51
|
Giannoni P, Claeysen S, Noe F, Marchi N. Peripheral Routes to Neurodegeneration: Passing Through the Blood-Brain Barrier. Front Aging Neurosci 2020; 12:3. [PMID: 32116645 PMCID: PMC7010934 DOI: 10.3389/fnagi.2020.00003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 01/08/2020] [Indexed: 12/21/2022] Open
Abstract
A bidirectional crosstalk between peripheral players of immunity and the central nervous system (CNS) exists. Hence, blood-brain barrier (BBB) breakdown is emerging as a participant mechanism of dysregulated peripheral-CNS interplay, promoting diseases. Here, we examine the implication of BBB damage in neurodegeneration, linking it to peripheral brain-directed autoantibodies and gut-brain axis mechanisms. As BBB breakdown is a factor contributing to, or even anticipating, neuronal dysfunction(s), we here identify contemporary pharmacological strategies that could be exploited to repair the BBB in disease conditions. Developing neurovascular, add on, therapeutic strategies may lead to a more efficacious pre-clinical to clinical transition with the goal of curbing the progression of neurodegeneration.
Collapse
Affiliation(s)
| | - Sylvie Claeysen
- CNRS, INSERM U1191, Institut de Génomique Fonctionnelle, University of Montpellier, Montpellier, France
| | - Francesco Noe
- HiLIFE – Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Nicola Marchi
- CNRS, INSERM U1191, Institut de Génomique Fonctionnelle, University of Montpellier, Montpellier, France
| |
Collapse
|
52
|
Yu S, Fu L, Lu J, Wang Z, Fu W. Xiao-Yao-San reduces blood-brain barrier injury induced by chronic stress in vitro and vivo via glucocorticoid receptor-mediated upregulation of Occludin. JOURNAL OF ETHNOPHARMACOLOGY 2020; 246:112165. [PMID: 31445133 DOI: 10.1016/j.jep.2019.112165] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 07/23/2019] [Accepted: 08/14/2019] [Indexed: 06/10/2023]
Abstract
Blood-brain barrier (BBB) is a barrier which maintains the material exchange balance of brain microenvironment and could be destroyed by chronic stress (CS). Glucocorticoids (GCs) can mimic the chronic stress induced damage to BBB. GCs induced BBB trauma models in vitro and in vivo to explore the effects of the traditional medicine Xiao-Yao-San (XYS). In this research, we found CS could injure the BBB to change the biochemical index, which could be reversed by XYS in vitro. The abilities of cell proliferation, invasion, and the expression of tight junction related genes (Occludin, Claudin, JAM-1 and ZO-1) were suppressed by CS and the trauma could be reversed by XYS partly. It was showed that GRs interacted with Occludin directly and inhibited Occluding expression. In rats BBB trauma model, the GC content was deceased and BBB permeability was repaired by XYS. The expression of Occludin, Claudin, JAM-1 and ZO-1 were increased in the treatment of XYS. In our research, it shown that XYS affect the content of the GC and GR which interacted with Occludin directly for the first time. In addition, we also found that XYS could reduce BBB injury induced by CS via GR in BBB model in vitro. Therefore, it proves that XYS is a potential BBB repair medicine and may help to elucidate mechanism of brain pathology.
Collapse
Affiliation(s)
- Shaolong Yu
- Department of Urology Surgery, Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, 518033, Guangdong, China
| | - Lijun Fu
- Department of Anesthesiology, Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, 518033, Guangdong, China
| | - Jiandong Lu
- Department of Nephrology, Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, 518033, Guangdong, China
| | - Zhiyu Wang
- Integrative Research Laboratory of Breast Cancer, The Research Centre of Integrative Medicine, Discipline of Integrated Chinese and Western Medicine & the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510530, Guangdong, China.
| | - Wenjun Fu
- Centre for Integrative Medicine, School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China.
| |
Collapse
|
53
|
Eles JR, Kozai TDY. In vivo imaging of calcium and glutamate responses to intracortical microstimulation reveals distinct temporal responses of the neuropil and somatic compartments in layer II/III neurons. Biomaterials 2020; 234:119767. [PMID: 31954232 DOI: 10.1016/j.biomaterials.2020.119767] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/22/2019] [Accepted: 01/05/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Intracortical microelectrode implants can generate a tissue response hallmarked by glial scarring and neuron cell death within 100-150 μm of the biomaterial device. Many have proposed that any performance decline in intracortical microstimulation (ICMS) due to this foreign body tissue response could be offset by increasing the stimulation amplitude. The mechanisms of this approach are unclear, however, as there has not been consensus on how increasing amplitude affects the spatial and temporal recruitment patterns of ICMS. APPROACH We clarify these unknowns using in vivo two-photon imaging of mice transgenically expressing the calcium sensor GCaMP6s in Thy1 neurons or virally expressing the glutamate sensor iGluSnFr in neurons. Calcium and neurotransmitter activity are tracked in the neuronal somas and neuropil during long-train stimulation in Layer II/III of somatosensory cortex. MAIN RESULTS Neural calcium activity and glutamate release are dense and strongest within 20-40 μm around the electrode, falling off with distance from the electrode. Neuronal calcium increases with higher amplitude stimulations. During prolonged stimulation trains, a sub-population of somas fail to maintain calcium activity. Interestingly, neuropil calcium activity is 3-fold less correlated to somatic calcium activity for cells that drop-out during the long stimulation train compared to cells that sustain activity throughout the train. Glutamate release is apparent only within 20 μm of the electrode and is sustained for at least 10s after cessation of the 15 and 20 μA stimulation train, but not lower amplitudes. SIGNIFICANCE These results demonstrate that increasing amplitude can increase the radius and intensity of neural recruitment, but it also alters the temporal response of some neurons. Further, dense glutamate release is highest within the first 20 μm of the electrode site even at high amplitudes, suggesting that there may be spatial limitations to the amplitude parameter space. The glutamate elevation outlasts stimulation, suggesting that high-amplitude stimulation may affect neurotransmitter re-uptake. This ultimately suggests that increasing the amplitude of ICMS device stimulation may fundamentally alter the temporal neural response, which could have implications for using amplitude to improve the ICMS effect or "offset" the effects of glial scarring.
