
89
|
Sabir H, Scull-Brown E, Liu X, Thoresen M. Immediate Hypothermia Is Not Neuroprotective After Severe Hypoxia-Ischemia and Is Deleterious When Delayed by 12 Hours in Neonatal Rats. Stroke 2012; 43:3364-70. [DOI: 10.1161/strokeaha.112.674481] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Hemmen Sabir
- From the School of Clinical Sciences, University of Bristol, St Michael’s Hospital, Bristol, United Kingdom (H.S., E.S.-B., X.L., M.T.); Department of Physiology, University of Oslo, Institute of Basic Medical Sciences, Oslo, Norway (M.T.)
| | - Emma Scull-Brown
- From the School of Clinical Sciences, University of Bristol, St Michael’s Hospital, Bristol, United Kingdom (H.S., E.S.-B., X.L., M.T.); Department of Physiology, University of Oslo, Institute of Basic Medical Sciences, Oslo, Norway (M.T.)
| | - Xun Liu
- From the School of Clinical Sciences, University of Bristol, St Michael’s Hospital, Bristol, United Kingdom (H.S., E.S.-B., X.L., M.T.); Department of Physiology, University of Oslo, Institute of Basic Medical Sciences, Oslo, Norway (M.T.)
| | - Marianne Thoresen
- From the School of Clinical Sciences, University of Bristol, St Michael’s Hospital, Bristol, United Kingdom (H.S., E.S.-B., X.L., M.T.); Department of Physiology, University of Oslo, Institute of Basic Medical Sciences, Oslo, Norway (M.T.)
| |
Collapse
|
90
|
Combining xenon and mild therapeutic hypothermia preserves neurological function after prolonged cardiac arrest in pigs. Crit Care Med 2012; 40:1297-303. [PMID: 22425822 DOI: 10.1097/ccm.0b013e31823c8ce7] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Despite the introduction of mild therapeutic hypothermia into postcardiac arrest care, cerebral and myocardial injuries represent the limiting factors for survival after cardiac arrest. Administering xenon may confer an additional neuroprotective effect after successful cardiopulmonary resuscitation due to its ability to stabilize cellular calcium homeostasis via N-methyl-D-aspartate-receptor antagonism. DESIGN In a porcine model, we evaluated effects of xenon treatment in addition to therapeutic hypothermia on neuropathologic and functional outcomes after cardiopulmonary resuscitation. SETTING Prospective, randomized, laboratory animal study. SUBJECTS Fifteen male pigs. INTERVENTIONS Following 10 mins of cardiac arrest and 6 mins of cardiopulmonary resuscitation, ten pigs were randomized to receive either mild therapeutic hypothermia (33°C for 16 hrs) or mild therapeutic hypothermia 1 xenon (70% for 1 hr). Five animals served as normothermic controls. MEASUREMENTS AND MAIN RESULTS Gross hemodynamic variables were measured using right-heart catheterization. Neurocognitive performance was evaluated for 5 days after cardiopulmonary resuscitation using a neurologic deficit score before the brains were harvested for histopathological analysis. All animals survived the observation period in the mild therapeutic hypothermia 1 xenon group while one animal in each of the other two groups died. Mild therapeutic hypothermia 1 xenon preserved cardiac output during the induction of mild therapeutic hypothermia significantly better than did mild therapeutic hypothermia alone (4.6 6 0.6 L/min vs. 3.2 6 1.6 L/min, p # .05). Both treatment groups showed significantly fewer necrotic lesions in the cerebral cortex, caudate nucleus, putamen, and in hippocampal sectors CA1 and CA3/4. However, only the combination of mild therapeutic hypothermia and xenon resulted in reduced astrogliosis in the CA1 sector and diminished microgliosis and perivascular inflammation in the putamen. Clinically, only the mild therapeutic hypothermia 1 xenon-treated animals showed significantly improved neurologic deficit scores over time (day 1 = 59.0 6 27.0 vs. day 5 = 4.0 6 5.5, p ø .05) as well as in comparison to the untreated controls on days 3 through 5 after cardiopulmonary resuscitation. CONCLUSIONS These results demonstrate that even a short exposure to xenon during induction of mild therapeutic hypothermia results in significant improvements in functional recovery and ameliorated myocardial dysfunction.
