51
|
Lobo MJ, Reverte-Salisa L, Chao YC, Koschinski A, Gesellchen F, Subramaniam G, Jiang H, Pace S, Larcom N, Paolocci E, Pfeifer A, Zanivan S, Zaccolo M. Phosphodiesterase 2A2 regulates mitochondria clearance through Parkin-dependent mitophagy. Commun Biol 2020; 3:596. [PMID: 33087821 PMCID: PMC7578833 DOI: 10.1038/s42003-020-01311-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 09/17/2020] [Indexed: 02/07/2023] Open
Abstract
Programmed degradation of mitochondria by mitophagy, an essential process to maintain mitochondrial homeostasis, is not completely understood. Here we uncover a regulatory process that controls mitophagy and involves the cAMP-degrading enzyme phosphodiesterase 2A2 (PDE2A2). We find that PDE2A2 is part of a mitochondrial signalosome at the mitochondrial inner membrane where it interacts with the mitochondrial contact site and organizing system (MICOS). As part of this compartmentalised signalling system PDE2A2 regulates PKA-mediated phosphorylation of the MICOS component MIC60, resulting in modulation of Parkin recruitment to the mitochondria and mitophagy. Inhibition of PDE2A2 is sufficient to regulate mitophagy in the absence of other triggers, highlighting the physiological relevance of PDE2A2 in this process. Pharmacological inhibition of PDE2 promotes a 'fat-burning' phenotype to retain thermogenic beige adipocytes, indicating that PDE2A2 may serve as a novel target with potential for developing therapies for metabolic disorders.
Collapse
Affiliation(s)
- Miguel J Lobo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | | | - Ying-Chi Chao
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Andreas Koschinski
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Frank Gesellchen
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK
| | | | - He Jiang
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK
| | - Samuel Pace
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Natasha Larcom
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Ester Paolocci
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Alexander Pfeifer
- Institute of Pharmacology and Toxicology University of Bonn, Bonn, Germany
| | - Sara Zanivan
- Cancer Research UK Beatson Institute, University of Glasgow, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Manuela Zaccolo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.
| |
Collapse
|
52
|
Yang Y, Yang Y, Yang J, Zhao X, Wei X. Tumor Microenvironment in Ovarian Cancer: Function and Therapeutic Strategy. Front Cell Dev Biol 2020; 8:758. [PMID: 32850861 PMCID: PMC7431690 DOI: 10.3389/fcell.2020.00758] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/20/2020] [Indexed: 02/05/2023] Open
Abstract
Ovarian cancer is one of the leading causes of death in patients with gynecological malignancy. Despite optimal cytoreductive surgery and platinum-based chemotherapy, ovarian cancer disseminates and relapses frequently, with poor prognosis. Hence, it is urgent to find new targeted therapies for ovarian cancer. Recently, the tumor microenvironment has been reported to play a vital role in the tumorigenesis of ovarian cancer, especially with discoveries from genome-, transcriptome- and proteome-wide studies; thus tumor microenvironment may present potential therapeutic target for ovarian cancer. Here, we review the interactions between the tumor microenvironment and ovarian cancer and various therapies targeting the tumor environment.
Collapse
Affiliation(s)
- Yanfei Yang
- Department of Gynecology and Obstetrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China
| | - Yang Yang
- Department of Gynecology and Obstetrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China
| | - Jing Yang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xia Zhao
- Department of Gynecology and Obstetrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
53
|
Ferofontov A, Vankova P, Man P, Giladi M, Haitin Y. Conserved cysteine dioxidation enhances membrane interaction of human Cl - intracellular channel 5. FASEB J 2020; 34:9925-9940. [PMID: 32725932 DOI: 10.1096/fj.202000399r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/21/2020] [Accepted: 04/30/2020] [Indexed: 11/11/2022]
Abstract
The human chloride intracellular channel (hCLIC) family is thought to transition between globular and membrane-associated forms by exposure of a hydrophobic surface. However, the molecular identity of this surface, and the triggering events leading to its exposure, remain elusive. Here, by combining biochemical and structural approaches, together with mass spectrometry (MS) analyses, we show that hCLIC5 is inherently flexible. X-ray crystallography revealed the existence of a globular conformation, while small-angle X-ray scattering showed additional elongated forms consisting of exposure of the conserved hydrophobic inter-domain interface to the bulk phase. Tryptophan fluorescence measurements demonstrated that the transition to the membrane-associated form is enhanced by the presence of oxidative environment and lipids. Using MS, we identified a dose-dependent oxidation of a highly conserved cysteine residue, known to play a key role in the structurally related omega-class of glutathione-S-transferases. Hydrogen/deuterium exchange MS analysis revealed that oxidation of this cysteine facilitates the exposure of the conserved hydrophobic inter-domain interface. Together, our results pinpoint an oxidation of a specific cysteine residue as a triggering mechanism initializing the molecular commitment for membrane interaction in the CLIC family.
Collapse
Affiliation(s)
- Alisa Ferofontov
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Pavla Vankova
- Division BioCeV, Institute of Microbiology of the Czech Academy of Sciences, Vestec, Czech Republic.,Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Petr Man
- Division BioCeV, Institute of Microbiology of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Moshe Giladi
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Yoni Haitin
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
54
|
Zhang X, Mao F, Wong NK, Bao Y, Lin Y, Liu K, Li J, Xiang Z, Ma H, Xiao S, Zhang Y, Yu Z. CLIC2α Chloride Channel Orchestrates Immunomodulation of Hemocyte Phagocytosis and Bactericidal Activity in Crassostrea gigas. iScience 2020; 23:101328. [PMID: 32674055 PMCID: PMC7363696 DOI: 10.1016/j.isci.2020.101328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 06/02/2020] [Accepted: 06/26/2020] [Indexed: 02/07/2023] Open
Abstract
Chloride ion plays critical roles in modulating immunological interactions. Herein, we demonstrated that the anion channel CLIC2α mediates Cl− flux to regulate hemocytes functions in the Pacific oyster (Crassostrea gigas). Specifically, during infection by Vibrio parahemolyticus, chloride influx was activated following onset of phagocytosis. Phosphorylation of Akt was stimulated by Cl− ions entering host cells, further contributing to signal transduction regulating internalization of bacteria through the PI3K/Akt signaling pathway. Concomitantly, Cl− entered phagosomes, promoted the acidification and maturation of phagosomes, and contributed to production of HOCl to eradicate engulfed bacteria. Finally, genomic screening reveals CLIC2α as a major Cl− channel gene responsible for regulating Cl− influx in oysters. Knockdown of CLIC2α predictably impeded phagosome acidification and restricted bacterial killing in oysters. In conclusion, our work has established CLIC2α as a prominent regulator of Cl− influx and thus Cl− function in C. gigas in bacterial infection contexts. Influx of chloride ions is switched on during phagocytosis in oyster hemocytes PI3K/Akt signaling pathway mediates chloride-dependent activation of phagocytosis Cl− promotes phagosomal acidification and HOCl production CLIC2α is the principal chloride channel encoding gene within oyster genome
Collapse
Affiliation(s)
- Xiangyu Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, Innovation Academy of South China Sea Ecology and Environmental Engineering (ISEE), South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou 510301, P. R. China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 510301, P. R. China; University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Fan Mao
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, Innovation Academy of South China Sea Ecology and Environmental Engineering (ISEE), South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou 510301, P. R. China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 510301, P. R. China
| | - Nai-Kei Wong
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, Innovation Academy of South China Sea Ecology and Environmental Engineering (ISEE), South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou 510301, P. R. China; National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, The Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, P. R. China
| | - Yongbo Bao
- Zhejiang Key Laboratory of Aquatic Germplasm Resources, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, P. R. China
| | - Yue Lin
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, Innovation Academy of South China Sea Ecology and Environmental Engineering (ISEE), South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou 510301, P. R. China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 510301, P. R. China; University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Kunna Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, Innovation Academy of South China Sea Ecology and Environmental Engineering (ISEE), South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou 510301, P. R. China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 510301, P. R. China; University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jun Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, Innovation Academy of South China Sea Ecology and Environmental Engineering (ISEE), South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou 510301, P. R. China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 510301, P. R. China
| | - Zhiming Xiang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, Innovation Academy of South China Sea Ecology and Environmental Engineering (ISEE), South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou 510301, P. R. China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 510301, P. R. China
| | - Haitao Ma
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, Innovation Academy of South China Sea Ecology and Environmental Engineering (ISEE), South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou 510301, P. R. China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 510301, P. R. China
| | - Shu Xiao
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, Innovation Academy of South China Sea Ecology and Environmental Engineering (ISEE), South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou 510301, P. R. China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 510301, P. R. China
| | - Yang Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, Innovation Academy of South China Sea Ecology and Environmental Engineering (ISEE), South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou 510301, P. R. China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 510301, P. R. China.
