51
|
Role of the endocannabinoid system in drug addiction. Biochem Pharmacol 2018; 157:108-121. [PMID: 30217570 DOI: 10.1016/j.bcp.2018.09.013] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 09/10/2018] [Indexed: 12/20/2022]
Abstract
Drug addiction is a chronic relapsing disorder that produces a dramaticglobal health burden worldwide. Not effective treatment of drug addiction is currently available probably due to the difficulties to find an appropriate target to manage this complex disease raising the needs for further identification of novel therapeutic approaches. The endocannabinoid system has been found to play a crucial role in the neurobiological substrate underlying drug addiction. Endocannabinoids and cannabinoid receptors are widely expressed in the main areas of the mesocorticolimbic system that participate in the initiation and maintenance of drug consumption and in the development of compulsion and loss of behavioral control occurring during drug addiction. The identification of the important role played by CB1 cannabinoid receptors in drug addiction encouraged the possible used of an early commercialized CB1 receptor antagonist for treating drug addiction. However, the incidence of serious psychiatric adverse events leaded to the sudden withdrawal from the market of this CB1 antagonist and all the research programs developed by pharmaceutical companies to obtain new CB1 antagonists were stopped. Currently, new research strategies are under development to target the endocannabinoid system for drug addiction avoiding these side effects, which include allosteric negative modulators of CB1 receptors and compounds targeting CB2 receptors. Recent studies showing the potential role of CB2 receptors in the addictive properties of different drugs of abuse have open a promising research opportunity to develop novel possible therapeutic approaches.
Collapse
|
52
|
McReynolds JR, Doncheck EM, Li Y, Vranjkovic O, Graf EN, Ogasawara D, Cravatt BF, Baker DA, Liu QS, Hillard CJ, Mantsch JR. Stress Promotes Drug Seeking Through Glucocorticoid-Dependent Endocannabinoid Mobilization in the Prelimbic Cortex. Biol Psychiatry 2018; 84:85-94. [PMID: 29100630 PMCID: PMC5889367 DOI: 10.1016/j.biopsych.2017.09.024] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/15/2017] [Accepted: 09/20/2017] [Indexed: 12/29/2022]
Abstract
BACKGROUND Clinical reports suggest that rather than directly driving cocaine use, stress may create a biological context within which other triggers for drug use become more potent. We hypothesize that stress-induced increases in corticosterone "set the stage" for relapse by promoting endocannabinoid-induced attenuation of inhibitory transmission in the prelimbic cortex (PL). METHODS We have established a rat model for these stage-setting effects of stress. In this model, neither a stressor (electric footshock) nor stress-level corticosterone treatment alone reinstates cocaine seeking following self-administration and extinction, but each treatment potentiates reinstatement in response to an otherwise subthreshold cocaine priming dose (2.5 mg/kg, intraperitoneal). The contributions of endocannabinoid signaling in the PL to the effects of stress-level corticosterone on PL neurotransmission and cocaine seeking were determined using intra-PL microinfusions. Endocannabinoid-dependent effects of corticosterone on inhibitory synaptic transmission in the rat PL were determined using whole-cell recordings in layer V pyramidal neurons. RESULTS Corticosterone application attenuated inhibitory synaptic transmission in the PL via cannabinoid receptor type 1 (CB1R)- and 2-arachidonoylglycerol-dependent inhibition of gamma-aminobutyric acid release without altering postsynaptic responses. The ability of systemic stress-level corticosterone treatment to potentiate cocaine-primed reinstatement was recapitulated by intra-PL injection of corticosterone, the CB1R agonist WIN 55,212-2, or the monoacylglycerol lipase inhibitor URB602. Corticosterone effects on reinstatement were attenuated by intra-PL injections of either the CB1R antagonist, AM251, or the diacylglycerol lipase inhibitor, DO34. CONCLUSIONS These findings suggest that stress-induced increases in corticosterone promote cocaine seeking by mobilizing 2-arachidonoylglycerol in the PL, resulting in CB1R-mediated attenuation of inhibitory transmission in this brain region.