Collapse
|
91
|
Combined effect of hypothermia and caspase-2 gene deficiency on neonatal hypoxic-ischemic brain injury. Pediatr Res 2012; 71:566-72. [PMID: 22322383 DOI: 10.1038/pr.2012.15] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION [corrected] Hypoxia-ischemia (HI) injury in term infants develops with a delay during the recovery phase, opening up a therapeutic window after the insult. Hypothermia is currently an established neuroprotective treatment in newborns with neonatal encephalopathy (NE), saving one in nine infants from developing neurological deficits. Caspase-2 is an initiator caspase, a key enzyme in the route to destruction and, therefore, theoretically a potential target for a pharmaceutical strategy to prevent HI brain damage. METHODS The aim of this study was to explore the neuroprotective efficacy of hypothermia in combination with caspase-2 gene deficiency using the neonatal Rice-Vannucci model of HI injury in mice. RESULTS HI brain injury was moderately reduced in caspase-2(-/-) mice as compared with wild-type (WT) mice. Five hours of hypothermia (33 °C ) vs. normothermia (36 °C) directly after HI provided additive protection overall (temperature P = 0.0004, caspase-2 genotype P = 0.0029), in the hippocampus and thalamus, but not in other gray matter regions or white matter. Delayed hypothermia initiated 2 h after HI in combination with caspase-2 gene deficiency reduced injury in the hippocampus, but not in other brain areas. DISCUSSION In conclusion, caspase-2 gene deficiency combined with hypothermia provided enhanced neuroprotection as compared with hypothermia alone.
Collapse
|
92
|
Robertson NJ, Tan S, Groenendaal F, van Bel F, Juul SE, Bennet L, Derrick M, Back SA, Valdez RC, Northington F, Gunn AJ, Mallard C. Which neuroprotective agents are ready for bench to bedside translation in the newborn infant? J Pediatr 2012; 160:544-552.e4. [PMID: 22325255 PMCID: PMC4048707 DOI: 10.1016/j.jpeds.2011.12.052] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 12/02/2011] [Accepted: 12/30/2011] [Indexed: 02/07/2023]
|
93
|
Derwall M, Fries M. Advances in brain resuscitation: beyond hypothermia. Crit Care Clin 2012; 28:271-81. [PMID: 22433487 DOI: 10.1016/j.ccc.2011.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Matthias Derwall
- Department of Anesthesiology, University Hospital Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany.
| | | |
Collapse
|
94
|
Perrone S, Stazzoni G, Tataranno ML, Buonocore G. New pharmacologic and therapeutic approaches for hypoxic-ischemic encephalopathy in the newborn. J Matern Fetal Neonatal Med 2012; 25 Suppl 1:83-8. [DOI: 10.3109/14767058.2012.663168] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
95
|
Resuscitation with 100% oxygen increases injury and counteracts the neuroprotective effect of therapeutic hypothermia in the neonatal rat. Pediatr Res 2012; 71:247-52. [PMID: 22337259 DOI: 10.1038/pr.2011.43] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
INTRODUCTION Mild therapeutic hypothermia (HT) reduces brain injury in survivors after perinatal asphyxia. Recent guidelines suggest that resuscitation of term infants should be started with air, but supplemental oxygen is still in use. It is not known whether supplemental oxygen during resuscitation affects the protection offered by subsequent HT. RESULTS Wilcoxon median (95% confidence interval) hippocampal injury scores (range 0.0-4.0; 0 to ≥90% injury) were 21% O(2) normothermia (NT): 2.00 (1.25-2.50), 21% O(2) HT: 1.00 (0.50-1.50), 100% O(2) NT: 2.50 (1.50-3.25), and 100% O(2) HT: 2.00 (1.25-2.50). Although HT significantly reduced hippocampal injury (B = -0.721, SEM = 0.297, P = 0.018), reoxygenation with 100% O(2) increased injury (B = +0.647, SEM = 0.297, P = 0.033). Regression constant B = 1.896, SEM = 0.257 and normally distributed residuals. DISCUSSION We confirm an ~50% neuroprotective effect of therapeutic HT in the neonatal rat. Reoxygenation with 100% O(2) increased injury and worsened reflex performance. HT was neuroprotective whether applied after reoxygenation with air or 100% O(2). However, HT after 100% O(2) gave no net neuroprotection. METHODS In an established neonatal rat model, hypoxia-ischemia (HI) was followed by 30-min reoxygenation in either 21% O(2) or 100% O(2) before 5 h of NT (37 °C) or HT (32 °C). The effects of HT and 100% O(2) on histopathologic injury in the hippocampus, basal ganglia, and cortex, and on postural reflex performance 7 d after the insult, were estimated by linear regression.