Collapse
Affiliation(s)
- James R Eles
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Takashi D Y Kozai
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for the Neural Basis of Cognition, University of Pittsburgh, Carnegie Mellon University, Pittsburgh, PA, USA; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; NeuroTech Center, University of Pittsburgh Brain Institute, Pittsburgh, PA, USA.
| |
Collapse
|
54
|
Williams S, Ghosh C. Neurovascular glucocorticoid receptors and glucocorticoids: implications in health, neurological disorders and drug therapy. Drug Discov Today 2019; 25:89-106. [PMID: 31541713 DOI: 10.1016/j.drudis.2019.09.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/12/2019] [Accepted: 09/12/2019] [Indexed: 02/07/2023]
Abstract
Glucocorticoid receptors (GRs) are ubiquitous transcription factors widely studied for their role in controlling events related to inflammation, stress and homeostasis. Recently, GRs have reemerged as crucial targets of investigation in neurological disorders, with a focus on pharmacological strategies to direct complex mechanistic GR regulation and improve therapy. In the brain, GRs control functions necessary for neurovascular integrity, including responses to stress, neurological changes mediated by the hypothalamic-pituitary-adrenal axis and brain-specific responses to corticosteroids. Therefore, this review will examine GR regulation at the neurovascular interface in normal and pathological conditions, pharmacological GR modulation and glucocorticoid insensitivity in neurological disorders.
Collapse
Affiliation(s)
- Sherice Williams
- Brain Physiology Laboratory/Cerebrovascular Research, Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Chaitali Ghosh
- Brain Physiology Laboratory/Cerebrovascular Research, Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Department of Molecular Medicine and Biomedical Engineering at Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
55
|
Diffuse Intrinsic Pontine Glioma: From Diagnosis to Next-Generation Clinical Trials. Curr Treat Options Neurol 2019; 21:37. [PMID: 31290035 DOI: 10.1007/s11940-019-0577-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
PURPOSE OF REVIEW This review of diffuse intrinsic pontine glioma (DIPG) provides clinical background, a systematic approach to diagnosis and initial care, and synthesizes historical, modern, and future directions for treatment. We present evidence supporting neurosurgical biopsy, early palliative care involvement, limitation of glucocorticoid use, and the leveraging of preclinical DIPG models as a pipeline to next-generation clinical trials. RECENT FINDINGS New molecular understanding of pediatric high-grade gliomas has led to the reclassification of DIPG as one member of a family of diffuse gliomas occurring in the midline of the central nervous system that exhibit pathognomonic mutations in genes encoding histone 3 (H3 K27M). DIPG remains a clinically relevant term, though diagnostically the 80% of DIPG cases that exhibit the H3 K27M mutation have been reclassified as diffuse midline glioma, H3 K27M-mutant. Re-irradiation has been shown to be well-tolerated and of potential benefit. Epigenetic targeting of transcriptional dependencies in preclinical models is fueling molecularly targeted clinical trials. Chimeric antigen receptor T cell immunotherapy has also demonstrated efficacy in preclinical models and provides a promising new clinical strategy. DIPG is a universally fatal, epigenetically driven tumor of the pons that is considered part of a broader class of diffuse midline gliomas sharing H3 K27M mutations. Radiation remains the standard of care, single-agent temozolomide is not recommended, and glucocorticoids should be used only sparingly. A rapid evolution of understanding in the chromatin, signaling, and immunological biology of DIPG may soon result in clinical breakthroughs.
Collapse
|
56
|
Synergistic Role of Oxidative Stress and Blood-Brain Barrier Permeability as Injury Mechanisms in the Acute Pathophysiology of Blast-induced Neurotrauma. Sci Rep 2019; 9:7717. [PMID: 31118451 PMCID: PMC6531444 DOI: 10.1038/s41598-019-44147-w] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 05/07/2019] [Indexed: 12/24/2022] Open
Abstract
Blast-induced traumatic brain injury (bTBI) has been recognized as the common mode of neurotrauma amongst military and civilian personnel due to an increased insurgent activity domestically and abroad. Previous studies from our laboratory have identified enhanced blood-brain barrier (BBB) permeability as a significant, sub-acute (four hours post-blast) pathological change in bTBI. We also found that NADPH oxidase (NOX)-mediated oxidative stress occurs at the same time post-blast when the BBB permeability changes. We therefore hypothesized that oxidative stress is a major causative factor in the BBB breakdown in the sub-acute stages. This work therefore examined the role of NOX1 and its downstream effects on BBB permeability in the frontal cortex (a region previously shown to be the most vulnerable) immediately and four hours post-blast exposure. Rats were injured by primary blast waves in a compressed gas-driven shock tube at 180 kPa and the BBB integrity was assessed by extravasation of Evans blue and changes in tight junction proteins (TJPs) as well as translocation of macromolecules from blood to brain and vice versa. NOX1 abundance was also assessed in neurovascular endothelial cells. Blast injury resulted in increased extravasation and reduced levels of TJPs in tissues consistent with our previous observations. NOX1 levels were significantly increased in endothelial cells followed by increased superoxide production within 4 hours of blast. Blast injury also increased the levels/activation of matrix metalloproteinase 3 and 9. To test the role of oxidative stress, rats were administered apocynin, which is known to inhibit the assembly of NOX subunits and arrests its function. We found apocynin completely inhibited dye extravasation as well as restored TJP levels to that of controls and reduced matrix metalloproteinase activation in the sub-acute stages following blast. Together these data strongly suggest that NOX-mediated oxidative stress contributes to enhanced BBB permeability in bTBI through a pathway involving increased matrix metalloproteinase activation.