Collapse
Affiliation(s)
- Jayme R. McReynolds
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, 53233, USA
| | | | - Yan Li
- Department of Pharmacology and Toxicology and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Oliver Vranjkovic
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, 53233, USA
| | - Evan N. Graf
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, 53233, USA
| | - Daisuke Ogasawara
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Benjamin F. Cravatt
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - David A. Baker
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, 53233, USA
| | - Qing-song Liu
- Department of Pharmacology and Toxicology and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Cecilia J. Hillard
- Department of Pharmacology and Toxicology and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - John R. Mantsch
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, 53233, USA
| |
Collapse
|
53
|
Ferland JMN, Carr MR, Lee AM, Hoogeland ME, Winstanley CA, Pattij T. Examination of the effects of cannabinoid ligands on decision making in a rat gambling task. Pharmacol Biochem Behav 2018; 170:87-97. [PMID: 29787777 DOI: 10.1016/j.pbb.2018.05.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 05/08/2018] [Accepted: 05/18/2018] [Indexed: 11/16/2022]
Abstract
Although exposure to delta-9-tetrahydrocannabinol (THC) is perceived to be relatively harmless, mounting evidence has begun to show that it is associated with a variety of cognitive deficits, including poor decision making. THC-induced impairments in decision making are thought to be the result of cannabinoid CB1 receptor activation, and although clinical literature suggests that chronic activation via THC contributes to perturbations in decision making, acute CB1 receptor modulation has yielded mixed results. Using an animal model to examine how CB1-specific ligands impact choice biases would provide significant insight as to how recruitment of the endocannabinoid system may influence decision making. Here, we used the rat gambling task (rGT), a validated analogue of the human Iowa Gambling Task, to assess baseline decision making preferences in male Wistar rats. After acquisition rGT performance was measured. Animals were challenged with the CB1 receptor antagonist rimonabant, the partial agonist THC, and the synthetic agonist WIN55,212-2. Animals were also treated acutely with the fatty acid amide hydrolase (FAAH) inhibitor URB597 to selectively upregulate the endocannabinoid anandamide. Blockade of the CB1 receptor produced a trend improvement in decision making in animals who preferred the advantageous task options, yet left choice unaffected in risk-prone rats. Neither CB1 receptor agonist had strong effects on decision making, but a high dose THC decreased premature responses, whereas WIN55,212-2 did the opposite. URB597 did not affect task performance. These results indicate that although chronic CB1 receptor activation may be associated with impaired decision making, acute modulation has modest effects on choice and instead may play a substantive role in regulating impulsive responding.
Collapse
Affiliation(s)
- Jacqueline-Marie N Ferland
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The Netherlands; Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Madison R Carr
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The Netherlands
| | - Angela M Lee
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The Netherlands
| | - Myrthe E Hoogeland
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The Netherlands
| | - Catharine A Winstanley
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Tommy Pattij
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
54
|
Baggelaar MP, Maccarrone M, van der Stelt M. 2-Arachidonoylglycerol: A signaling lipid with manifold actions in the brain. Prog Lipid Res 2018; 71:1-17. [PMID: 29751000 DOI: 10.1016/j.plipres.2018.05.002] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 05/03/2018] [Accepted: 05/06/2018] [Indexed: 11/19/2022]
Abstract
2-Arachidonoylglycerol (2-AG) is a signaling lipid in the central nervous system that is a key regulator of neurotransmitter release. 2-AG is an endocannabinoid that activates the cannabinoid CB1 receptor. It is involved in a wide array of (patho)physiological functions, such as emotion, cognition, energy balance, pain sensation and neuroinflammation. In this review, we describe the biosynthetic and metabolic pathways of 2-AG and how chemical and genetic perturbation of these pathways has led to insight in the biological role of this signaling lipid. Finally, we discuss the potential therapeutic benefits of modulating 2-AG levels in the brain.
Collapse
Affiliation(s)
- Marc P Baggelaar
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Mauro Maccarrone
- Department of Medicine, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy; European Centre for Brain Research/IRCCS Santa Lucia Foundation, via del Fosso del Fiorano 65, 00143 Rome, Italy
| | - Mario van der Stelt
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands..