| | - Ziniu Yu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, Innovation Academy of South China Sea Ecology and Environmental Engineering (ISEE), South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou 510301, P. R. China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 510301, P. R. China.
| |
Collapse
|
55
|
Jiang Y, Wang C, Zhou S. Targeting tumor microenvironment in ovarian cancer: Premise and promise. Biochim Biophys Acta Rev Cancer 2020; 1873:188361. [PMID: 32234508 DOI: 10.1016/j.bbcan.2020.188361] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 03/27/2020] [Accepted: 03/28/2020] [Indexed: 02/05/2023]
Abstract
Ovarian cancer is the leading cause of gynecological cancer-related mortality globally. The majority of ovarian cancer patients suffer from relapse after standard of care therapies and the clinical benefits from cancer therapies are not satisfactory owing to drug resistance. Certain novel drugs targeting the components of tumor microenvironment (TME) have been approved by US Food and Drug Administration in solid cancers. As such, the passion is rekindled to exploit the role of TME in ovarian cancer progression and metastasis for discovery of novel therapeutics for this deadly disease. In the current review, we revisit the recent mechanistic insights into the contributions of TME to the development, progression, prognosis prediction and therapeutic efficacy of ovarian cancer via modulating cancer hallmarks. We also explored potentially promising predictive and prognostic biomarkers for ovarian cancer patients.
Collapse
Affiliation(s)
- Yuting Jiang
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, PR China
| | - Chengdi Wang
- Department of Respiratory and Critical Care Medicine, West China Medical School/West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shengtao Zhou
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, PR China.
| |
Collapse
|
56
|
Agioutantis PC, Kotsikoris V, Kolisis FN, Loutrari H. RNA-seq data analysis of stimulated hepatocellular carcinoma cells treated with epigallocatechin gallate and fisetin reveals target genes and action mechanisms. Comput Struct Biotechnol J 2020; 18:686-695. [PMID: 32257052 PMCID: PMC7113608 DOI: 10.1016/j.csbj.2020.03.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 03/06/2020] [Accepted: 03/11/2020] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is an essentially incurable inflammation-related cancer. We have previously shown by network analysis of proteomic data that the flavonoids epigallocatechin gallate (EGCG) and fisetin (FIS) efficiently downregulated pro-tumor cytokines released by HCC through inhibition of Akt/mTOR/RPS6 phospho-signaling. However, their mode of action at the global transcriptome level remains unclear. Herein, we endeavor to compare gene expression alterations mediated by these compounds through a comprehensive transcriptome analysis based on RNA-seq in HEP3B, a responsive HCC cell line, upon perturbation with a mixture of prototypical stimuli mimicking conditions of tumor microenvironment or under constitutive state. Analysis of RNA-seq data revealed extended changes on HEP3B transcriptome imposed by test nutraceuticals. Under stimulated conditions, EGCG and FIS significantly modified, compared to the corresponding control, the expression of 922 and 973 genes, respectively, the large majority of which (695 genes), was affected by both compounds. Hierarchical clustering based on the expression data of shared genes demonstrated an almost identical profile in nutraceutical-treated stimulated cells which was virtually opposite in cells exposed to stimuli alone. Downstream enrichment analyses of the co-modified genes uncovered significant associations with cancer-related transcription factors as well as terms of Gene Ontology/Reactome Pathways and highlighted ECM dynamics as a nodal modulation point by nutraceuticals along with angiogenesis, inflammation, cell motility and growth. RNA-seq data for selected genes were independently confirmed by RT-qPCR. Overall, the present systems approach provides novel evidence stepping up the mechanistic understanding of test nutraceuticals, thus rationalizing their clinical exploitation in new preventive/therapeutic modalities against HCC.
Collapse
Key Words
- ADAM, a disintegrin and metalloproteinase with thrombospondin motifs
- ADAMTS9, ADAM metallopeptidase with thrombospondin type 1 motif 9
- CLIC3, Chloride Intracellular Channel 3
- CTGF, Connective Tissue Growth Factor
- DEGs, differentially expressed genes
- DMSO, dimethyl sulfoxide
- ECM, extracellular matrix
- EGCG, epigallocatechin gallate
- EMT, epithelial to mesenchymal transition
- Epigallocatechin gallate
- FIS, fisetin
- Fisetin
- GO, Gene Ontology
- Gene Ontology
- HCC, hepatocellular carcinoma
- HSPA2, Heat Shock Protein Family A (Hsp70) Member 2
- HSPB1, Heat Shock Protein Family B (Small) Member 1
- Hepatocellular carcinoma
- MEM, minimum essential medium
- MMP11, Matrix Metallopeptidase 11
- MMP9, Matrix Metallopeptidase 9
- MMPs, matrix metalloproteinases
- PDGFRB, Platelet Derived Growth Factor Receptor Beta
- RNA-sequencing
- RT-qPCR, reverse transcription-quantitative real time PCR
- Reactome Pathways
- SD, standard deviation
- SEM, standard error of mean
- SERPINE1, Serpin Family E Member 1
- STIM, stimulated
- TF, transcription factor
- Transcription factors
Collapse
Affiliation(s)
- Panagiotis C Agioutantis
- G.P. Livanos and M. Simou Laboratories, 1st Department of Critical Care Medicine & Pulmonary Services, Evangelismos Hospital, Medical School, National Kapodistrian University of Athens, 3 Ploutarchou Str., Athens 10675, Greece.,Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, 5 Iroon Polytechniou Str., Zografou Campus, Athens 15780, Greece
| | - Vasilios Kotsikoris
- G.P. Livanos and M. Simou Laboratories, 1st Department of Critical Care Medicine & Pulmonary Services, Evangelismos Hospital, Medical School, National Kapodistrian University of Athens, 3 Ploutarchou Str., Athens 10675, Greece
| | - Fragiskos N Kolisis
- Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, 5 Iroon Polytechniou Str., Zografou Campus, Athens 15780, Greece
| | - Heleni Loutrari
- G.P. Livanos and M. Simou Laboratories, 1st Department of Critical Care Medicine & Pulmonary Services, Evangelismos Hospital, Medical School, National Kapodistrian University of Athens, 3 Ploutarchou Str., Athens 10675, Greece
| |
Collapse
|
57
|
Roy S, Kumar R, Mittal V, Gupta D. Classification models for Invasive Ductal Carcinoma Progression, based on gene expression data-trained supervised machine learning. Sci Rep 2020; 10:4113. [PMID: 32139710 PMCID: PMC7057992 DOI: 10.1038/s41598-020-60740-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 02/12/2020] [Indexed: 12/20/2022] Open
Abstract
Early detection of breast cancer and its correct stage determination are important for prognosis and rendering appropriate personalized clinical treatment to breast cancer patients. However, despite considerable efforts and progress, there is a need to identify the specific genomic factors responsible for, or accompanying Invasive Ductal Carcinoma (IDC) progression stages, which can aid the determination of the correct cancer stages. We have developed two-class machine-learning classification models to differentiate the early and late stages of IDC. The prediction models are trained with RNA-seq gene expression profiles representing different IDC stages of 610 patients, obtained from The Cancer Genome Atlas (TCGA). Different supervised learning algorithms were trained and evaluated with an enriched model learning, facilitated by different feature selection methods. We also developed a machine-learning classifier trained on the same datasets with training sets reduced data corresponding to IDC driver genes. Based on these two classifiers, we have developed a web-server Duct-BRCA-CSP to predict early stage from late stages of IDC based on input RNA-seq gene expression profiles. The analysis conducted by us also enables deeper insights into the stage-dependent molecular events accompanying IDC progression. The server is publicly available at http://bioinfo.icgeb.res.in/duct-BRCA-CSP.
