51
|
Qi X, Chen L, Zhang C, Xu X, Zhang Y, Bai Y, Liu H. NiCoMnO4: A Bifunctional Affinity Probe for His-Tagged Protein Purification and Phosphorylation Sites Recognition. ACS APPLIED MATERIALS & INTERFACES 2016; 8:18675-18683. [PMID: 27381638 DOI: 10.1021/acsami.6b04280] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A bifunctional affinity probe NiCoMnO4 was designed and prepared with controllable morphology and size using facile methods. It was observed that the probe could be applied in His-tagged proteins purification and phosphopeptides enrichment simply through the buffer modulation. NiCoMnO4 particles showed satisfactory cycling performance for His-tagged proteins purification and broad pH-tolerance of loading buffer for phosphopeptides affinity. Therefore, a high-throughput, cost-effective, and efficient protein/peptide purification method was developed within 10 min based on the novel bifunctional affinity probe.
Collapse
Affiliation(s)
- Xiaoyue Qi
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, China
| | - Long Chen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, China
| | - Chaoqun Zhang
- Beijing Nuclear Magnetic Resonance Center, College of Life Science, Peking University , Beijing 100871, China
| | - Xinyuan Xu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, China
| | - Yiding Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, China
| | - Yu Bai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, China
| | - Huwei Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, China
| |
Collapse
|
52
|
|
53
|
Li XS, Yuan BF, Feng YQ. Recent advances in phosphopeptide enrichment: Strategies and techniques. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2015.11.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
54
|
Long XY, Li JY, Sheng D, Lian HZ. Low-cost iron oxide magnetic nanoclusters affinity probe for the enrichment of endogenous phosphopeptides in human saliva. RSC Adv 2016. [DOI: 10.1039/c6ra11125d] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Simple and low cost iron oxide magnetic nanoclusters (Fe3O4 MNCs) affinity material has been directly applied for phosphorylated peptides/proteins enrichment.
Collapse
Affiliation(s)
- Xing-yu Long
- State Key Laboratory of Analytical Chemistry for Life Science
- Collaborative Innovation Center of Chemistry for Life Sciences
- School of Chemistry & Chemical Engineering and Center of Materials Analysis
- Nanjing University
- Nanjing 210023
| | - Jia-yuan Li
- State Key Laboratory of Analytical Chemistry for Life Science
- Collaborative Innovation Center of Chemistry for Life Sciences
- School of Chemistry & Chemical Engineering and Center of Materials Analysis
- Nanjing University
- Nanjing 210023
| | - Dong Sheng
- State Key Laboratory of Analytical Chemistry for Life Science
- Collaborative Innovation Center of Chemistry for Life Sciences
- School of Chemistry & Chemical Engineering and Center of Materials Analysis
- Nanjing University
- Nanjing 210023
| | - Hong-zhen Lian
- State Key Laboratory of Analytical Chemistry for Life Science
- Collaborative Innovation Center of Chemistry for Life Sciences
- School of Chemistry & Chemical Engineering and Center of Materials Analysis
- Nanjing University
- Nanjing 210023
| |
Collapse
|
55
|
Cao D, Pan L, Li H, Li J, Wang X, Cheng X, Wang Z, Wang J, Liu Q. A facile strategy for synthesis of spinel ferrite nano-granules and their potential applications. RSC Adv 2016. [DOI: 10.1039/c6ra13373h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A number of spinel ferrite nano-granules were synthesized in DMF through a calcination process under air.
Collapse
Affiliation(s)
- Derang Cao
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education
- Lanzhou University
- Lanzhou 730000
- People's Republic of China
| | - Lining Pan
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education
- Lanzhou University
- Lanzhou 730000
- People's Republic of China
| | - Hao Li
- Key Laboratory of Special Function Materials and Structure Design
- Ministry of Education
- Lanzhou University
- Lanzhou 730000
- People's Republic of China
| | - Jianan Li
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education
- Lanzhou University
- Lanzhou 730000
- People's Republic of China
| | - Xicheng Wang
- Key Laboratory of Special Function Materials and Structure Design
- Ministry of Education
- Lanzhou University
- Lanzhou 730000
- People's Republic of China
| | - Xiaohong Cheng
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education
- Lanzhou University
- Lanzhou 730000
- People's Republic of China
| | - Zhenkun Wang
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education
- Lanzhou University
- Lanzhou 730000
- People's Republic of China
| | - Jianbo Wang
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education
- Lanzhou University
- Lanzhou 730000
- People's Republic of China
- Key Laboratory of Special Function Materials and Structure Design
| | - Qingfang Liu
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education
- Lanzhou University
- Lanzhou 730000
- People's Republic of China
| |
Collapse
|
56
|
Xu L, Ma W, Shen S, Li L, Bai Y, Liu H. Hydrazide functionalized monodispersed silica microspheres: a novel probe with tunable selectivity for a versatile enrichment of phosphopeptides with different numbers of phosphorylation sites in MS analysis. Chem Commun (Camb) 2016; 52:1162-5. [DOI: 10.1039/c5cc07941a] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Hydrazide functionalized monodispersed silica microspheres (HFMSM) were developed for the enrichment of phosphopeptides for the first time.