| |
Collapse
|
55
|
Ingebretson AE, Hearing MC, Huffington ED, Thomas MJ. Endogenous dopamine and endocannabinoid signaling mediate cocaine-induced reversal of AMPAR synaptic potentiation in the nucleus accumbens shell. Neuropharmacology 2018; 131:154-165. [PMID: 29225042 PMCID: PMC11552549 DOI: 10.1016/j.neuropharm.2017.12.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 11/28/2017] [Accepted: 12/05/2017] [Indexed: 12/14/2022]
Abstract
Repeated exposure to drugs of abuse alters the structure and function of neural circuits mediating reward, generating maladaptive plasticity in circuits critical for motivated behavior. Within meso-corticolimbic dopamine circuitry, repeated exposure to cocaine induces progressive alterations in AMPAR-mediated glutamatergic synaptic transmission. During a 10-14 day period of abstinence from cocaine, AMPAR signaling is potentiated at synapses on nucleus accumbens (NAc) medium spiny neurons (MSNs), promoting a state of heightened synaptic excitability. Re-exposure to cocaine during abstinence, however, rapidly reverses and depotentiates enhanced AMPAR signaling. To understand how re-exposure to cocaine alters AMPAR synaptic transmission, we investigated the roles of dopamine and endocannabinoid (eCB) signaling in modifying synaptic strength in the NAc shell. Using patch-clamp recordings from NAc slices prepared after 10-14 days of abstinence from repeated cocaine, we found that AMPAR-mediated depotentiation is rapidly induced in the NAc shell within 20 min of cocaine re-exposure ex vivo, and persists for up to five days before synapses return to levels of potentiation observed during abstinence. In cocaine-treated animals, global dopamine receptor activation was both necessary and sufficient for the cocaine-evoked depotentiation of AMPAR synaptic function. Additionally, we identified that CB1 receptors are engaged by endogenous endocannabinoids (eCBs) during re-exposure to cocaine ex vivo. Overall, these results indicate the central role that dopamine and eCB signaling mechanisms play in modulating cocaine-induced AMPAR plasticity in the NAc shell.
Collapse
Affiliation(s)
- Anna E Ingebretson
- Department of Neuroscience, University of Minnesota, 321 Church St. S.E., Minneapolis, MN, 55455, USA
| | - Matthew C Hearing
- Department of Neuroscience, University of Minnesota, 321 Church St. S.E., Minneapolis, MN, 55455, USA; Department of Biomedical Sciences, Marquette University, Milwaukee, WI, 53233, USA
| | - Ethan D Huffington
- Department of Neuroscience, University of Minnesota, 321 Church St. S.E., Minneapolis, MN, 55455, USA
| | - Mark J Thomas
- Department of Neuroscience, University of Minnesota, 321 Church St. S.E., Minneapolis, MN, 55455, USA; Department of Psychology, University of Minnesota, 75 E River Road, Minneapolis, MN 55455, USA.
| |
Collapse
|
56
|
Namba MD, Tomek SE, Olive MF, Beckmann JS, Gipson CD. The Winding Road to Relapse: Forging a New Understanding of Cue-Induced Reinstatement Models and Their Associated Neural Mechanisms. Front Behav Neurosci 2018; 12:17. [PMID: 29479311 PMCID: PMC5811475 DOI: 10.3389/fnbeh.2018.00017] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/22/2018] [Indexed: 12/13/2022] Open
Abstract
In drug addiction, cues previously associated with drug use can produce craving and frequently trigger the resumption of drug taking in individuals vulnerable to relapse. Environmental stimuli associated with drugs or natural reinforcers can become reliably conditioned to increase behavior that was previously reinforced. In preclinical models of addiction, these cues enhance both drug self-administration and reinstatement of drug seeking. In this review, we will dissociate the roles of conditioned stimuli as reinforcers from their modulatory or discriminative functions in producing drug-seeking behavior. As well, we will examine possible differences in neurobiological encoding underlying these functional differences. Specifically, we will discuss how models of drug addiction and relapse should more systematically evaluate these different types of stimuli to better understand the neurobiology underlying craving and relapse. In this way, behavioral and pharmacotherapeutic interventions may be better tailored to promote drug use cessation outcomes and long-term abstinence.