Collapse
Affiliation(s)
- Shikha Roy
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Rakesh Kumar
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Vaibhav Mittal
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Dinesh Gupta
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India.
| |
Collapse
|
58
|
Kawai S, Fujii T, Shimizu T, Sukegawa K, Hashimoto I, Okumura T, Nagata T, Sakai H, Fujii T. Pathophysiological properties of CLIC3 chloride channel in human gastric cancer cells. J Physiol Sci 2020; 70:15. [PMID: 32066374 PMCID: PMC7026216 DOI: 10.1186/s12576-020-00740-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 02/04/2020] [Indexed: 11/24/2022]
Abstract
Pathophysiological functions of chloride intracellular channel protein 3 (CLIC3) in human gastric cancer have been unclear. In the tissue microarray analysis using 107 gastric cancer specimens, CLIC3 expression was negatively correlated with pathological tumor depth, and the patients with lower expression of CLIC3 exhibited poorer prognosis. CLIC3 was expressed in the plasma membrane of cancer cells in the tissue. CLIC3 expression was also found in a human gastric cancer cell line (MKN7). In whole-cell patch-clamp recordings of the cells expressing CLIC3, NPPB-sensitive outwardly rectifying Cl- currents were observed. Cell proliferation was significantly accelerated by knockdown of CLIC3 in MKN7 cells. On the other hand, the proliferation was attenuated by exogenous CLIC3 expression in human gastric cancer cells (KATOIII and NUGC-4) in which endogenous CLIC3 expression is negligible. Our results suggest that CLIC3 functions as a Cl- channel in the plasma membrane of gastric cancer cells and that decreased expression of CLIC3 results in unfavorable prognosis of gastric cancer patients.
Collapse
Affiliation(s)
- Shunsuke Kawai
- Department of Surgery and Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan
| | - Takuto Fujii
- Department of Pharmaceutical Physiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Takahiro Shimizu
- Department of Pharmaceutical Physiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Kenta Sukegawa
- Department of Surgery and Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan
| | - Isaya Hashimoto
- Department of Surgery and Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan
| | - Tomoyuki Okumura
- Department of Surgery and Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan
| | - Takuya Nagata
- Department of Surgery and Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan
| | - Hideki Sakai
- Department of Pharmaceutical Physiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan.
| | - Tsutomu Fujii
- Department of Surgery and Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan
| |
Collapse
|
59
|
Gururaja Rao S, Patel NJ, Singh H. Intracellular Chloride Channels: Novel Biomarkers in Diseases. Front Physiol 2020; 11:96. [PMID: 32116799 PMCID: PMC7034325 DOI: 10.3389/fphys.2020.00096] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 01/27/2020] [Indexed: 12/27/2022] Open
Abstract
Ion channels are integral membrane proteins present on the plasma membrane as well as intracellular membranes. In the human genome, there are more than 400 known genes encoding ion channel proteins. Ion channels are known to regulate several cellular, organellar, and physiological processes. Any mutation or disruption in their function can result in pathological disorders, both common or rare. Ion channels present on the plasma membrane are widely acknowledged for their role in various biological processes, but in recent years, several studies have pointed out the importance of ion channels located in intracellular organelles. However, ion channels located in intracellular organelles are not well-understood in the context of physiological conditions, such as the generation of cellular excitability and ionic homeostasis. Due to the lack of information regarding their molecular identity and technical limitations of studying them, intracellular organelle ion channels have thus far been overlooked as potential therapeutic targets. In this review, we focus on a novel class of intracellular organelle ion channels, Chloride Intracellular Ion Channels (CLICs), mainly documented for their role in cardiovascular, neurophysiology, and tumor biology. CLICs have a single transmembrane domain, and in cells, they exist in cytosolic as well as membranous forms. They are predominantly present in intracellular organelles and have recently been shown to be localized to cardiomyocyte mitochondria as well as exosomes. In fact, a member of this family, CLIC5, is the first mitochondrial chloride channel to be identified on the molecular level in the inner mitochondrial membrane, while another member, CLIC4, is located predominantly in the outer mitochondrial membrane. In this review, we discuss this unique class of intracellular chloride channels, their role in pathologies, such as cardiovascular, cancer, and neurodegenerative diseases, and the recent developments concerning their usage as theraputic targets.
Collapse
Affiliation(s)
- Shubha Gururaja Rao
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Neel J Patel
- Department of Cardiology, Hospital of the University of Pennsylvania, Philadelphia, PA, United States
| | - Harpreet Singh
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
60
|
Chen M, Zhang S, Wen X, Cao H, Gao Y. Prognostic value of CLIC3 mRNA overexpression in bladder cancer. PeerJ 2020; 8:e8348. [PMID: 31934512 PMCID: PMC6951294 DOI: 10.7717/peerj.8348] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 12/04/2019] [Indexed: 01/05/2023] Open
Abstract
Background Human intracellular chloride channel 3 (CLIC3) is involved in the development of various cancers, but the expression and prognostic value of CLIC3 mRNA in bladder cancer (BC) remain unclear. Methods The gene expression data and clinical information of CLIC3 were obtained from the Gene Expression Omnibus (GEO) database and verified in the Oncomine and The Cancer Genome Atlas (TCGA) database. The expression of CLIC3 mRNA in BC tissues and adjacent normal tissues was detected by quantitative real-time polymerase chain reaction (qRT-PCR). The Kaplan-Meier method was used to analyze the relationship between the expression of CLIC3 mRNA and the prognosis of BC. Cox univariate and multivariate analyses were performed on the overall survival and tumor-specific survival of BC patients. The genes coexpressed with CLIC3 were analyzed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). CLIC3-related signal transduction pathways in BC were explored with gene set enrichment analysis (GSEA). Results The expression of CLIC3 mRNA in BC tissues was higher than that in normal tissues (P < 0.01). High CLIC3 mRNA expression was associated with age (P = 0.021) and grade (P = 0.045) in BC patients. High CLIC3 mRNA expression predicted a poor prognosis in BC patients (P < 0.05). Cox univariate and multivariate analyses showed that high CLIC3 mRNA expression was associated with tumor-specific survival in BC patients (P < 0.05). Functional enrichment analyses indicated that CLIC3 may be significantly associated with the cell cycle, focal adhesion, the extracellular matrix (ECM) receptor interaction and the P53 signaling pathway. Conclusions CLIC3 mRNA is highly expressed in BC, and its high expression is related to the adverse clinicopathological factors and prognosis of BC patients. CLIC3 can be used as a biomarker for the prognosis of BC patients.