Collapse
Affiliation(s)
- Linnan Xu
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
| | - Wen Ma
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
| | - Sensen Shen
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
| | - Liping Li
- Department of Chemistry
- Capital Normal University
- Beijing
- China
| | - Yu Bai
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
| | - Huwei Liu
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
| |
Collapse
|
57
|
Kwon OK, Kim SJ, Lee YM, Lee YH, Bae YS, Kim JY, Peng X, Cheng Z, Zhao Y, Lee S. Global analysis of phosphoproteome dynamics in embryonic development of zebrafish (Danio rerio). Proteomics 2015; 16:136-49. [DOI: 10.1002/pmic.201500017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 09/04/2015] [Accepted: 10/01/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Oh Kwang Kwon
- College of Pharmacy, Research Institute of Pharmaceutical Sciences; Kyungpook National University; Daegu South Korea
| | - Sun Ju Kim
- College of Pharmacy, Research Institute of Pharmaceutical Sciences; Kyungpook National University; Daegu South Korea
| | - You-Mie Lee
- College of Pharmacy, Research Institute of Pharmaceutical Sciences; Kyungpook National University; Daegu South Korea
| | - Young-Hoon Lee
- School of Life Sciences, KNU Creative BioResearch Group (BK21 plus program); Kyungpook National University; Daegu Korea
| | - Young-Seuk Bae
- School of Life Sciences, KNU Creative BioResearch Group (BK21 plus program); Kyungpook National University; Daegu Korea
| | - Jin Young Kim
- Mass Spectrometry Research Center; Korea Basic Science Institute; Ochang Chungbuk Republic of Korea
| | - Xiaojun Peng
- Jingjie PTM Biolabs (Hangzhou) Co. Ltd; Hangzhou P. R. China
| | - Zhongyi Cheng
- Advanced Institute of Translational Medicine; Tongji University; Shanghai P. R. China
| | - Yingming Zhao
- Ben May Department for Cancer Research; University of Chicago; Chicago IL USA
| | - Sangkyu Lee
- College of Pharmacy, Research Institute of Pharmaceutical Sciences; Kyungpook National University; Daegu South Korea
| |
Collapse
|
58
|
Dong M, Bian Y, Dong J, Wang K, Liu Z, Qin H, Ye M, Zou H. Selective Enrichment of Cysteine-Containing Phosphopeptides for Subphosphoproteome Analysis. J Proteome Res 2015; 14:5341-7. [PMID: 26552605 DOI: 10.1021/acs.jproteome.5b00830] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Among the natural amino acids, cysteine is unique since it can form a disulfide bond through oxidation and reduction of sulfhydryl and thus plays a pervasive role in modulation of proteins activities and structures. Crosstalk between phosphorylation and other post-translational modifications has become a recurrent theme in cell signaling regulation. However, the crosstalk between the phosphorylation and the formation and reductive cleavage of disulfide bond has not been investigated so far. To facilitate the study of this crosstalk, it is important to explore the subset of phosphoproteome where phosphorylations are occurred near to cysteine in the protein sequences. In this study, we developed a straightforward sequential enrichment method by combining the thiol affinity chromatography with the immobilized titanium ion affinity chromatography to selectively enrich cysteine-containing phosphopeptides. The high specificity and high sensitivity of this method were demonstrated by analyzing the samples of Jurkat cells. This "divide and conquer" strategy by specific analysis of a subphosphoproteome enables identification of more low abundant phosphosites than the conventional global phosphoproteome approach. Interestingly, amino acid residues surrounding the identified phosphosites were enriched with buried residues (L, V, A, C) while depleted with exposed residues (D, E, R, K). Also, the phosphosites identified by this approach showed a dramatic decrease in locating in disorder regions compared to that identified by conventional global phosphoproteome. Further analysis showed that more proline directed kinases and fewer acidophilic kinases were responsible for the phosphorylation sites of this subphosphoproteome.