Collapse
Affiliation(s)
- Mark D. Namba
- Department of Psychology, Arizona State University, Tempe, AZ, United States
| | - Seven E. Tomek
- Department of Psychology, Arizona State University, Tempe, AZ, United States
| | - M. Foster Olive
- Department of Psychology, Arizona State University, Tempe, AZ, United States
| | - Joshua S. Beckmann
- Department of Psychology, University of Kentucky, Lexington, KY, United States
| | - Cassandra D. Gipson
- Department of Psychology, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
57
|
Stern CA, de Carvalho CR, Bertoglio LJ, Takahashi RN. Effects of Cannabinoid Drugs on Aversive or Rewarding Drug-Associated Memory Extinction and Reconsolidation. Neuroscience 2018; 370:62-80. [DOI: 10.1016/j.neuroscience.2017.07.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 06/23/2017] [Accepted: 07/09/2017] [Indexed: 12/22/2022]
|
58
|
Castilla-Ortega E, Ladrón de Guevara-Miranda D, Serrano A, Pavón FJ, Suárez J, Rodríguez de Fonseca F, Santín LJ. The impact of cocaine on adult hippocampal neurogenesis: Potential neurobiological mechanisms and contributions to maladaptive cognition in cocaine addiction disorder. Biochem Pharmacol 2017; 141:100-117. [DOI: 10.1016/j.bcp.2017.05.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 05/03/2017] [Indexed: 12/14/2022]
|
59
|
Nguyen T, German N, Decker AM, Langston TL, Gamage TF, Farquhar CE, Li JX, Wiley JL, Thomas BF, Zhang Y. Novel Diarylurea Based Allosteric Modulators of the Cannabinoid CB1 Receptor: Evaluation of Importance of 6-Pyrrolidinylpyridinyl Substitution. J Med Chem 2017; 60:7410-7424. [PMID: 28792219 DOI: 10.1021/acs.jmedchem.7b00707] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Allosteric modulators of the cannabinoid CB1 receptor have recently been reported as an alternative approach to modulate the CB1 receptor for therapeutic benefits. In this study, we report the design and synthesis of a series of diarylureas derived from PSNCBAM-1 (2). Similar to 2, these diarylureas dose-dependently inhibited CP55,940-induced intracellular calcium mobilization and [35S]GTP-γ-S binding while enhancing [3H]CP55,940 binding to the CB1 receptor. Structure-activity relationship studies revealed that the pyridinyl ring of 2 could be replaced by other aromatic rings and the pyrrolidinyl ring is not required for CB1 allosteric modulation. 34 (RTICBM-74) had similar potencies as 2 in all in vitro assays but showed significantly improved metabolic stability to rat liver microsomes. More importantly, 34 was more effective than 2 in attenuating the reinstatement of extinguished cocaine-seeking behavior in rats, demonstrating the potential of this diarylurea series as promising candidates for the development of relapse treatment of cocaine addiction.
Collapse
Affiliation(s)
- Thuy Nguyen
- Research Triangle Institute , Research Triangle Park, North Carolina 27709, United States
| | - Nadezhda German
- Research Triangle Institute , Research Triangle Park, North Carolina 27709, United States
| | - Ann M Decker
- Research Triangle Institute , Research Triangle Park, North Carolina 27709, United States
| | - Tiffany L Langston
- Research Triangle Institute , Research Triangle Park, North Carolina 27709, United States
| | - Thomas F Gamage
- Research Triangle Institute , Research Triangle Park, North Carolina 27709, United States
| | - Charlotte E Farquhar
- Research Triangle Institute , Research Triangle Park, North Carolina 27709, United States
| | - Jun-Xu Li
- Department of Pharmacology and Toxicology, University at Buffalo, the State University of New York , Buffalo, New York 14214, United States
| | - Jenny L Wiley
- Research Triangle Institute , Research Triangle Park, North Carolina 27709, United States
| | - Brian F Thomas
- Research Triangle Institute , Research Triangle Park, North Carolina 27709, United States
| | - Yanan Zhang
- Research Triangle Institute , Research Triangle Park, North Carolina 27709, United States
| |
Collapse
|
60
|
Khaleghzadeh-Ahangar H, Haghparast A. Intra-accumbal Cannabinoid Agonist Attenuated Reinstatement but not Extinction Period of Morphine-Induced Conditioned Place Preference; Evidence for Different Characteristics of Extinction Period and Reinstatement. Neurochem Res 2017; 42:3321-3330. [DOI: 10.1007/s11064-017-2374-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 07/29/2017] [Accepted: 08/01/2017] [Indexed: 12/11/2022]
|
61
|
Johnson KA, Lovinger DM. Presynaptic G Protein-Coupled Receptors: Gatekeepers of Addiction? Front Cell Neurosci 2016; 10:264. [PMID: 27891077 PMCID: PMC5104741 DOI: 10.3389/fncel.2016.00264] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 10/31/2016] [Indexed: 12/21/2022] Open