Collapse
Affiliation(s)
- Mei Chen
- Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, Hainan, China
| | - Shufang Zhang
- Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, Hainan, China
| | - Xiaohong Wen
- Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, Hainan, China
| | - Hui Cao
- Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, Hainan, China
| | - Yuanhui Gao
- Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, Hainan, China
| |
Collapse
|
61
|
Yang WY, Zheng J, Zhang XG, Chen LC, Si Y, Huang FZ, Hong W. Charge transport through a water-assisted hydrogen bond in single-molecule glutathione disulfide junctions. JOURNAL OF MATERIALS CHEMISTRY C 2020; 8:481-486. [DOI: 10.1039/c9tc05686f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2025]
Abstract
This work demonstrates that single-molecule conductance measurements can identify reduced and oxidized glutathiones and thus have potential application in clinical diagnosis.
Collapse
Affiliation(s)
- Wei-Yu Yang
- Department of General Surgery
- The Third Xiangya Hospital
- Central South University
- Changsha 410013
- China
| | - Jueting Zheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- iChEM
- Joint Research Center for Peptide Drug R&D with Space Peptides
- College of Chemistry and Chemical Engineering
- Xiamen 361005
| | - Xia-Guang Zhang
- School of Chemistry and Chemical Engineering
- Henan Normal University
- Xinxiang 453007
- China
| | - Li-Chuan Chen
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- China
| | - Yu Si
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- iChEM
- Joint Research Center for Peptide Drug R&D with Space Peptides
- College of Chemistry and Chemical Engineering
- Xiamen 361005
| | - Fei-Zhou Huang
- Department of General Surgery
- The Third Xiangya Hospital
- Central South University
- Changsha 410013
- China
| | - Wenjing Hong
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- iChEM
- Joint Research Center for Peptide Drug R&D with Space Peptides
- College of Chemistry and Chemical Engineering
- Xiamen 361005
| |
Collapse
|
62
|
Uretmen Kagiali ZC, Saner N, Akdag M, Sanal E, Degirmenci BS, Mollaoglu G, Ozlu N. CLIC4 and CLIC1 bridge plasma membrane and cortical actin network for a successful cytokinesis. Life Sci Alliance 2019; 3:3/2/e201900558. [PMID: 31879279 PMCID: PMC6933522 DOI: 10.26508/lsa.201900558] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/20/2019] [Accepted: 12/20/2019] [Indexed: 11/24/2022] Open
Abstract
CLIC members are required for the progression of cytokinesis by coupling the plasma membrane and cortical actin network at the cleavage furrow and polar cortex. CLIC4 and CLIC1 are members of the well-conserved chloride intracellular channel proteins (CLICs) structurally related to glutathione-S-transferases. Here, we report new roles of CLICs in cytokinesis. At the onset of cytokinesis, CLIC4 accumulates at the cleavage furrow and later localizes to the midbody in a RhoA-dependent manner. The cell cycle–dependent localization of CLIC4 is abolished when its glutathione S-transferase activity–related residues (C35A and F37D) are mutated. Ezrin, anillin, and ALIX are identified as interaction partners of CLIC4 at the cleavage furrow and midbody. Strikingly, CLIC4 facilitates the activation of ezrin at the cleavage furrow and reciprocally inhibition of ezrin activation diminishes the translocation of CLIC4 to the cleavage furrow. Furthermore, knockouts of CLIC4and CLIC1 cause abnormal blebbing at the polar cortex and regression of the cleavage furrow at late cytokinesis leading to multinucleated cells. We conclude that CLIC4 and CLIC1 function together with ezrin where they bridge plasma membrane and actin cytoskeleton at the polar cortex and cleavage furrow to promote cortical stability and successful completion of cytokinesis in mammalian cells.
Collapse
Affiliation(s)
| | - Nazan Saner
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey
| | - Mehmet Akdag
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey
| | - Erdem Sanal
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey
| | | | - Gurkan Mollaoglu
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey
| | - Nurhan Ozlu
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey .,Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey
| |
Collapse
|
63
|
Anderson KJ, Cormier RT, Scott PM. Role of ion channels in gastrointestinal cancer. World J Gastroenterol 2019; 25:5732-5772. [PMID: 31636470 PMCID: PMC6801186 DOI: 10.3748/wjg.v25.i38.5732] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 07/26/2019] [Accepted: 09/27/2019] [Indexed: 02/06/2023] Open
Abstract
In their seminal papers Hanahan and Weinberg described oncogenic processes a normal cell undergoes to be transformed into a cancer cell. The functions of ion channels in the gastrointestinal (GI) tract influence a variety of cellular processes, many of which overlap with these hallmarks of cancer. In this review we focus on the roles of the calcium (Ca2+), sodium (Na+), potassium (K+), chloride (Cl-) and zinc (Zn2+) transporters in GI cancer, with a special emphasis on the roles of the KCNQ1 K+ channel and CFTR Cl- channel in colorectal cancer (CRC). Ca2+ is a ubiquitous second messenger, serving as a signaling molecule for a variety of cellular processes such as control of the cell cycle, apoptosis, and migration. Various members of the TRP superfamily, including TRPM8, TRPM7, TRPM6 and TRPM2, have been implicated in GI cancers, especially through overexpression in pancreatic adenocarcinomas and down-regulation in colon cancer. Voltage-gated sodium channels (VGSCs) are classically associated with the initiation and conduction of action potentials in electrically excitable cells such as neurons and muscle cells. The VGSC NaV1.5 is abundantly expressed in human colorectal CRC cell lines as well as being highly expressed in primary CRC samples. Studies have demonstrated that conductance through NaV1.5 contributes significantly to CRC cell invasiveness and cancer progression. Zn2+ transporters of the ZIP/SLC39A and ZnT/SLC30A families are dysregulated in all major GI organ cancers, in particular, ZIP4 up-regulation in pancreatic cancer (PC). More than 70 K+ channel genes, clustered in four families, are found expressed in the GI tract, where they regulate a range of cellular processes, including gastrin secretion in the stomach and anion secretion and fluid balance in the intestinal tract. Several distinct types of K+ channels are found dysregulated in the GI tract. Notable are hERG1 upregulation in PC, gastric cancer (GC) and CRC, leading to enhanced cancer angiogenesis and invasion, and KCNQ1 down-regulation in CRC, where KCNQ1 expression is associated with enhanced disease-free survival in stage II, III, and IV disease. Cl- channels are critical for a range of cellular and tissue processes in the GI tract, especially fluid balance in the colon. Most notable is CFTR, whose deficiency leads to mucus blockage, microbial dysbiosis and inflammation in the intestinal tract. CFTR is a tumor suppressor in several GI cancers. Cystic fibrosis patients are at a significant risk for CRC and low levels of CFTR expression are associated with poor overall disease-free survival in sporadic CRC. Two other classes of chloride channels that are dysregulated in GI cancers are the chloride intracellular channels (CLIC1, 3 & 4) and the chloride channel accessory proteins (CLCA1,2,4). CLIC1 & 4 are upregulated in PC, GC, gallbladder cancer, and CRC, while the CLCA proteins have been reported to be down-regulated in CRC. In summary, it is clear, from the diverse influences of ion channels, that their aberrant expression and/or activity can contribute to malignant transformation and tumor progression. Further, because ion channels are often localized to the plasma membrane and subject to multiple layers of regulation, they represent promising clinical targets for therapeutic intervention including the repurposing of current drugs.