Collapse
Affiliation(s)
- Mingming Dong
- Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yangyang Bian
- Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Dong
- Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China
| | - Keyun Wang
- Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zheyi Liu
- Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongqiang Qin
- Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China
| | - Mingliang Ye
- Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China
| | - Hanfa Zou
- Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China
| |
Collapse
|
59
|
Zhang L, Liang Z, Zhang L, Zhang Y, Shao S. Facile synthesis of gallium ions immobilized and adenosine functionalized magnetic nanoparticles with high selectivity for multi-phosphopeptides. Anal Chim Acta 2015; 900:46-55. [DOI: 10.1016/j.aca.2015.10.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 10/16/2015] [Accepted: 10/20/2015] [Indexed: 10/22/2022]
|
60
|
Hong F, Yan C, Si Y, He J, Yu J, Ding B. Nickel Ferrite Nanoparticles Anchored onto Silica Nanofibers for Designing Magnetic and Flexible Nanofibrous Membranes. ACS APPLIED MATERIALS & INTERFACES 2015; 7:20200-7. [PMID: 26301575 DOI: 10.1021/acsami.5b05754] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Many applications proposed for magnetic silica nanofibers require their assembly into a cellular membrane structure. The feature to keep structure stable upon large deformation is crucial for a macroscopic porous material which functions reliably. However, it remains a key issue to realize robust flexibility in two-dimensional (2D) magnetic silica nanofibrous networks. Here, we report that the combination of electrospun silica nanofibers with zein dip-coating can lead to the formation of flexible, magnetic, and hierarchical porous silica nanofibrous membranes (SNM). The 290 nm diameter silica nanofibers act as templates for the uniform anchoring of nickel ferrite nanoparticles (size of 50 nm). Benefiting from the homogeneous and stable nanofiber-nanoparticle composite structure, the resulting magnetic SNM can maintain their structure integrity under repeated bending as high as 180° and can facilely recover. The unique hierarchical structure also provides this new class of silica membrane with integrated properties of ultralow density, high porosity, large surface area, good magnetic responsiveness, robust dye adsorption capacity, and effective emulsion separation performance. Significantly, the synthesis of such fascinating membranes may provide new insight for further application of silica in a self-supporting, structurally adaptive, and 2D membrane form.
Collapse
Affiliation(s)
- Feifei Hong
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University , Shanghai 201620, China
| | - Chengcheng Yan
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University , Shanghai 201620, China
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University , Shanghai 201620, China
| | - Yang Si
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University , Shanghai 201620, China
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University , Shanghai 201620, China
| | - Jianxin He
- College of Textiles, Zhongyuan University of Technology , Zhenzhou 450007, China
| | - Jianyong Yu
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University , Shanghai 201620, China
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University , Shanghai 201620, China
| | - Bin Ding
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University , Shanghai 201620, China
- College of Textiles, Zhongyuan University of Technology , Zhenzhou 450007, China
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University , Shanghai 201620, China
| |
Collapse
|
61
|
Liu F, He X, Zhang J, Zhang H, Wang Z. Employing Tryptone as a General Phase Transfer Agent to Produce Renal Clearable Nanodots for Bioimaging. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:3676-3685. [PMID: 25914195 DOI: 10.1002/smll.201500287] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 03/19/2015] [Indexed: 06/04/2023]
Abstract
Hydrophobic ultrasmall nanoparticles synthesized in nonpolar solvents exhibit great potential in biomedical applications. However, a major challenge when applying these nanomaterials in biomedical research is the lack of a versatile strategy to render them water dispersible while preserving the hydrodynamic diameter (HD) to be less than 8 nm for efficient renal clearance. To address this problem, tryptone is employed as the novel ligand to fabricate a simple, versatile, and inexpensive strategy for transferring hydrophobic NaGdF(4) nanodots (3 nm in diameter) from organic phase into aqueous phase without any complicated organic synthesis. The paramagnetic properties of NaGdF(4) nanodots are well retained after the phase transfer process. In particular, the tryptone-NaGdF(4) nanodots have ultrasmall HD (ca., 7.5 nm), which greatly improves their tumor accumulation and facilitates renal clearance within 24 h postinjection. The as-prepared tryptone-NaGdF(4) nanodots can also be further functionalized with other molecules for extensively biomedical and bioanalytical applications. Furthermore, the proposed strategy can easily be extended to transfer other types of inorganic nanoparticles from hydrophobic to hydrophilic for facilitating biomedical applications.