Abstract
Drug abuse and addiction cause widespread social and public health problems, and the neurobiology underlying drug actions and drug use and abuse is an area of intensive research. Drugs of abuse alter synaptic transmission, and these actions contribute to acute intoxication as well as the chronic effects of abused substances. Transmission at most mammalian synapses involves neurotransmitter activation of two receptor subtypes, ligand-gated ion channels that mediate fast synaptic responses and G protein-coupled receptors (GPCRs) that have slower neuromodulatory actions. The GPCRs represent a large proportion of neurotransmitter receptors involved in almost all facets of nervous system function. In addition, these receptors are targets for many pharmacotherapeutic agents. Drugs of abuse directly or indirectly affect neuromodulation mediated by GPCRs, with important consequences for intoxication, drug taking and responses to prolonged drug exposure, withdrawal and addiction. Among the GPCRs are several subtypes involved in presynaptic inhibition, most of which are coupled to the Gi/o class of G protein. There is increasing evidence that these presynaptic Gi/o-coupled GPCRs have important roles in the actions of drugs of abuse, as well as behaviors related to these drugs. This topic will be reviewed, with particular emphasis on receptors for three neurotransmitters, Dopamine (DA; D1- and D2-like receptors), Endocannabinoids (eCBs; CB1 receptors) and glutamate (group II metabotropic glutamate (mGlu) receptors). The focus is on recent evidence from laboratory animal models (and some evidence in humans) implicating these receptors in the acute and chronic effects of numerous abused drugs, as well as in the control of drug seeking and taking. The ability of drugs targeting these receptors to modify drug seeking behavior has raised the possibility of using compounds targeting these receptors for addiction pharmacotherapy. This topic is also discussed, with emphasis on development of mGlu2 positive allosteric modulators (PAMs).
Collapse
Affiliation(s)
- Kari A. Johnson
- Section on Synaptic Pharmacology, Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of HealthBethesda, MD, USA
| | - David M. Lovinger
- Section on Synaptic Pharmacology, Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of HealthBethesda, MD, USA
| |
Collapse
|
62
|
Delis F, Polissidis A, Poulia N, Justinova Z, Nomikos GG, Goldberg SR, Antoniou K. Attenuation of Cocaine-Induced Conditioned Place Preference and Motor Activity via Cannabinoid CB2 Receptor Agonism and CB1 Receptor Antagonism in Rats. Int J Neuropsychopharmacol 2016; 20:269-278. [PMID: 27994006 PMCID: PMC5408977 DOI: 10.1093/ijnp/pyw102] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 11/07/2016] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Studies have shown the involvement of cannabinoid (CB) receptors in the behavioral and neurobiological effects of psychostimulants. Most of these studies have focused on the role of CB1 receptors in the psychostimulant effects of cocaine, while very few have investigated the respective role of CB2 receptors. Further studies are warranted to elucidate the extent of CB receptor involvement in the expression of cocaine-induced effects. METHODS The role of CB1 and CB2 receptors in the rewarding and motor properties of cocaine was assessed in conditioned place preference, conditioned motor activity, and open field activity in rats. RESULTS The CB1 receptor antagonist rimonabant (3 mg/kg) decreased the acquisition and the expression of conditioned place preference induced by cocaine (20 mg/kg). Rimonabant inhibited cocaine-elicited conditioned motor activity when administered during the expression of cocaine-induced conditioned place preference. Rimonabant decreased ambulatory and vertical activity induced by cocaine. The CB2 receptor agonist JWH-133 (10 mg/kg) decreased the acquisition and the expression of cocaine-induced conditioned place preference. JWH-133 inhibited cocaine-elicited conditioned motor activity when administered during the acquisition and the expression of cocaine-induced conditioned place preference. JWH-133 decreased ambulatory activity and abolished vertical activity induced by cocaine. The effects of JWH-133 on cocaine conditioned and stimulated responses were abolished when the CB2 receptor antagonist/inverse agonist AM630 (5 mg/kg) was preadministered. CONCLUSIONS Cannabinoid CB1 and CB2 receptors modulate cocaine-induced rewarding behavior and appear to have opposite roles in the regulation of cocaine's reinforcing and psychomotor effects.