Collapse
Affiliation(s)
- Kyle J Anderson
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, United States
| | - Robert T Cormier
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, United States
| | - Patricia M Scott
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, United States
| |
Collapse
|
64
|
Song P, Kwon Y, Joo JY, Kim DG, Yoon JH. Secretomics to Discover Regulators in Diseases. Int J Mol Sci 2019; 20:ijms20163893. [PMID: 31405033 PMCID: PMC6720857 DOI: 10.3390/ijms20163893] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/01/2019] [Accepted: 08/08/2019] [Indexed: 01/03/2023] Open
Abstract
Secretory proteins play important roles in the cross-talk of individual functional units, including cells. Since secretory proteins are essential for signal transduction, they are closely related with disease development, including metabolic and neural diseases. In metabolic diseases, adipokines, myokines, and hepatokines are secreted from respective organs under specific environmental conditions, and play roles in glucose homeostasis, angiogenesis, and inflammation. In neural diseases, astrocytes and microglia cells secrete cytokines and chemokines that play roles in neurotoxic and neuroprotective responses. Mass spectrometry-based secretome profiling is a powerful strategy to identify and characterize secretory proteins. This strategy involves stepwise processes such as the collection of conditioned medium (CM) containing secretome proteins and concentration of the CM, peptide preparation, mass analysis, database search, and filtering of secretory proteins; each step requires certain conditions to obtain reliable results. Proteomic analysis of extracellular vesicles has become a new research focus for understanding the additional extracellular functions of intracellular proteins. Here, we provide a review of the insights obtained from secretome analyses with regard to disease mechanisms, and highlight the future prospects of this technology. Continued research in this field is expected to provide valuable information on cell-to-cell communication and uncover new pathological mechanisms.
Collapse
Affiliation(s)
- Parkyong Song
- Department of Convergence Medicine, Pusan National University School of Medicine, Yangsan 50612, Korea
| | - Yonghoon Kwon
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Jae-Yeol Joo
- Neurodegenerative Disease Research Group, Korea Brain Research Institute, Daegu 41062, Korea
| | - Do-Geun Kim
- Dementia Research Group, Korea Brain Research Institute, Daegu 41062, Korea
| | - Jong Hyuk Yoon
- Neurodegenerative Disease Research Group, Korea Brain Research Institute, Daegu 41062, Korea.
| |
Collapse
|
65
|
Ferraro DA, Patella F, Zanivan S, Donato C, Aceto N, Giannotta M, Dejana E, Diepenbruck M, Christofori G, Buess M. Endothelial cell-derived nidogen-1 inhibits migration of SK-BR-3 breast cancer cells. BMC Cancer 2019; 19:312. [PMID: 30947697 PMCID: PMC6449935 DOI: 10.1186/s12885-019-5521-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 03/25/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The tumour microenvironment is a critical regulator of malignant cancer progression. While endothelial cells have been widely studied in the context of tumour angiogenesis, their role as modulators of cancer cell invasion and migration is poorly understood. METHODS We have investigated the influence of endothelial cells on the invasive and migratory behaviour of human cancer cells in vitro. RESULTS Upon exposure to culture supernatants of endothelial cells, distinct cancer cells, such as SK-BR-3 cells, showed significantly increased invasion and cell migration concomitant with changes in cell morphology and gene expression reminiscent of an epithelial-mesenchymal transition (EMT). Interestingly, the pro-migratory effect on SK-BR-3 cells was significantly enhanced by supernatants obtained from subconfluent, proliferative endothelial cells rather than from confluent, quiescent endothelial cells. Systematically comparing the supernatants of subconfluent and confluent endothelial cells by quantitative MS proteomics revealed eight candidate proteins that were secreted at significantly higher levels by confluent endothelial cells representing potential inhibitors of cancer cell migration. Among these proteins, nidogen-1 was exclusively expressed in confluent endothelial cells and was found to be necessary and sufficient for the inhibition of SK-BR-3 cell migration. Indeed, SK-BR-3 cells exposed to nidogen-1-depleted endothelial supernatants showed increased promigratory STAT3 phosphorylation along with increased cell migration. This reflects the situation of enhanced SK-BR-3 migration upon stimulation with conditioned medium from subconfluent endothelial cells with inherent absence of nidogen-1 expression. CONCLUSION The identification of nidogen-1 as an endothelial-derived inhibitor of migration of distinct cancer cell types reveals a novel mechanism of endothelial control over cancer progression.
Collapse
Affiliation(s)
- Daniela A. Ferraro
- Tumor Biology, Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
| | - Francesca Patella
- Tumour Microenvironment and Proteomics, Cancer Research UK Beatson Institute, Glasgow, G611BD UK
| | - Sara Zanivan
- Tumour Microenvironment and Proteomics, Cancer Research UK Beatson Institute, Glasgow, G611BD UK
| | - Cinzia Donato
- Cancer Metastasis, Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
| | - Nicola Aceto
- Cancer Metastasis, Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
| | - Monica Giannotta
- Vascular Biology Unit, FIRC Institute of Molecular Oncology, 20139 Milan, Italy
| | - Elisabetta Dejana
- Vascular Biology Unit, FIRC Institute of Molecular Oncology, 20139 Milan, Italy
| | - Maren Diepenbruck
- Tumor Biology, Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
| | - Gerhard Christofori
- Tumor Biology, Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
| | - Martin Buess
- Department of Oncology, St. Claraspital, Kleinriehenstrasse 30, 4016 Basel, Switzerland
| |
Collapse
|
66
|
Young D, Pedre B, Ezeriņa D, De Smet B, Lewandowska A, Tossounian MA, Bodra N, Huang J, Astolfi Rosado L, Van Breusegem F, Messens J. Protein Promiscuity in H 2O 2 Signaling. Antioxid Redox Signal 2019; 30:1285-1324. [PMID: 29635930 DOI: 10.1089/ars.2017.7013] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
SIGNIFICANCE Decrypting the cellular response to oxidative stress relies on a comprehensive understanding of the redox signaling pathways stimulated under oxidizing conditions. Redox signaling events can be divided into upstream sensing of oxidants, midstream redox signaling of protein function, and downstream transcriptional redox regulation. Recent Advances: A more and more accepted theory of hydrogen peroxide (H2O2) signaling is that of a thiol peroxidase redox relay, whereby protein thiols with low reactivity toward H2O2 are instead oxidized through an oxidative relay with thiol peroxidases. CRITICAL ISSUES These ultrareactive thiol peroxidases are the upstream redox sensors, which form the first cellular port of call for H2O2. Not all redox-regulated interactions between thiol peroxidases and cellular proteins involve a transfer of oxidative equivalents, and the nature of redox signaling is further complicated through promiscuous functions of redox-regulated "moonlighting" proteins, of which the precise cellular role under oxidative stress can frequently be obscured by "polygamous" interactions. An ultimate goal of redox signaling is to initiate a rapid response, and in contrast to prokaryotic oxidant-responsive transcription factors, mammalian systems have developed redox signaling pathways, which intersect both with kinase-dependent activation of transcription factors, as well as direct oxidative regulation of transcription factors through peroxiredoxin (Prx) redox relays. FUTURE DIRECTIONS We highlight that both transcriptional regulation and cell fate can be modulated either through oxidative regulation of kinase pathways, or through distinct redox-dependent associations involving either Prxs or redox-responsive moonlighting proteins with functional promiscuity. These protein associations form systems of crossregulatory networks with multiple nodes of potential oxidative regulation for H2O2-mediated signaling.
