51
|
Feng Y, Wang T, Li Y, Li J, Wu J, Wu B, Jiang L, Wang C. Steering Metallofullerene Electron Spin in Porous Metal–Organic Framework. J Am Chem Soc 2015; 137:15055-60. [DOI: 10.1021/jacs.5b10796] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Yongqiang Feng
- Beijing National Laboratory
for Molecular Sciences, Key Laboratory of Molecular Nanostructure
and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Taishan Wang
- Beijing National Laboratory
for Molecular Sciences, Key Laboratory of Molecular Nanostructure
and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yongjian Li
- Beijing National Laboratory
for Molecular Sciences, Key Laboratory of Molecular Nanostructure
and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jie Li
- Beijing National Laboratory
for Molecular Sciences, Key Laboratory of Molecular Nanostructure
and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jingyi Wu
- Beijing National Laboratory
for Molecular Sciences, Key Laboratory of Molecular Nanostructure
and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Bo Wu
- Beijing National Laboratory
for Molecular Sciences, Key Laboratory of Molecular Nanostructure
and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Li Jiang
- Beijing National Laboratory
for Molecular Sciences, Key Laboratory of Molecular Nanostructure
and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Chunru Wang
- Beijing National Laboratory
for Molecular Sciences, Key Laboratory of Molecular Nanostructure
and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
52
|
Zhang J, Suter D. Experimental protection of two-qubit quantum gates against environmental noise by dynamical decoupling. PHYSICAL REVIEW LETTERS 2015; 115:110502. [PMID: 26406814 DOI: 10.1103/physrevlett.115.110502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Indexed: 06/05/2023]
Abstract
Hybrid systems consisting of different types of qubits are promising for building quantum computers if they combine useful properties of their constituent qubits. However, they also pose additional challenges if one type of qubits is more susceptible to environmental noise than the others. Dynamical decoupling can help to protect such systems by reducing the decoherence due to the environmental noise, but the protection must be designed such that it does not interfere with the control fields driving the logical operations. Here, we test such a protection scheme on a quantum register consisting of the electronic and nuclear spins of a nitrogen-vacancy center in diamond. The results show that processing is compatible with protection: The dephasing time was extended almost to the limit given by the longitudinal relaxation time of the electron spin.
Collapse
Affiliation(s)
- Jingfu Zhang
- Fakultät Physik, Technische Universität Dortmund, D-44221 Dortmund, Germany
| | - Dieter Suter
- Fakultät Physik, Technische Universität Dortmund, D-44221 Dortmund, Germany
| |
Collapse
|
53
|
Kong F, Ju C, Huang P, Wang P, Kong X, Shi F, Jiang L, Du J. Experimental Realization of High-Efficiency Counterfactual Computation. PHYSICAL REVIEW LETTERS 2015; 115:080501. [PMID: 26340170 DOI: 10.1103/physrevlett.115.080501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Indexed: 06/05/2023]
Abstract
Counterfactual computation (CFC) exemplifies the fascinating quantum process by which the result of a computation may be learned without actually running the computer. In previous experimental studies, the counterfactual efficiency is limited to below 50%. Here we report an experimental realization of the generalized CFC protocol, in which the counterfactual efficiency can break the 50% limit and even approach unity in principle. The experiment is performed with the spins of a negatively charged nitrogen-vacancy color center in diamond. Taking advantage of the quantum Zeno effect, the computer can remain in the not-running subspace due to the frequent projection by the environment, while the computation result can be revealed by final detection. The counterfactual efficiency up to 85% has been demonstrated in our experiment, which opens the possibility of many exciting applications of CFC, such as high-efficiency quantum integration and imaging.
Collapse
Affiliation(s)
- Fei Kong
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China
| | - Chenyong Ju
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China
- Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Pu Huang
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China
- Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Pengfei Wang
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China
- Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Xi Kong
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China
- Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Fazhan Shi
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China
- Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Liang Jiang
- Department of Applied Physics, Yale University, New Haven, Connecticut 06511, USA
| | - Jiangfeng Du
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China
- Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
54
|
Wang WB, Zu C, He L, Zhang WG, Duan LM. Memory-built-in quantum cloning in a hybrid solid-state spin register. Sci Rep 2015; 5:12203. [PMID: 26178617 PMCID: PMC4503958 DOI: 10.1038/srep12203] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 06/17/2015] [Indexed: 11/09/2022] Open
Abstract
As a way to circumvent the quantum no-cloning theorem, approximate quantum cloning protocols have received wide attention with remarkable applications. Copying of quantum states to memory qubits provides an important strategy for eavesdropping in quantum cryptography. We report an experiment that realizes cloning of quantum states from an electron spin to a nuclear spin in a hybrid solid-state spin register with near-optimal fidelity. The nuclear spin provides an ideal memory qubit at room temperature, which stores the cloned quantum states for a millisecond under ambient conditions, exceeding the lifetime of the original quantum state carried by the electron spin by orders of magnitude. The realization of a cloning machine with built-in quantum memory provides a key step for application of quantum cloning in quantum information science.
Collapse
Affiliation(s)
- W-B Wang
- Center for Quantum Information, IIIS, Tsinghua University, Beijing 100084, PR China
| | - C Zu
- Center for Quantum Information, IIIS, Tsinghua University, Beijing 100084, PR China
| | - L He
- Center for Quantum Information, IIIS, Tsinghua University, Beijing 100084, PR China
| | - W-G Zhang
- Center for Quantum Information, IIIS, Tsinghua University, Beijing 100084, PR China
| | - L-M Duan
- 1] Center for Quantum Information, IIIS, Tsinghua University, Beijing 100084, PR China [2] Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|