Collapse
|
57
|
Tapp ZM, Godbout JP, Kokiko-Cochran ON. A Tilted Axis: Maladaptive Inflammation and HPA Axis Dysfunction Contribute to Consequences of TBI. Front Neurol 2019; 10:345. [PMID: 31068886 PMCID: PMC6491704 DOI: 10.3389/fneur.2019.00345] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 03/20/2019] [Indexed: 12/16/2022] Open
Abstract
Each year approximately 1.7 million people sustain a traumatic brain injury (TBI) in the US alone. Associated with these head injuries is a high prevalence of neuropsychiatric symptoms including irritability, depression, and anxiety. Neuroinflammation, due in part to microglia, can worsen or even cause neuropsychiatric disorders after TBI. For example, mounting evidence demonstrates that microglia become “primed” or hyper-reactive with an exaggerated pro-inflammatory phenotype following multiple immune challenges. Microglial priming occurs after experimental TBI and correlates with the emergence of depressive-like behavior as well as cognitive dysfunction. Critically, immune challenges are various and include illness, aging, and stress. The collective influence of any combination of these immune challenges shapes the neuroimmune environment and the response to TBI. For example, stress reliably induces inflammation and could therefore be a gateway to altered neuropathology and behavioral decline following TBI. Given the increasing incidence of stress-related psychiatric disorders after TBI, the degree in which stress affects outcome is of particular interest. This review aims to highlight the role of the hypothalamic-pituitary-adrenal (HPA) axis as a key mediator of stress-immune pathway communication following TBI. We will first describe maladaptive neuroinflammation after TBI and how stress contributes to inflammation through both anti- and pro-inflammatory mechanisms. Clinical and experimental data describing HPA-axis dysfunction and consequences of altered stress responses after TBI will be discussed. Lastly, we will review common stress models used after TBI that could better elucidate the relationship between HPA axis dysfunction and maladaptive inflammation following TBI. Together, the studies described in this review suggest that HPA axis dysfunction after brain injury is prevalent and contributes to the dynamic nature of the neuroinflammatory response to brain injury. Experimental stressors that directly engage the HPA axis represent important areas for future research to better define the role of stress-immune pathways in mediating outcome following TBI.
Collapse
Affiliation(s)
- Zoe M Tapp
- Department of Neuroscience, Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Jonathan P Godbout
- Department of Neuroscience, Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Olga N Kokiko-Cochran
- Department of Neuroscience, Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
58
|
Cenciarini M, Valentino M, Belia S, Sforna L, Rosa P, Ronchetti S, D'Adamo MC, Pessia M. Dexamethasone in Glioblastoma Multiforme Therapy: Mechanisms and Controversies. Front Mol Neurosci 2019; 12:65. [PMID: 30983966 PMCID: PMC6449729 DOI: 10.3389/fnmol.2019.00065] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 02/26/2019] [Indexed: 12/25/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and malignant of the glial tumors. The world-wide estimates of new cases and deaths annually are remarkable, making GBM a crucial public health issue. Despite the combination of radical surgery, radio and chemotherapy prognosis is extremely poor (median survival is approximately 1 year). Thus, current therapeutic interventions are highly unsatisfactory. For many years, GBM-induced brain oedema and inflammation have been widely treated with dexamethasone (DEX), a synthetic glucocorticoid (GC). A number of studies have reported that DEX also inhibits GBM cell proliferation and migration. Nevertheless, recent controversial results provided by different laboratories have challenged the widely accepted dogma concerning DEX therapy for GBM. Here, we have reviewed the main clinical features and genetic and epigenetic abnormalities underlying GBM. Finally, we analyzed current notions and concerns related to DEX effects on cerebral oedema, cancer cell proliferation and migration and clinical outcome.
Collapse
Affiliation(s)
- Marta Cenciarini
- Section of Physiology and Biochemistry, Department of Experimental Medicine, University of Perugia School of Medicine, Perugia, Italy
| | - Mario Valentino
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - Silvia Belia
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Luigi Sforna
- Section of Physiology and Biochemistry, Department of Experimental Medicine, University of Perugia School of Medicine, Perugia, Italy
| | - Paolo Rosa
- Department of Medical-Surgical Sciences and Biotechnologies, University of Rome "Sapienza", Polo Pontino, Latina, Italy
| | - Simona Ronchetti
- Section of Pharmacology, Department of Medicine, University of Perugia School of Medicine, Perugia, Italy
| | - Maria Cristina D'Adamo
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - Mauro Pessia
- Section of Physiology and Biochemistry, Department of Experimental Medicine, University of Perugia School of Medicine, Perugia, Italy.,Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| |
Collapse
|
59
|
Yan BC, Xu P, Gao M, Wang J, Jiang D, Zhu X, Won MH, Su PQ. Changes in the Blood-Brain Barrier Function Are Associated With Hippocampal Neuron Death in a Kainic Acid Mouse Model of Epilepsy. Front Neurol 2018; 9:775. [PMID: 30258402 PMCID: PMC6143688 DOI: 10.3389/fneur.2018.00775] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 08/27/2018] [Indexed: 12/19/2022] Open
Abstract
The kainic acid (KA)-induced epilepsy experimental model is widely used to study the mechanisms underlying this disorder. Recently, the blood-brain barrier (BBB) has become an innovative alternative treatment target for epilepsy patients. KA causes neuronal injury and BBB damage in this experimental epilepsy model but the mechanisms underlying epilepsy-related neuronal injury, autophagy, and BBB damage remain unclear. Therefore, the present study investigated the relationships among neuronal injury, the expressions of autophagy-related proteins, and changes in BBB-related proteins during the acute phase of epilepsy to further understand the mechanisms and pharmacotherapy of epilepsy. NeuN immunohistochemistry and Fluoro-Jade B (FJ-B) staining in the hippocampal CA3 region revealed that neuronal death induced by intraventricular injections of 10 μg/kg KA was greater than that induced by 3 μg/kg KA. In addition, there were transient increases in the levels of microtubule-associated protein light chain 3-II (LC3I/II) and Beclin-1, which are autophagy-related proteins involved in neuronal death, in this region 24 h after the administration of 10 μg/kg KA. There were also morphological changes in BBB-related cells such as astrocytes, endothelial cells (ECs), and tight junctions (TJs). More specifically, there was a significant increase in the activation of astrocytes 72 h after the administration of 10 μg/kg KA as well as continuous increases in the expressions of platelet endothelial cell adhesion molecule-1 (PECAM-1) and BBB-related TJ proteins (Zonula occludens-1 and Claudin-5) until 72 h after KA treatment. These results suggest that the overexpression of autophagy-related proteins and astrocytes and transient increases in the expressions of BBB-related TJ proteins may be closely related to autophagic neuronal injury. These findings provide a basis for the identification of novel therapeutic targets for patients with epilepsy.