Collapse
Affiliation(s)
- David Young
- 1 Center for Structural Biology, VIB, Brussels, Belgium.,2 Brussels Center for Redox Biology, Brussels, Belgium.,3 Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Brandan Pedre
- 1 Center for Structural Biology, VIB, Brussels, Belgium.,2 Brussels Center for Redox Biology, Brussels, Belgium.,3 Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Daria Ezeriņa
- 1 Center for Structural Biology, VIB, Brussels, Belgium.,2 Brussels Center for Redox Biology, Brussels, Belgium.,3 Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Barbara De Smet
- 1 Center for Structural Biology, VIB, Brussels, Belgium.,2 Brussels Center for Redox Biology, Brussels, Belgium.,3 Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium.,4 Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,5 Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Aleksandra Lewandowska
- 1 Center for Structural Biology, VIB, Brussels, Belgium.,2 Brussels Center for Redox Biology, Brussels, Belgium.,3 Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium.,4 Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,5 Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Maria-Armineh Tossounian
- 1 Center for Structural Biology, VIB, Brussels, Belgium.,2 Brussels Center for Redox Biology, Brussels, Belgium.,3 Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Nandita Bodra
- 1 Center for Structural Biology, VIB, Brussels, Belgium.,2 Brussels Center for Redox Biology, Brussels, Belgium.,3 Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium.,4 Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,5 Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Jingjing Huang
- 1 Center for Structural Biology, VIB, Brussels, Belgium.,2 Brussels Center for Redox Biology, Brussels, Belgium.,3 Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium.,4 Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,5 Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Leonardo Astolfi Rosado
- 1 Center for Structural Biology, VIB, Brussels, Belgium.,2 Brussels Center for Redox Biology, Brussels, Belgium.,3 Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Frank Van Breusegem
- 2 Brussels Center for Redox Biology, Brussels, Belgium.,4 Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,5 Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Joris Messens
- 1 Center for Structural Biology, VIB, Brussels, Belgium.,2 Brussels Center for Redox Biology, Brussels, Belgium.,3 Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
67
|
Kugeratski FG, Atkinson SJ, Neilson LJ, Lilla S, Knight JRP, Serneels J, Juin A, Ismail S, Bryant DM, Markert EK, Machesky LM, Mazzone M, Sansom OJ, Zanivan S. Hypoxic cancer-associated fibroblasts increase NCBP2-AS2/HIAR to promote endothelial sprouting through enhanced VEGF signaling. Sci Signal 2019; 12:eaan8247. [PMID: 30723174 PMCID: PMC6794160 DOI: 10.1126/scisignal.aan8247] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Intratumoral hypoxia causes the formation of dysfunctional blood vessels, which contribute to tumor metastasis and reduce the efficacy of therapeutic treatments. Blood vessels are embedded in the tumor stroma of which cancer-associated fibroblasts (CAFs) constitute a prominent cellular component. We found that hypoxic human mammary CAFs promoted angiogenesis in CAF-endothelial cell cocultures in vitro. Mass spectrometry-based proteomic analysis of the CAF secretome unraveled that hypoxic CAFs contributed to blood vessel abnormalities by altering their secretion of various pro- and anti-angiogenic factors. Hypoxia induced pronounced remodeling of the CAF proteome, including proteins that have not been previously related to this process. Among those, the uncharacterized protein NCBP2-AS2 that we renamed HIAR (hypoxia-induced angiogenesis regulator) was the protein most increased in abundance in hypoxic CAFs. Silencing of HIAR abrogated the pro-angiogenic and pro-migratory function of hypoxic CAFs by decreasing secretion of the pro-angiogenic factor VEGFA and consequently reducing VEGF/VEGFR downstream signaling in the endothelial cells. Our study has identified a regulator of angiogenesis and provides a map of hypoxia-induced molecular alterations in mammary CAFs.
Collapse
Affiliation(s)
| | | | - Lisa J Neilson
- Cancer Research UK Beatson Institute, Glasgow G61 1BD, UK
| | - Sergio Lilla
- Cancer Research UK Beatson Institute, Glasgow G61 1BD, UK
| | | | - Jens Serneels
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology (CCB), VIB, 3000 Leuven, Belgium
| | - Amelie Juin
- Cancer Research UK Beatson Institute, Glasgow G61 1BD, UK
| | - Shehab Ismail
- Cancer Research UK Beatson Institute, Glasgow G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - David M Bryant
- Cancer Research UK Beatson Institute, Glasgow G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Elke K Markert
- Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Laura M Machesky
- Cancer Research UK Beatson Institute, Glasgow G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Massimiliano Mazzone
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology (CCB), VIB, 3000 Leuven, Belgium
- Laboratory of Tumor Inflammation and Angiogenesis, Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - Owen J Sansom
- Cancer Research UK Beatson Institute, Glasgow G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Sara Zanivan
- Cancer Research UK Beatson Institute, Glasgow G61 1BD, UK.
- Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
| |
Collapse
|
68
|
Wang FT, Sun W, Zhang JT, Fan YZ. Cancer-associated fibroblast regulation of tumor neo-angiogenesis as a therapeutic target in cancer. Oncol Lett 2019; 17:3055-3065. [PMID: 30867734 PMCID: PMC6396119 DOI: 10.3892/ol.2019.9973] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 12/21/2018] [Indexed: 12/20/2022] Open
Abstract
Adequate blood supply is essential for tumor survival, growth and metastasis. The tumor microenvironment (TME) is dynamic and complex, comprising cancer cells, cancer-associated stromal cells and their extracellular products. The TME serves an important role in tumor progression. Cancer-associated fibroblasts (CAFs) are the principal component of stromal cells within the TME, and contribute to tumor neo-angiogenesis by altering the proteome and degradome. The present paper reviews previous studies of the molecular signaling pathways by which CAFs promote tumor neo-angiogenesis and highlights therapeutic response targets. Also discussed are potential strategies for antitumor neo-angiogenesis to improve tumor treatment efficacy.
Collapse
Affiliation(s)
- Fang-Tao Wang
- Department of Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Wei Sun
- Department of Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Jing-Tao Zhang
- Department of Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Yue-Zu Fan
- Department of Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| |
Collapse
|
69
|
Becchetti A, Petroni G, Arcangeli A. Ion Channel Conformations Regulate Integrin-Dependent Signaling. Trends Cell Biol 2019; 29:298-307. [PMID: 30635161 DOI: 10.1016/j.tcb.2018.12.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/16/2018] [Accepted: 12/18/2018] [Indexed: 01/12/2023]
Abstract
Cell-matrix adhesion determines the choice between different cell fates and is accompanied by substantial changes in ion transport. The greatest evidence is the bidirectional interplay occurring between integrin receptors and K+ channels. These proteins can form signaling hubs that regulate cell proliferation, differentiation, and migration in normal and neoplastic tissue. Recent results show that the physical interaction with integrins determines the balance of the open and closed K+ channel states, and individual channel conformations regulate distinct downstream pathways. We propose a model of how these mechanisms regulate proliferation and metastasis in cancer cells. In particular, we suggest that the neoplastic progression could be modulated by targeting specific ion channel conformations.
Collapse
Affiliation(s)
- Andrea Becchetti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milano, Italy.
| | - Giulia Petroni
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Firenze, Italy
| | - Annarosa Arcangeli
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Firenze, Italy
| |
Collapse
|
70
|
Rios-Fuller TJ, Ortiz-Soto G, Lacourt-Ventura M, Maldonado-Martinez G, Cubano LA, Schneider RJ, Martinez-Montemayor MM. Ganoderma lucidum extract (GLE) impairs breast cancer stem cells by targeting the STAT3 pathway. Oncotarget 2018; 9:35907-35921. [PMID: 30542507 PMCID: PMC6267592 DOI: 10.18632/oncotarget.26294] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 10/24/2018] [Indexed: 12/11/2022] Open
Abstract
The aggressive nature of triple negative breast cancer (TNBC) may be explained in part by the presence of breast cancer stem cells (BCSCs), a subpopulation of cells, which are involved in tumor initiation, progression, metastasis, recurrence, and therapy resistance. The signal transducer and activator of transcription 3 (STAT3) pathway participates in the development and progression of BCSCs, but its role in TNBC remains unclear. Here, we report that Ganoderma lucidum extract (GLE), a medicinal mushroom with anticancer activity, acts on BCSCs in vitro and in TNBC pre-clinical animal tumor models by downregulating the STAT3 pathway. We show that GLE significantly reduces TNBC cell viability, and down-regulates total and phosphorylated STAT3 expression. This is consistent with the reduction of OCT4, NANOG and SOX2 expression, reduction in the BCSC population by loss of the ALDH1 and CD44+/CD24– population, the deformation of mammospheres, and the strong reduction in animal tumor volume and tumor weight. Analysis of the BCSC compartment in tumors revealed that GLE decreases the STAT3 pathway and the expression of OCT4, NANOG, and SOX2 in BCSCs. These findings demonstrate that the anti-cancer activity of GLE targets BCSCs of TNBC through the downregulation of the STAT3 pathway.