Collapse
Affiliation(s)
- Fuyao Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100039, P. R. China
| | - Xiuxia He
- School of Life Science and Technology, Changchun University of Science and Technology, Changchun, 130022, P. R. China
| | - Junping Zhang
- School of Life Science and Technology, Changchun University of Science and Technology, Changchun, 130022, P. R. China
| | - Huimao Zhang
- Department of Radiology Institution, The First Hospital of Jilin University, Changchun, 130021, P. R. China
| | - Zhenxin Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| |
Collapse
|
62
|
Xu L, Qi X, Li X, Bai Y, Liu H. Recent advances in applications of nanomaterials for sample preparation. Talanta 2015; 146:714-26. [PMID: 26695321 DOI: 10.1016/j.talanta.2015.06.036] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 06/08/2015] [Accepted: 06/13/2015] [Indexed: 12/30/2022]
Abstract
Sample preparation is a key step for qualitative and quantitative analysis of trace analytes in complicated matrix. Along with the rapid development of nanotechnology in material science, numerous nanomaterials have been developed with particularly useful applications in analytical chemistry. Benefitting from their high specific areas, increased surface activities, and unprecedented physical/chemical properties, the potentials of nanomaterials for rapid and efficient sample preparation have been exploited extensively. In this review, recent progress of novel nanomaterials applied in sample preparation has been summarized and discussed. Both nanoparticles and nanoporous materials are evaluated for their unusual performance in sample preparation. Various compositions and functionalizations extended the applications of nanomaterials in sample preparations, and distinct size and shape selectivity was generated from the diversified pore structures of nanoporous materials. Such great variety make nanomaterials a kind of versatile tools in sample preparation for almost all categories of analytes.
Collapse
Affiliation(s)
- Linnan Xu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xiaoyue Qi
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xianjiang Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yu Bai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Huwei Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
63
|
Wang G, He Z, Shi G, Wang H, Zhang Q, Li Y. Controllable construction of Titanium dioxide-Zirconium dioxide@Zinc hydroxyfluoride networks in micro-capillaries for bio-analysis. J Colloid Interface Sci 2015; 446:290-7. [DOI: 10.1016/j.jcis.2015.01.048] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 01/15/2015] [Accepted: 01/20/2015] [Indexed: 11/27/2022]
|
64
|
Wang ZG, Lv N, Bi WZ, Zhang JL, Ni JZ. Development of the affinity materials for phosphorylated proteins/peptides enrichment in phosphoproteomics analysis. ACS APPLIED MATERIALS & INTERFACES 2015; 7:8377-92. [PMID: 25845677 DOI: 10.1021/acsami.5b01254] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Reversible protein phosphorylation is a key event in numerous biological processes. Mass spectrometry (MS) is the most powerful analysis tool in modern phosphoproteomics. However, the direct MS analysis of phosphorylated proteins/peptides is still a big challenge because of the low abundance and insufficient ionization of phosphorylated proteins/peptides as well as the suppression effects of nontargets. Enrichment of phosphorylated proteins/peptides by affinity materials from complex biosamples is the most widely used strategy to enhance the MS detection. The demand of efficiently enriching phosphorylated proteins/peptides has spawned diverse affinity materials based on different enrichment principles (e.g., electronic attraction, chelating). In this review, we summarize the recent development of various affinity materials for phosphorylated proteins/peptides enrichment. We will highlight the design and fabrication of these affinity materials, discuss the enrichment mechanisms involved in different affinity materials, and suggest the future challenges and research directions in this field.