Collapse
Affiliation(s)
- Bing Chun Yan
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Department of Traditional Chinese and Western Medicine, Yangzhou University, Yangzhou, China.,Department of Integrated Traditional Chinese and Western Medicine, Medical College, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Pei Xu
- Department of Neurology, Haian Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Haian, China
| | - Manman Gao
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Department of Traditional Chinese and Western Medicine, Yangzhou University, Yangzhou, China
| | - Jie Wang
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Department of Traditional Chinese and Western Medicine, Yangzhou University, Yangzhou, China
| | - Dan Jiang
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Department of Traditional Chinese and Western Medicine, Yangzhou University, Yangzhou, China
| | - Xiaolu Zhu
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Department of Traditional Chinese and Western Medicine, Yangzhou University, Yangzhou, China
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Pei Qing Su
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Department of Traditional Chinese and Western Medicine, Yangzhou University, Yangzhou, China
| |
Collapse
|
60
|
Hemostatic nanoparticles increase survival, mitigate neuropathology and alleviate anxiety in a rodent blast trauma model. Sci Rep 2018; 8:10622. [PMID: 30006635 PMCID: PMC6045585 DOI: 10.1038/s41598-018-28848-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 06/21/2018] [Indexed: 12/22/2022] Open
Abstract
Explosions account for 79% of combat related injuries and often lead to polytrauma, a majority of which include blast-induced traumatic brain injuries (bTBI). These injuries lead to internal bleeding in multiple organs and, in the case of bTBI, long term neurological deficits. Currently, there are no treatments for internal bleeding beyond fluid resuscitation and surgery. There is also a dearth of treatments for TBI. We have developed a novel approach using hemostatic nanoparticles that encapsulate an anti-inflammatory, dexamethasone, to stop the bleeding and reduce inflammation after injury. We hypothesize that this will improve not only survival but long term functional outcomes after blast polytrauma. Poly(lactic-co-glycolic acid) hemostatic nanoparticles encapsulating dexamethasone (hDNPs) were fabricated and tested following injury along with appropriate controls. Rats were exposed to a single blast wave using an Advanced Blast Simulator, inducing primary blast lung and bTBI. Survival was elevated in the hDNPs group compared to controls. Elevated anxiety parameters were found in the controls, compared to hDNPs. Histological analysis indicated that apoptosis and blood-brain barrier disruption in the amygdala were significantly increased in the controls compared to the hDNPs and sham groups. Immediate intervention is crucial to mitigate injury mechanisms that contribute to emotional deficits.
Collapse
|
61
|
Kuriakose M, Rama Rao KV, Younger D, Chandra N. Temporal and Spatial Effects of Blast Overpressure on Blood-Brain Barrier Permeability in Traumatic Brain Injury. Sci Rep 2018; 8:8681. [PMID: 29875451 PMCID: PMC5989233 DOI: 10.1038/s41598-018-26813-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 05/01/2018] [Indexed: 12/13/2022] Open
Abstract
Blast-induced traumatic brain injury (bTBI) is a “signature wound” in soldiers during training and in combat and has also become a major cause of morbidity in civilians due to increased insurgency. This work examines the role of blood-brain barrier (BBB) disruption as a result of both primary biomechanical and secondary biochemical injury mechanisms in bTBI. Extravasation of sodium fluorescein (NaF) and Evans blue (EB) tracers were used to demonstrate that compromise of the BBB occurs immediately following shock loading, increases in intensity up to 4 hours and returns back to normal in 24 hours. This BBB compromise occurs in multiple regions of the brain in the anterior-posterior direction of the shock wave, with maximum extravasation seen in the frontal cortex. Compromise of the BBB is confirmed by (a) extravasation of tracers into the brain, (b) quantification of tight-junction proteins (TJPs) in the brain and the blood, and (c) tracking specific blood-borne molecules into the brain and brain-specific proteins into the blood. Taken together, this work demonstrates that the BBB compromise occurs as a part of initial biomechanical loading and is a function of increasing blast overpressures.
Collapse
Affiliation(s)
- Matthew Kuriakose
- Center for Injury Biomechanics, Materials and Medicine (CIBM3), Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102-1982, USA
| | - Kakulavarapu V Rama Rao
- Center for Injury Biomechanics, Materials and Medicine (CIBM3), Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102-1982, USA.
| | - Daniel Younger
- Center for Injury Biomechanics, Materials and Medicine (CIBM3), Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102-1982, USA
| | - Namas Chandra
- Center for Injury Biomechanics, Materials and Medicine (CIBM3), Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102-1982, USA.
| |
Collapse
|
62
|
Merkel SF, Andrews AM, Lutton EM, Razmpour R, Cannella LA, Ramirez SH. Dexamethasone Attenuates the Enhanced Rewarding Effects of Cocaine Following Experimental Traumatic Brain Injury. Cell Transplant 2018; 26:1178-1192. [PMID: 28933216 PMCID: PMC5447499 DOI: 10.1177/0963689717714341] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Clinical studies have identified traumatic brain injury (TBI) as a risk factor for the development of cocaine dependence. This claim is supported by our recent preclinical studies showing enhancement of the rewarding effects of cocaine in mice sustaining moderate controlled cortical impact (CCI) injury during adolescence. Here we test the efficacy of dexamethasone, an anti-inflammatory corticosteroid, to attenuate augmentation of the behavioral response to cocaine observed in CCI-TBI animals using the conditioned place preference (CPP) assay. These studies were performed in order to determine whether proinflammatory activity in the nucleus accumbens (NAc), a key brain nucleus in the reward pathway, mediates enhanced cocaine-induced CPP in adolescent animals sustaining moderate CCI-TBI. Our data reveal robust glial activation in the NAc following CCI-TBI and a significant increase in the cocaine-induced CPP of untreated CCI-TBI mice. Furthermore, our results show that dexamethasone treatment following CCI-TBI can attenuate the cocaine place preference of injured animals without producing aversion in the CPP assay. Our studies also found that dexamethasone treatment significantly reduced the expression of select immune response genes including Monocyte chemoattractant protein-1 (MCP-1/CCL2) and intercellular adhesion molecule-1 ( ICAM-1), returning their expression to control levels, which prompted an investigation of peripheral blood monocytes in dexamethasone-treated animals. Experimental findings showed that no craniectomy/dexamethasone mice had a significant increase, while CCI-TBI/dexamethasone animals had a significant decrease in the percentage of circulating nonclassical patrolling monocytes. These results suggest that a portion of these monocytes may migrate to the brain in response to CCI-TBI, potentially sparing the development of chronic neuroinflammation in regions associated with the reward circuitry such as the NAc. Overall, our findings indicate that anti-inflammatory agents, such as dexamethasone, may be effective in normalizing the rewarding effects of cocaine following CCI-TBI.