Collapse
Affiliation(s)
- Tiffany J Rios-Fuller
- Universidad Central del Caribe-School of Medicine, Bayamon, Puerto Rico, United States of America
| | - Gabriela Ortiz-Soto
- Universidad Central del Caribe-School of Medicine, Bayamon, Puerto Rico, United States of America
| | - Mercedes Lacourt-Ventura
- Universidad Central del Caribe-School of Medicine, Bayamon, Puerto Rico, United States of America
| | | | - Luis A Cubano
- Universidad Central del Caribe-School of Medicine, Bayamon, Puerto Rico, United States of America
| | | | | |
Collapse
|
71
|
Argenzio E, Klarenbeek J, Kedziora KM, Nahidiazar L, Isogai T, Perrakis A, Jalink K, Moolenaar WH, Innocenti M. Profilin binding couples chloride intracellular channel protein CLIC4 to RhoA-mDia2 signaling and filopodium formation. J Biol Chem 2018; 293:19161-19176. [PMID: 30381396 PMCID: PMC6302171 DOI: 10.1074/jbc.ra118.002779] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 10/26/2018] [Indexed: 12/31/2022] Open
Abstract
Chloride intracellular channel 4 (CLIC4) is a cytosolic protein implicated in diverse actin-based processes, including integrin trafficking, cell adhesion, and tubulogenesis. CLIC4 is rapidly recruited to the plasma membrane by RhoA-activating agonists and then partly colocalizes with β1 integrins. Agonist-induced CLIC4 translocation depends on actin polymerization and requires conserved residues that make up a putative binding groove. However, the mechanism and significance of CLIC4 trafficking have been elusive. Here, we show that RhoA activation by either lysophosphatidic acid (LPA) or epidermal growth factor is necessary and sufficient for CLIC4 translocation to the plasma membrane and involves regulation by the RhoA effector mDia2, a driver of actin polymerization and filopodium formation. We found that CLIC4 binds the G-actin–binding protein profilin-1 via the same residues that are required for CLIC4 trafficking. Consistently, shRNA-induced profilin-1 silencing impaired agonist-induced CLIC4 trafficking and the formation of mDia2-dependent filopodia. Conversely, CLIC4 knockdown increased filopodium formation in an integrin-dependent manner, a phenotype rescued by wild-type CLIC4 but not by the trafficking-incompetent mutant CLIC4(C35A). Furthermore, CLIC4 accelerated LPA-induced filopodium retraction. We conclude that through profilin-1 binding, CLIC4 functions in a RhoA–mDia2–regulated signaling network to integrate cortical actin assembly and membrane protrusion. We propose that agonist-induced CLIC4 translocation provides a feedback mechanism that counteracts formin-driven filopodium formation.
Collapse
Affiliation(s)
| | | | | | | | | | - Anastassis Perrakis
- Biochemistry, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
72
|
Dasari S, Fang Y, Mitra AK. Cancer Associated Fibroblasts: Naughty Neighbors That Drive Ovarian Cancer Progression. Cancers (Basel) 2018; 10:cancers10110406. [PMID: 30380628 PMCID: PMC6265896 DOI: 10.3390/cancers10110406] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/19/2018] [Accepted: 10/24/2018] [Indexed: 01/02/2023] Open
Abstract
Ovarian cancer is the most lethal gynecologic malignancy, and patient prognosis has not improved significantly over the last several decades. In order to improve therapeutic approaches and patient outcomes, there is a critical need for focused research towards better understanding of the disease. Recent findings have revealed that the tumor microenvironment plays an essential role in promoting cancer progression and metastasis. The tumor microenvironment consists of cancer cells and several different types of normal cells recruited and reprogrammed by the cancer cells to produce factors beneficial to tumor growth and spread. These normal cells present within the tumor, along with the various extracellular matrix proteins and secreted factors, constitute the tumor stroma and can compose 10–60% of the tumor volume. Cancer associated fibroblasts (CAFs) are a major constituent of the tumor microenvironment, and play a critical role in promoting many aspects of tumor function. This review will describe the various hypotheses about the origin of CAFs, their major functions in the tumor microenvironment in ovarian cancer, and will discuss the potential of targeting CAFs as a possible therapeutic approach.
Collapse
Affiliation(s)
- Subramanyam Dasari
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, IN 47401, USA.
| | - Yiming Fang
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, IN 47401, USA.
| | - Anirban K Mitra
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, IN 47401, USA.
- Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, IN 46202, USA.
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
73
|
Nagaprashantha LD, Singhal J, Li H, Warden C, Liu X, Horne D, Awasthi S, Salgia R, Singhal SS. 2'-Hydroxyflavanone effectively targets RLIP76-mediated drug transport and regulates critical signaling networks in breast cancer. Oncotarget 2018; 9:18053-18068. [PMID: 29719590 PMCID: PMC5915057 DOI: 10.18632/oncotarget.24720] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 03/06/2018] [Indexed: 11/25/2022] Open
Abstract
Breast cancer (BC) is the most common cancer in women. Estrogen, epidermal growth factor receptor 2 (ERBB2, HER2), and oxidative stress represent critical mechanistic nodes associated with BC. RLIP76 is a major mercapturic acid pathway transporter whose expression is increased in BC. In the quest of a novel molecule with chemopreventive and chemotherapeutic potential, we evaluated the effects of 2'-Hydroxyflavanone (2HF) in BC. 2HF enhanced the inhibitory effects of RLIP76 depletion and also inhibited RLIP76-mediated doxorubicin transport in BC cells. RNA-sequencing revealed that 2HF induces strong reversal of the gene expression pattern in ER+MCF7, HER2+ SKBR3 and triple-negative MDA-MB-231 BC cells with minimal effects on MCF10A normal breast epithelial cells. 2HF down regulated ERα and enhanced inhibitory effects of imatinib mesylate/Gleevec in MCF7 cells. 2HF also down regulated ERα and HER2 gene networks in MCF7 and SKBR3 cells, respectively. 2HF activated TP53 and inhibited TGFβ1 canonical pathway in MCF7 and MDA-MB-231 BC cells. 2HF also regulated the expression of a number of critical prognostic genes of MammaPrint panel and their upstream targets including TP53, CDKN2A and MYC. The collective findings from this study provide a comprehensive, direct and integrated evidence for the benefits of 2HF in targeting major and clinically relevant mechanistic regulators of BC.
Collapse
Affiliation(s)
- Lokesh Dalasanur Nagaprashantha
- Department of Medical Oncology, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Jyotsana Singhal
- Department of Medical Oncology, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA.,Department of Molecular Medicine, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Hongzhi Li
- Department of Computational Therapeutics, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Charles Warden
- Department of Genomic Core, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Xueli Liu
- Department of Information Sciences & Biostatistics, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - David Horne
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Sanjay Awasthi
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Ravi Salgia
- Department of Medical Oncology, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Sharad S Singhal
- Department of Medical Oncology, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| |
Collapse
|
74
|
Santi A, Kugeratski FG, Zanivan S. Cancer Associated Fibroblasts: The Architects of Stroma Remodeling. Proteomics 2018; 18:e1700167. [PMID: 29280568 PMCID: PMC5900985 DOI: 10.1002/pmic.201700167] [Citation(s) in RCA: 166] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 12/15/2017] [Indexed: 12/24/2022]
Abstract
Fibroblasts have exceptional phenotypic plasticity and capability to secrete vast amount of soluble factors, extracellular matrix components and extracellular vesicles. While in physiological conditions this makes fibroblasts master regulators of tissue homeostasis and healing of injured tissues, in solid tumors cancer associated fibroblasts (CAFs) co-evolve with the disease, and alter the biochemical and physical structure of the tumor microenvironment, as well as the behavior of the surrounding stromal and cancer cells. Thus CAFs are fundamental regulators of tumor progression and influence response to therapeutic treatments. Increasing efforts are devoted to better understand the biology of CAFs to bring insights to develop complementary strategies to target this cell type in cancer. Here we highlight components of the tumor microenvironment that play key roles in cancer progression and invasion, and provide an extensive overview of past and emerging understanding of CAF biology as well as the contribution that MS-based proteomics has made to this field.