Collapse
Affiliation(s)
- Zhi-Gang Wang
- †State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- ‡University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Nan Lv
- †State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- ‡University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Wen-Zhi Bi
- †State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- ‡University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Ji-Lin Zhang
- †State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Jia-Zuan Ni
- †State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- §College of Life Science, Shenzhen University, Shenzhen 518060, P. R. China
| |
Collapse
|
65
|
Jabeen F, Najam-ul-Haq M, Rainer M, Güzel Y, Huck CW, Bonn GK. Newly Fabricated Magnetic Lanthanide Oxides Core–Shell Nanoparticles in Phosphoproteomics. Anal Chem 2015; 87:4726-32. [DOI: 10.1021/ac504818s] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Fahmida Jabeen
- Division
of Analytical Chemistry, Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan
- Institute
of Analytical Chemistry and Radiochemistry, Leopold-Franzens University, Innrain 80-82, Innsbruck 6020, Austria
| | - Muhammad Najam-ul-Haq
- Division
of Analytical Chemistry, Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan
- Institute
of Analytical Chemistry and Radiochemistry, Leopold-Franzens University, Innrain 80-82, Innsbruck 6020, Austria
| | - Matthias Rainer
- Institute
of Analytical Chemistry and Radiochemistry, Leopold-Franzens University, Innrain 80-82, Innsbruck 6020, Austria
| | - Yüksel Güzel
- Institute
of Analytical Chemistry and Radiochemistry, Leopold-Franzens University, Innrain 80-82, Innsbruck 6020, Austria
| | - Christian W. Huck
- Institute
of Analytical Chemistry and Radiochemistry, Leopold-Franzens University, Innrain 80-82, Innsbruck 6020, Austria
| | - Guenther K. Bonn
- Institute
of Analytical Chemistry and Radiochemistry, Leopold-Franzens University, Innrain 80-82, Innsbruck 6020, Austria
| |
Collapse
|
66
|
Zhang Y, Zhang C, Jiang H, Yang P, Lu H. Fishing the PTM proteome with chemical approaches using functional solid phases. Chem Soc Rev 2015; 44:8260-87. [DOI: 10.1039/c4cs00529e] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Currently available chemical approaches for the enrichment and separation of a PTM proteome using functional solid phases were reviewed.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Chemistry and Institutes of Biomedical Sciences
- Fudan University
- Shanghai 200032
- P. R. China
- Key Laboratory of Glycoconjugates Research Ministry of Public Health
| | - Cheng Zhang
- Department of Chemistry and Institutes of Biomedical Sciences
- Fudan University
- Shanghai 200032
- P. R. China
| | - Hucong Jiang
- Department of Chemistry and Institutes of Biomedical Sciences
- Fudan University
- Shanghai 200032
- P. R. China
| | - Pengyuan Yang
- Department of Chemistry and Institutes of Biomedical Sciences
- Fudan University
- Shanghai 200032
- P. R. China
| | - Haojie Lu
- Department of Chemistry and Institutes of Biomedical Sciences
- Fudan University
- Shanghai 200032
- P. R. China
- Key Laboratory of Glycoconjugates Research Ministry of Public Health
| |
Collapse
|
67
|
Perovskite for the highly selective enrichment of phosphopeptides. J Chromatogr A 2015; 1376:143-8. [DOI: 10.1016/j.chroma.2014.12.036] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 12/08/2014] [Accepted: 12/10/2014] [Indexed: 11/17/2022]
|
68
|
Li LP, Liu JZ, Xu LN, Li Z, Bai Y, Xiao YL, Liu HW. GdF3as a promising phosphopeptide affinity probe and dephospho-labelling medium: experiments and theoretical explanation. Chem Commun (Camb) 2014; 50:11572-5. [DOI: 10.1039/c4cc04090b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
69
|
Highly selective enrichment of phosphopeptides with high-index facets exposed octahedral tin dioxide nanoparticles for mass spectrometric analysis. Talanta 2013; 119:452-7. [PMID: 24401440 DOI: 10.1016/j.talanta.2013.11.049] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Revised: 11/14/2013] [Accepted: 11/16/2013] [Indexed: 11/22/2022]
Abstract
High-index facets exposed octahedral tin dioxide (SnO2) nanoparticles were successfully synthesized and applied to selectively enrich phosphopeptides for mass spectrometric analysis. The high selectivity and capacity of the octahedral SnO2 nanoparticles were demonstrated by effectively enriching phosphopeptides from digests of phosphoprotein (α- or β-casein), protein mixtures of β-casein and bovine serum albumin, milk, and human serum samples. The unique octahedral SnO2 with abundant unsaturated coordination Sn atoms exhibited enhanced affinity and selective coordination ability with phosphopeptides due to their high chemical activity. The strong affinity led to highly selective capture and enrichment of phosphopeptides for sensitive detection through the bidentate bonds formed between surface atoms and phosphate. The phosphopeptides could be detected in β-casein down to 4 × 10(-9)M or in the mixture of β-casein and BSA with a molar ratio of even 1:100. The performance in selective enrichment of phosphopeptides from drinking milk and human serum showed powerful evidence of high selectivity and efficiency in identifying the low-abundant phosphopeptides from complicated biological samples. This work provided a way to improve the physical and chemical properties of materials by tailoring their exposed facets for selective enrichment of phosphopeptides.
Collapse
|
70
|
Novel nanomaterials used for sample preparation for protein analysis. Anal Bioanal Chem 2013; 406:35-47. [DOI: 10.1007/s00216-013-7392-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 09/09/2013] [Accepted: 09/20/2013] [Indexed: 11/26/2022]
|