Collapse
Affiliation(s)
- Steven F Merkel
- 1 Department of Pathology and Laboratory Medicine, The Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA.,2 Center for Substance Abuse Research, The Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Allison M Andrews
- 1 Department of Pathology and Laboratory Medicine, The Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA.,2 Center for Substance Abuse Research, The Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Evan M Lutton
- 1 Department of Pathology and Laboratory Medicine, The Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Roshanak Razmpour
- 1 Department of Pathology and Laboratory Medicine, The Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Lee Anne Cannella
- 1 Department of Pathology and Laboratory Medicine, The Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA.,2 Center for Substance Abuse Research, The Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Servio H Ramirez
- 1 Department of Pathology and Laboratory Medicine, The Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA.,2 Center for Substance Abuse Research, The Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA.,3 Shriners Hospitals Pediatric Research Center, The Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| |
Collapse
|
63
|
Lieberman NAP, Vitanza NA, Crane CA. Immunotherapy for brain tumors: understanding early successes and limitations. Expert Rev Neurother 2018; 18:251-259. [DOI: 10.1080/14737175.2018.1425617] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Nicole A. P. Lieberman
- Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, Seattle, WA, USA
| | - Nicholas A. Vitanza
- Division of Hematology/Oncology, Department of Pediatrics, Seattle Children's Hospital, University of Washington School of Medicine, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Courtney A. Crane
- Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, Seattle, WA, USA
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
64
|
Bai W, Zhou YG. Homeostasis of the Intraparenchymal-Blood Glutamate Concentration Gradient: Maintenance, Imbalance, and Regulation. Front Mol Neurosci 2017; 10:400. [PMID: 29259540 PMCID: PMC5723322 DOI: 10.3389/fnmol.2017.00400] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 11/20/2017] [Indexed: 12/25/2022] Open
Abstract
It is widely accepted that glutamate is the most important excitatory neurotransmitter in the central nervous system (CNS). However, there is also a large amount of glutamate in the blood. Generally, the concentration gradient of glutamate between intraparenchymal and blood environments is stable. However, this gradient is dramatically disrupted under a variety of pathological conditions, resulting in an amplifying cascade that causes a series of pathological reactions in the CNS and peripheral organs. This eventually seriously worsens a patient’s prognosis. These two “isolated” systems are rarely considered as a whole even though they mutually influence each other. In this review, we summarize what is currently known regarding the maintenance, imbalance and regulatory mechanisms that control the intraparenchymal-blood glutamate concentration gradient, discuss the interrelationships between these systems and further explore their significance in clinical practice.
Collapse
Affiliation(s)
- Wei Bai
- Molecular Biology Center, State Key Laboratory of Trauma, Burn, and Combined Injury, Research Institute of Surgery and Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yuan-Guo Zhou
- Molecular Biology Center, State Key Laboratory of Trauma, Burn, and Combined Injury, Research Institute of Surgery and Daping Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
65
|
Na W, Shin JY, Lee JY, Jeong S, Kim WS, Yune TY, Ju BG. Dexamethasone suppresses JMJD3 gene activation via a putative negative glucocorticoid response element and maintains integrity of tight junctions in brain microvascular endothelial cells. J Cereb Blood Flow Metab 2017; 37:3695-3708. [PMID: 28338398 PMCID: PMC5718327 DOI: 10.1177/0271678x17701156] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The blood-brain barrier (BBB) exhibits a highly selective permeability to support the homeostasis of the central nervous system (CNS). The tight junctions in the BBB microvascular endothelial cells seal the paracellular space to prevent diffusion. Thus, disruption of tight junctions results in harmful effects in CNS diseases and injuries. It has recently been demonstrated that glucocorticoids have beneficial effects on maintaining tight junctions in both in vitro cell and in vivo animal models. In the present study, we found that dexamethasone suppresses the expression of JMJD3, a histone H3K27 demethylase, via the recruitment of glucocorticoid receptor α (GRα) and nuclear receptor co-repressor (N-CoR) to the negative glucocorticoid response element (nGRE) in the upstream region of JMJD3 gene in brain microvascular endothelial cells subjected to TNFα treatment. The decreased JMJD3 gene expression resulted in the suppression of MMP-2, MMP-3, and MMP-9 gene activation. Dexamethasone also activated the expression of the claudin 5 and occludin genes. Collectively, dexamethasone attenuated the disruption of the tight junctions in the brain microvascular endothelial cells subjected to TNFα treatment. Therefore, glucocorticoids may help to preserve the integrity of the tight junctions in the BBB via transcriptional and post-translational regulation following CNS diseases and injuries.
Collapse
Affiliation(s)
- Wonho Na
- 1 Department of Life Science, Sogang University, Seoul, Korea
| | - Jee Y Shin
- 1 Department of Life Science, Sogang University, Seoul, Korea
| | - Jee Y Lee
- 2 Age-Related and Brain Diseases Research Center, Kyung Hee University, Seoul, Korea
| | - Sangyun Jeong
- 3 Department of Molecular Biology, Chonbuk National University, Jeonju, Korea
| | - Won-Sun Kim
- 1 Department of Life Science, Sogang University, Seoul, Korea
| | - Tae Y Yune
- 2 Age-Related and Brain Diseases Research Center, Kyung Hee University, Seoul, Korea.,4 Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, Korea
| | - Bong-Gun Ju
- 1 Department of Life Science, Sogang University, Seoul, Korea
| |
Collapse
|
66
|
Shen M, Wang S, Wen X, Han XR, Wang YJ, Zhou XM, Zhang MH, Wu DM, Lu J, Zheng YL. RETRACTED: Dexmedetomidine exerts neuroprotective effect via the activation of the PI3K/Akt/mTOR signaling pathway in rats with traumatic brain injury. Biomed Pharmacother 2017; 95:885-893. [PMID: 28903184 DOI: 10.1016/j.biopha.2017.08.125] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 08/16/2017] [Accepted: 08/29/2017] [Indexed: 11/24/2022] Open
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Editor-in-Chief. Concern was raised about the reliability of the Western blot results in Figures 3A, 5C and 7A which appear to have a similar phenotype as many other publications, as detailed here: https://pubpeer.com/publications/7D9475A7397928053FFE9442F8E943; and here: https://docs.google.com/spreadsheets/d/1r0MyIYpagBc58BRF9c3luWNlCX8VUvUuPyYYXzxWvgY/edit#gid=262337249. Several additional suspected image duplication issues were also identified in Figures 3A, 5A, and 7A. The journal requested the corresponding authors comment on these concerns and provide the raw data. The authors were unable to provide a satisfactory explanation or the raw data. The Supervision Committee of the National Natural Science Foundation of China launched an investigation into several papers of Jiangsu Normal University, including this one, and found evidence of "Falsification of pictures or data, fabrication of research process, use of others' signatures without consent, and false information in project final reports", as detailed here: https://www.nsfc.gov.cn/publish/portal0/tab442/info85495.htm. The Academic Committee at Jiangsu Normal University requested retraction of the article. The Editor-in-Chief assessed the case and decided to retract the article.