Collapse
Affiliation(s)
- Alice Santi
- Cancer Research UK Beatson InstituteGlasgowUK
| | | | - Sara Zanivan
- Cancer Research UK Beatson InstituteGlasgowUK
- Institute of Cancer SciencesUniversity of GlasgowGlasgowUK
| |
Collapse
|
75
|
Goud B, Louvard D. [Cell complexity should be placed at the heart of cancer research]. Med Sci (Paris) 2018; 34:63-71. [PMID: 29384098 DOI: 10.1051/medsci/20183401015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Genetic and most likely epigenetic alterations occurring during tumor progression and metastatic process lead to a broad deregulation of major cellular functions. However, the molecular mechanisms involved are still poorly understood. To understand them, the cell, the basic unit of life, remains more than ever the essential level to integrate the functional impact of genetics and epigenetics processes in the light of the global economy of the normal and cancerous cell, and of its interactions with its microenvironment.
Collapse
Affiliation(s)
- Bruno Goud
- Institut Curie, université de recherche Paris sciences et lettres (PSL), CNRS, UMR 144, 26, rue d'Ulm, 75248 Paris Cedex 05, France
| | - Daniel Louvard
- Institut Curie, université de recherche Paris sciences et lettres (PSL), CNRS, UMR 144, 26, rue d'Ulm, 75248 Paris Cedex 05, France
| |
Collapse
|
76
|
Crosstalk of Autophagy and the Secretory Pathway and Its Role in Diseases. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 337:153-184. [DOI: 10.1016/bs.ircmb.2017.12.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
77
|
Norman J, Zanivan S. Chloride intracellular channel 3: A secreted pro-invasive oxidoreductase. Cell Cycle 2017; 16:1993-1994. [PMID: 28933594 PMCID: PMC5731412 DOI: 10.1080/15384101.2017.1377031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 09/15/2017] [Accepted: 08/30/2017] [Indexed: 10/29/2022] Open
Affiliation(s)
- Jim Norman
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Sara Zanivan
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
78
|
Reid SE, Kay EJ, Neilson LJ, Henze AT, Serneels J, McGhee EJ, Dhayade S, Nixon C, Mackey JB, Santi A, Swaminathan K, Athineos D, Papalazarou V, Patella F, Román-Fernández Á, ElMaghloob Y, Hernandez-Fernaud JR, Adams RH, Ismail S, Bryant DM, Salmeron-Sanchez M, Machesky LM, Carlin LM, Blyth K, Mazzone M, Zanivan S. Tumor matrix stiffness promotes metastatic cancer cell interaction with the endothelium. EMBO J 2017; 36:2373-2389. [PMID: 28694244 PMCID: PMC5556271 DOI: 10.15252/embj.201694912] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 06/08/2017] [Accepted: 06/09/2017] [Indexed: 12/15/2022] Open
Abstract
Tumor progression alters the composition and physical properties of the extracellular matrix. Particularly, increased matrix stiffness has profound effects on tumor growth and metastasis. While endothelial cells are key players in cancer progression, the influence of tumor stiffness on the endothelium and the impact on metastasis is unknown. Through quantitative mass spectrometry, we find that the matricellular protein CCN1/CYR61 is highly regulated by stiffness in endothelial cells. We show that stiffness-induced CCN1 activates β-catenin nuclear translocation and signaling and that this contributes to upregulate N-cadherin levels on the surface of the endothelium, in vitro This facilitates N-cadherin-dependent cancer cell-endothelium interaction. Using intravital imaging, we show that knockout of Ccn1 in endothelial cells inhibits melanoma cancer cell binding to the blood vessels, a critical step in cancer cell transit through the vasculature to metastasize. Targeting stiffness-induced changes in the vasculature, such as CCN1, is therefore a potential yet unappreciated mechanism to impair metastasis.
Collapse
Affiliation(s)
| | - Emily J Kay
- Cancer Research UK Beatson Institute, Glasgow, UK
| | | | - Anne-Theres Henze
- Lab of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Jens Serneels
- Lab of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium
| | | | | | - Colin Nixon
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - John Bg Mackey
- Cancer Research UK Beatson Institute, Glasgow, UK
- Inflammation, Repair and Development, Imperial College London, London, UK
| | - Alice Santi
- Cancer Research UK Beatson Institute, Glasgow, UK
| | | | | | - Vasileios Papalazarou
- Cancer Research UK Beatson Institute, Glasgow, UK
- Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow, UK
| | | | | | | | | | - Ralf H Adams
- Department of Tissue Morphogenesis, Faculty of Medicine, Max-Planck-Institute for Molecular Biomedicine, University of Münster, Münster, Germany
| | | | - David M Bryant
- Cancer Research UK Beatson Institute, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Manuel Salmeron-Sanchez
- Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow, UK
| | | | - Leo M Carlin
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Karen Blyth
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Massimiliano Mazzone
- Lab of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium
- Lab of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Sara Zanivan
- Cancer Research UK Beatson Institute, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
79
|
Nan N, Chen Q, Wang Y, Zhai X, Yang CC, Cao B, Chong T. Screening disrupted molecular functions and pathways associated with clear cell renal cell carcinoma using Gibbs sampling. Comput Biol Chem 2017; 70:15-20. [PMID: 28735111 DOI: 10.1016/j.compbiolchem.2017.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 06/28/2017] [Accepted: 07/09/2017] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To explore the disturbed molecular functions and pathways in clear cell renal cell carcinoma (ccRCC) using Gibbs sampling. METHODS Gene expression data of ccRCC samples and adjacent non-tumor renal tissues were recruited from public available database. Then, molecular functions of expression changed genes in ccRCC were classed to Gene Ontology (GO) project, and these molecular functions were converted into Markov chains. Markov chain Monte Carlo (MCMC) algorithm was implemented to perform posterior inference and identify probability distributions of molecular functions in Gibbs sampling. Differentially expressed molecular functions were selected under posterior value more than 0.95, and genes with the appeared times in differentially expressed molecular functions ≥5 were defined as pivotal genes. Functional analysis was employed to explore the pathways of pivotal genes and their strongly co-regulated genes. RESULTS In this work, we obtained 396 molecular functions, and 13 of them were differentially expressed. Oxidoreductase activity showed the highest posterior value. Gene composition analysis identified 79 pivotal genes, and survival analysis indicated that these pivotal genes could be used as a strong independent predictor of poor prognosis in patients with ccRCC. Pathway analysis identified one pivotal pathway - oxidative phosphorylation. CONCLUSIONS We identified the differentially expressed molecular functions and pivotal pathway in ccRCC using Gibbs sampling. The results could be considered as potential signatures for early detection and therapy of ccRCC.
Collapse
Affiliation(s)
- Ning Nan
- Department of Urinary Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Qi Chen
- Department of Urinary Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Yu Wang
- Department of Urinary Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Xu Zhai
- Department of Urinary Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Chuan-Ce Yang
- Department of Urinary Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Bin Cao
- Department of Urinary Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Tie Chong
- Department of Urinary Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China.
| |
Collapse
|
80
|
Tsymbal DO, Minchenko DO, Hnatiuk OS, Luzina OY, Minchenko OH. Effect of Hypoxia on the Expression of a Subset of Proliferation Related Genes in IRE1 Knockdown U87 Glioma Cells. ACTA ACUST UNITED AC 2017. [DOI: 10.4236/abc.2017.76014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|