Collapse
|
96
|
Chakkarapani E, Thoresen M, Liu X, Walloe L, Dingley J. Xenon offers stable haemodynamics independent of induced hypothermia after hypoxia-ischaemia in newborn pigs. Intensive Care Med 2012; 38:316-23. [PMID: 22160201 DOI: 10.1007/s00134-011-2442-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Accepted: 11/17/2011] [Indexed: 10/14/2022]
Abstract
PURPOSE To assess the effect of 18 hour (h) 50% xenon (Xe) inhalation at normothermia (NT, 38.5°C) or hypothermia (HT, 33.5°C) on mean arterial blood pressure (MABP), inotropic support and heart rate (HR) following an induced perinatal global hypoxic-ischaemic insult (HI) in newborn pigs. METHODS Newborn pigs ventilated under inhalational anaesthesia, following a 45 min HI (inhaled oxygen fraction reduced until amplitude integrated electroencephalogram was less than 7 μV), were randomised to three Xe (n = 45) (50% Xe 18 h with NT, HT 12 h or HT 24 h) or three non-Xe groups (n = 53) (0% Xe with NT, HT 12 h or HT 24 h) under otherwise identical conditions. We measured MABP and HR every minute. Hypotension (MABP <40 mmHg) was treated sequentially with 2 × 10 mL/kg saline, dopamine, norepinephrine and hydrocortisone if required. RESULTS Xe maintained higher MABP during HT (5.1 mmHg, 95% CI 2.34, 7.89), rewarming (10.1 mmHg, 95% CI 6.26, 13.95) and after cessation (4.1 mmHg, 95% CI 0.37, 7.84) independent of HT, inotropic support and acidosis. Xe reduced the duration of inotropic support by 12.6 h (95% CI 5.5, 19.73). Inotropic support decreased the HR reduction induced by HT from 9 to 5 bpm/°C during cooling and from 10-7 to 4-3 bpm/°C during rewarming. There was no interaction between Xe, HT, inotropic support and acidosis. Xe during HT cleared lactate faster; 3 h post-HI median (IQR) values of (Xe HT) 2.8 mmol/L (0.9, 3.1) vs. (HT) 5.9 mmol/L (2.5, 7.9), p = 0.0004. CONCLUSION Xe maintained stable blood pressure, thereby reducing the inotropic support requirements during and after administration independently of induced HT-current neonatal encephalopathy treatment. Xe may offer haemodynamic benefits in clinical neuroprotection studies.
Collapse
Affiliation(s)
- Elavazhagan Chakkarapani
- Department of Child Health, School of Clinical Sciences, St Michael's Hospital, Level D, University of Bristol, Southwell Street, BS2 8EG Bristol, UK
| | | | | | | | | |
Collapse
|
97
|
Glass HC, Bonifacio SL, Shimotake T, Ferriero DM. Neurocritical care for neonates. Curr Treat Options Neurol 2011; 13:574-89. [PMID: 21874296 DOI: 10.1007/s11940-011-0144-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OPINION STATEMENT Neurocritical care is an emerging subspecialty that combines expertise in neurology, critical care medicine, neuroradiology, and neurosurgery. Increasing evidence from the adult literature suggests that specialized neurocritical care can lead to improved outcomes following acute brain injury. Critically ill neonates with neurologic conditions may also benefit from specialized neurocritical care. Adherence to guidelines and managing patients in intensive care nurseries with dedicated, multidisciplinary neurocritical care personnel may optimize outcomes. This goal may be achieved by more quickly recognizing neurologic impairment, preventing secondary brain injury by maintaining basic physiologic functions, and rapidly implementing therapies. Nurseries that care for neonates with suspected acute brain injury should be prepared to adequately support multiorgan involvement, monitor the brain to detect seizures, evaluate for brain injury using MRI, and follow development through school age.
Collapse
Affiliation(s)
- Hannah C Glass
- Departments of Neurology & Pediatrics, University of California San Francisco, Box 0663, 521 Parnassus Avenue, C-215, San Francisco, CA, 94143-0663, USA,
| | | | | | | |
Collapse
|
98
|
Ko IG, Cho H, Kim SE, Kim JE, Sung YH, Kim BK, Shin MS, Cho S, Pak YK, Kim CJ. Hypothermia alleviates hypoxic ischemia-induced dopamine dysfunction and memory impairment in rats. Anim Cells Syst (Seoul) 2011. [DOI: 10.1080/19768354.2011.607514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
99
|
Dickey EJ, Long SN, Hunt RW. Hypoxic ischemic encephalopathy--what can we learn from humans? J Vet Intern Med 2011; 25:1231-40. [PMID: 22092610 DOI: 10.1111/j.1939-1676.2011.00818.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 06/06/2011] [Accepted: 08/30/2011] [Indexed: 01/17/2023] Open
Abstract
Hypoxic ischemic encephalopathy (HIE) is a condition that occurs in both human newborns and foals. The condition is the subject of extensive current research in human infants, but there have been no direct studies of HIE in foals, and hence, knowledge of the condition has been extrapolated from studies in humans and other animal models. The purpose of this review article is to highlight the most up-to-date and relevant research in the human field, and discuss how this potentially might have an impact in the management of foals with HIE.
Collapse
Affiliation(s)
- E J Dickey
- Neonatal Research, Murdoch Children's Research Institute, Melbourne, Australia.
| | | | | |
Collapse
|
100
|
|