Collapse
Affiliation(s)
- Min Shen
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou 221116, PR China
| | - Shan Wang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou 221116, PR China
| | - Xin Wen
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou 221116, PR China
| | - Xin-Rui Han
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou 221116, PR China
| | - Yong-Jian Wang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou 221116, PR China
| | - Xiu-Min Zhou
- Department of Anesthesiology, Tangshan Gongren Hospital, Tangshan 063000, PR China
| | - Man-He Zhang
- Department of Anesthesiology, Tangshan Gongren Hospital, Tangshan 063000, PR China
| | - Dong-Mei Wu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou 221116, PR China.
| | - Jun Lu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou 221116, PR China.
| | - Yuan-Lin Zheng
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou 221116, PR China.
| |
Collapse
|
67
|
Sawyer TW, Ritzel DV, Wang Y, Josey T, Villanueva M, Nelson P, Song Y, Shei Y, Hennes G, Vair C, Parks S, Fan C, McLaws L. Primary Blast Causes Delayed Effects without Cell Death in Shell-Encased Brain Cell Aggregates. J Neurotrauma 2017; 35:174-186. [PMID: 28726571 DOI: 10.1089/neu.2016.4961] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Previous work in this laboratory used underwater explosive exposures to isolate the effects of shock-induced principle stress without shear on rat brain aggregate cultures. The current study has utilized simulated air blast to expose aggregates in suspension and enclosed within a spherical shell, enabling the examination of a much more complex biomechanical insult. Culture medium-filled spheres were exposed to single pulse overpressures of 15-30 psi (∼6-7 msec duration) and measurements within the sphere at defined sites showed complex and spatially dependent pressure changes. When brain aggregates were exposed to similar conditions, no cell death was observed and no changes in several commonly used biomarkers of traumatic brain injury (TBI) were noted. However, similarly to underwater blast, immediate and transient increases in the protein kinase B signaling pathway were observed at early time-points (3 days). In contrast, the oligodendrocyte marker 2',3'-cyclic nucleotide 3'-phosphodiesterase, as well as vascular endothelial growth factor, both displayed markedly delayed (14-28 days) and pressure-dependent responses. The imposition of a spherical shell between the single pulse shock wave and the target brain tissue introduces greatly increased complexity to the insult. This work shows that brain tissue can not only discriminate the nature of the pressure changes it experiences, but that a portion of its response is significantly delayed. These results have mechanistic implications for the study of primary blast-induced TBI and also highlight the importance of rigorously characterizing the actual pressure variations experienced by target tissue in primary blast studies.
Collapse
Affiliation(s)
- Thomas W Sawyer
- 1 Defence Research and Development Canada, Suffield Research Center , Medicine Hat, Alberta, Canada
| | | | - Yushan Wang
- 1 Defence Research and Development Canada, Suffield Research Center , Medicine Hat, Alberta, Canada
| | - Tyson Josey
- 1 Defence Research and Development Canada, Suffield Research Center , Medicine Hat, Alberta, Canada
| | - Mercy Villanueva
- 1 Defence Research and Development Canada, Suffield Research Center , Medicine Hat, Alberta, Canada
| | - Peggy Nelson
- 1 Defence Research and Development Canada, Suffield Research Center , Medicine Hat, Alberta, Canada
| | - Yanfeng Song
- 1 Defence Research and Development Canada, Suffield Research Center , Medicine Hat, Alberta, Canada
| | - Yimin Shei
- 1 Defence Research and Development Canada, Suffield Research Center , Medicine Hat, Alberta, Canada
| | - Grant Hennes
- 1 Defence Research and Development Canada, Suffield Research Center , Medicine Hat, Alberta, Canada
| | - Cory Vair
- 1 Defence Research and Development Canada, Suffield Research Center , Medicine Hat, Alberta, Canada
| | | | - Changyang Fan
- 4 Canada West Biosciences , Camrose, Alberta, Canada
| | - Lori McLaws
- 1 Defence Research and Development Canada, Suffield Research Center , Medicine Hat, Alberta, Canada
| |
Collapse
|
68
|
Eles JR, Vazquez AL, Snyder NR, Lagenaur C, Murphy MC, Kozai TDY, Cui XT. Neuroadhesive L1 coating attenuates acute microglial attachment to neural electrodes as revealed by live two-photon microscopy. Biomaterials 2016; 113:279-292. [PMID: 27837661 DOI: 10.1016/j.biomaterials.2016.10.054] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 10/26/2016] [Accepted: 10/30/2016] [Indexed: 12/15/2022]
Abstract
Implantable neural electrode technologies for chronic neural recordings can restore functional control to paralysis and limb loss victims through brain-machine interfaces. These probes, however, have high failure rates partly due to the biological responses to the probe which generate an inflammatory scar and subsequent neuronal cell death. L1 is a neuronal specific cell adhesion molecule and has been shown to minimize glial scar formation and promote electrode-neuron integration when covalently attached to the surface of neural probes. In this work, the acute microglial response to L1-coated neural probes was evaluated in vivo by implanting coated devices into the cortex of mice with fluorescently labeled microglia, and tracking microglial dynamics with multi-photon microscopy for the ensuing 6 h in order to understand L1's cellular mechanisms of action. Microglia became activated immediately after implantation, extending processes towards both L1-coated and uncoated control probes at similar velocities. After the processes made contact with the probes, microglial processes expanded to cover 47.7% of the control probes' surfaces. For L1-coated probes, however, there was a statistically significant 83% reduction in microglial surface coverage. This effect was sustained through the experiment. At 6 h post-implant, the radius of microglia activation was reduced for the L1 probes by 20%, shifting from 130.0 to 103.5 μm with the coating. Microglia as far as 270 μm from the implant site displayed significantly lower morphological characteristics of activation for the L1 group. These results suggest that the L1 surface treatment works in an acute setting by microglial mediated mechanisms.
Collapse
Affiliation(s)
- James R Eles
- Bioengineering, University of Pittsburgh, United States; Center for the Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, United States
| | - Alberto L Vazquez
- Bioengineering, University of Pittsburgh, United States; Radiology, University of Pittsburgh, United States; Neurobiology, University of Pittsburgh, United States
| | - Noah R Snyder
- Bioengineering, University of Pittsburgh, United States; Center for the Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, United States
| | - Carl Lagenaur
- Neurobiology, University of Pittsburgh, United States
| | | | - Takashi D Y Kozai
- Bioengineering, University of Pittsburgh, United States; Center for the Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, United States; McGowan Institute for Regenerative Medicine, University of Pittsburgh, United States; NeuroTech Center of the University of Pittsburgh Brain Institute, United States.
| | - X Tracy Cui
- Bioengineering, University of Pittsburgh, United States; Center for the Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, United States; McGowan Institute for Regenerative Medicine, University of Pittsburgh, United States.
| |
Collapse
|
69
|
Salvador E, Burek M, Förster CY. Tight Junctions and the Tumor Microenvironment. CURRENT PATHOBIOLOGY REPORTS 2016; 4:135-145. [PMID: 27547510 PMCID: PMC4978755 DOI: 10.1007/s40139-016-0106-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
PURPOSE OF REVIEW Tight junctions (TJs) are specialized differentiations of epithelial and endothelial cell membranes. TJs play an important role in the adhesion of cells and their interaction with each other. Most cancers originate from epithelial cells. Thus, it is of significance to examine the role of TJs in the tumor microenvironment (TME) and how they affect cancer metastasis. RECENT FINDINGS In epithelium-derived cancers, intactness of the primary tumor mass is influenced by intercellular structures as well as cell-to-cell adhesion. Irregularities of these factors may lead to tumor dissociation and subsequent metastasis. Low expression of TJs is observed among highly metastatic cancer cells. SUMMARY In this review, we summarized findings from current literature in consideration of the role of TJs in relation to the TME and cancer. Deeper understanding of the mechanisms leading to TJ dysregulation is needed to facilitate the design and conceptualization of new and better therapeutic strategies for cancer.
Collapse
Affiliation(s)
- Ellaine Salvador
- Department of Anesthesia and Critical Care, University of Wurzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany
| | - Malgorzata Burek
- Department of Anesthesia and Critical Care, University of Wurzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany
| | - Carola Y. Förster
- Department of Anesthesia and Critical Care, University of Wurzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany
| |
Collapse
|
70
|
Inhibition of myeloid differentiation factor 88(MyD88) by ST2825 provides neuroprotection after experimental traumatic brain injury in mice. Brain Res 2016; 1643:130-9. [PMID: 27155455 DOI: 10.1016/j.brainres.2016.05.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Revised: 04/11/2016] [Accepted: 05/03/2016] [Indexed: 11/24/2022]
Abstract
Myeloid differentiation factor 88(MyD88) is an endogenous adaptor protein that plays an important role in coordinating intracellular inflammatory responses induced by agonists of the Toll-like receptor and interleukin-1 receptor families. MyD88 has been reported to be essential for neuronal death in animal models and may represent a therapeutic target for pharmacologic inhibition following traumatic brain injury (TBI). The purpose of the current study was to investigate the neuroprotective effect of MyD88 specific inhibitor ST2825 in an experimental mouse model of TBI. Intracerebroventricular (ICV) injection of high concentration (20μg/μL) ST2825 (15min post TBI) attenuated the development of TBI in mice, markedly improved neurological function and reduced brain edema. Decreased neural apoptosis and increased neuronal survival were also observed. Biochemically, the high concentration of ST2825 significantly reduced the levels of MyD88, further decreased TAK1, p-TAK1, nuclear p65 and increased IκB-α. Additionally, ST2825 significantly reduced the levels of Iba-1 and inflammatory factors TNF-α and IL-1β. These data provide an experimental rationale for evaluation of MyD88 as a drug target and highlight the potential therapeutic implications of ST2825 in TBI.
Collapse
|
71
|
Kozai TDY, Jaquins-Gerstl AS, Vazquez AL, Michael AC, Cui XT. Dexamethasone retrodialysis attenuates microglial response to implanted probes in vivo. Biomaterials 2016; 87:157-169. [PMID: 26923363 PMCID: PMC4866508 DOI: 10.1016/j.biomaterials.2016.02.013] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 02/04/2016] [Accepted: 02/07/2016] [Indexed: 12/19/2022]
Abstract
Intracortical neural probes enable researchers to measure electrical and chemical signals in the brain. However, penetration injury from probe insertion into living brain tissue leads to an inflammatory tissue response. In turn, microglia are activated, which leads to encapsulation of the probe and release of pro-inflammatory cytokines. This inflammatory tissue response alters the electrical and chemical microenvironment surrounding the implanted probe, which may in turn interfere with signal acquisition. Dexamethasone (Dex), a potent anti-inflammatory steroid, can be used to prevent and diminish tissue disruptions caused by probe implantation. Herein, we report retrodialysis administration of dexamethasone while using in vivo two-photon microscopy to observe real-time microglial reaction to the implanted probe. Microdialysis probes under artificial cerebrospinal fluid (aCSF) perfusion with or without Dex were implanted into the cortex of transgenic mice that express GFP in microglia under the CX3CR1 promoter and imaged for 6 h. Acute morphological changes in microglia were evident around the microdialysis probe. The radius of microglia activation was 177.1 μm with aCSF control compared to 93.0 μm with Dex perfusion. T-stage morphology and microglia directionality indices were also used to quantify the microglial response to implanted probes as a function of distance. Dexamethasone had a profound effect on the microglia morphology and reduced the acute activation of these cells.
Collapse
Affiliation(s)
- Takashi D Y Kozai
- Bioengineering, University of Pittsburgh, United States; Center for the Neural Basis of Cognition, United States; McGowan Institute for Regenerative Medicine, University of Pittsburgh, United States; Neurotech Center of the University of Pittsburgh Brain Institute, United States.
| | | | - Alberto L Vazquez
- Bioengineering, University of Pittsburgh, United States; Center for the Neural Basis of Cognition, United States; Radiology, University of Pittsburgh, United States
| | | | - X Tracy Cui
- Bioengineering, University of Pittsburgh, United States; Center for the Neural Basis of Cognition, United States; McGowan Institute for Regenerative Medicine, University of Pittsburgh, United States.
| |
Collapse
|
72
|
Shi Y, Zhang L, Pu H, Mao L, Hu X, Jiang X, Xu N, Stetler RA, Zhang F, Liu X, Leak RK, Keep RF, Ji X, Chen J. Rapid endothelial cytoskeletal reorganization enables early blood-brain barrier disruption and long-term ischaemic reperfusion brain injury. Nat Commun 2016; 7:10523. [PMID: 26813496 PMCID: PMC4737895 DOI: 10.1038/ncomms10523] [Citation(s) in RCA: 306] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 12/22/2015] [Indexed: 12/26/2022] Open
Abstract
The mechanism and long-term consequences of early blood–brain barrier (BBB) disruption after cerebral ischaemic/reperfusion (I/R) injury are poorly understood. Here we discover that I/R induces subtle BBB leakage within 30–60 min, likely independent of gelatinase B/MMP-9 activities. The early BBB disruption is caused by the activation of ROCK/MLC signalling, persistent actin polymerization and the disassembly of junctional proteins within microvascular endothelial cells (ECs). Furthermore, the EC alterations facilitate subsequent infiltration of peripheral immune cells, including MMP-9-producing neutrophils/macrophages, resulting in late-onset, irreversible BBB damage. Inactivation of actin depolymerizing factor (ADF) causes sustained actin polymerization in ECs, whereas EC-targeted overexpression of constitutively active mutant ADF reduces actin polymerization and junctional protein disassembly, attenuates both early- and late-onset BBB impairment, and improves long-term histological and neurological outcomes. Thus, we identify a previously unexplored role for early BBB disruption in stroke outcomes, whereby BBB rupture may be a cause rather than a consequence of parenchymal cell injury. Matrix metalloproteinases (MMPs) released from infiltrating immune cells are a major contributor to blood-brain barrier (BBB) breakdown following stroke. Here, the authors identify an early, MMP-independent BBB breakdown mechanism caused by rapid cytoskeletal rearrangements in endothelial cells, which could be inhibited by ADF.
Collapse
Affiliation(s)
- Yejie Shi
- Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA.,China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Lili Zhang
- Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA.,State Key Laboratory of Medical Neurobiology, Institute of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China.,Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, Pennsylvania 15261, USA
| | - Hongjian Pu
- Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA.,State Key Laboratory of Medical Neurobiology, Institute of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Leilei Mao
- Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA.,State Key Laboratory of Medical Neurobiology, Institute of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Xiaoming Hu
- Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA.,State Key Laboratory of Medical Neurobiology, Institute of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China.,Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, Pennsylvania 15261, USA
| | - Xiaoyan Jiang
- Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA.,State Key Laboratory of Medical Neurobiology, Institute of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Na Xu
- State Key Laboratory of Medical Neurobiology, Institute of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - R Anne Stetler
- Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA.,State Key Laboratory of Medical Neurobiology, Institute of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China.,Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, Pennsylvania 15261, USA
| | - Feng Zhang
- Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA.,State Key Laboratory of Medical Neurobiology, Institute of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China.,Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, Pennsylvania 15261, USA
| | - Xiangrong Liu
- Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA.,China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Rehana K Leak
- Division of Pharmaceutical Sciences, Mylan School of Pharmacy, Duquesne University, Pittsburgh, Pennsylvania 15282, USA
| | - Richard F Keep
- Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Xunming Ji
- China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Jun Chen
- Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA.,State Key Laboratory of Medical Neurobiology, Institute of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China.,Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, Pennsylvania 15261, USA
| |
Collapse
|
73
|
Hue CD, Cho FS, Cao S, Nicholls RE, Vogel Iii EW, Sibindi C, Arancio O, Dale Bass CR, Meaney DF, Morrison Iii B. Time Course and Size of Blood-Brain Barrier Opening in a Mouse Model of Blast-Induced Traumatic Brain Injury. J Neurotrauma 2015; 33:1202-11. [PMID: 26414212 DOI: 10.1089/neu.2015.4067] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
An increasing number of studies have reported blood-brain barrier (BBB) dysfunction after blast-induced traumatic brain injury (bTBI). Despite this evidence, there is limited quantitative understanding of the extent of BBB opening and the time course of damage after blast injury. In addition, many studies do not report kinematic parameters of head motion, making it difficult to separate contributions of primary and tertiary blast-loading. Detailed characterization of blast-induced BBB damage may hold important implications for serum constituents that may potentially cross the compromised barrier and contribute to neurotoxicity, neuroinflammation, and persistent neurologic deficits. Using an in vivo bTBI model, systemic administration of sodium fluorescein (NaFl; 376 Da), Evans blue (EB; 69 kDa when bound to serum albumin), and dextrans (3-500 kDa) was used to estimate the pore size of BBB opening and the time required for recovery. Exposure to blast with 272 ± 6 kPa peak overpressure, 0.69 ± 0.01 ms duration, and 65 ± 1 kPa*ms impulse resulted in significant acute extravasation of NaFl, 3 kDa dextran, and EB. However, there was no significant acute extravasation of 70 kDa or 500 kDa dextrans, and minimal to no extravasation of NaFl, dextrans, or EB 1 day after exposure. This study presents a detailed analysis of the time course and pore size of BBB opening after bTBI, supported by a characterization of kinematic parameters associated with blast-induced head motion.
Collapse
Affiliation(s)
- Christopher D Hue
- 1 Department of Biomedical Engineering, Columbia University , New York, New York
| | - Frances S Cho
- 1 Department of Biomedical Engineering, Columbia University , New York, New York
| | - Siqi Cao
- 1 Department of Biomedical Engineering, Columbia University , New York, New York
| | - Russell E Nicholls
- 2 Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University , New York, New York
| | - Edward W Vogel Iii
- 1 Department of Biomedical Engineering, Columbia University , New York, New York
| | - Cosmas Sibindi
- 1 Department of Biomedical Engineering, Columbia University , New York, New York
| | - Ottavio Arancio
- 2 Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University , New York, New York
| | - Cameron R Dale Bass
- 3 Department of Biomedical Engineering, Duke University , Durham, North Carolina
| | - David F Meaney
- 4 Department of Bioengineering, University of Pennsylvania , Philadelphia, Pennsylvania
| | - Barclay Morrison Iii
- 1 Department of Biomedical Engineering, Columbia University , New York, New York
| |
Collapse
|