Collapse
Affiliation(s)
- Foteini Delis
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece (Dr Delis, Dr Polissidis, Ms Poulia, and Dr Anoniou)
| | - Alexia Polissidis
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece (Dr Delis, Dr Polissidis, Ms Poulia, and Dr Anoniou);,Laboratory of Neurodegenerative Diseases, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece (Dr Polissidis)
| | - Nafsika Poulia
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece (Dr Delis, Dr Polissidis, Ms Poulia, and Dr Anoniou)
| | - Zuzana Justinova
- Preclinical Pharmacology Section, Behavioral Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, NIH, DHHS, Baltimore, MD (Drs Justinova and Goldberg)
| | - George G. Nomikos
- Global Clinical Science, Takeda Development Center Americas, Inc, Deerfield, IL (Dr Nomikos)
| | - Steven R. Goldberg
- Preclinical Pharmacology Section, Behavioral Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, NIH, DHHS, Baltimore, MD (Drs Justinova and Goldberg)
| | - Katerina Antoniou
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece (Dr Delis, Dr Polissidis, Ms Poulia, and Dr Anoniou)
| |
Collapse
|
63
|
Boury-Jamot B, Halfon O, Magistretti PJ, Boutrel B. Lactate release from astrocytes to neurons contributes to cocaine memory formation. Bioessays 2016; 38:1266-1273. [DOI: 10.1002/bies.201600118] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Benjamin Boury-Jamot
- Department of Psychiatry; Centre for Psychiatric Neuroscience; Lausanne University Hospital; Lausanne Switzerland
- Brain Mind Institute; Ecole Polytechnique Fédérale de Lausanne (EPFL); Lausanne Switzerland
| | - Olivier Halfon
- Division of Child and Adolescent Psychiatry; Department of Psychiatry; Lausanne University Hospital; Lausanne Switzerland
| | - Pierre J. Magistretti
- Department of Psychiatry; Centre for Psychiatric Neuroscience; Lausanne University Hospital; Lausanne Switzerland
- Brain Mind Institute; Ecole Polytechnique Fédérale de Lausanne (EPFL); Lausanne Switzerland
- King Abdullah University of Science and Technology (KAUST); Thuwal Saudi Arabia
| | - Benjamin Boutrel
- Department of Psychiatry; Centre for Psychiatric Neuroscience; Lausanne University Hospital; Lausanne Switzerland
- Division of Child and Adolescent Psychiatry; Department of Psychiatry; Lausanne University Hospital; Lausanne Switzerland
| |
Collapse
|
64
|
A Highly Polymorphic Copy Number Variant in the NSF Gene is Associated with Cocaine Dependence. Sci Rep 2016; 6:31033. [PMID: 27498889 PMCID: PMC4976312 DOI: 10.1038/srep31033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 07/12/2016] [Indexed: 12/25/2022] Open
Abstract
Cocaine dependence is a complex psychiatric disorder involving both genetic and environmental factors. Several neurotransmitter systems mediate cocaine’s effects, dependence and relapse, being the components of the neurotransmitter release machinery good candidates for the disorder. Previously, we identified a risk haplotype for cocaine dependence in the NSF gene, encoding the protein N-Ethylmaleimide-Sensitive Factor essential for synaptic vesicle turnover. Here we examined the possible contribution to cocaine dependence of a large copy number variant (CNV) that encompasses part of the NSF gene. We performed a case-control association study in a discovery sample (359 cases and 356 controls) and identified an association between cocaine dependence and the CNV (P = 0.013), that was confirmed in the replication sample (508 cases and 569 controls, P = 7.1e-03) and in a pooled analysis (P = 1.8e-04), with an over-representation of low number of copies in cases. Subsequently, we studied the functional impact of the CNV on gene expression and found that the levels of two NSF transcripts were significantly increased in peripheral blood mononuclear cells (PBMC) along with the number of copies of the CNV. These results, together with a previous study from our group, support the role of NSF in the susceptibility to cocaine dependence.
Collapse
|
65
|
Gueye AB, Pryslawsky Y, Trigo JM, Poulia N, Delis F, Antoniou K, Loureiro M, Laviolette SR, Vemuri K, Makriyannis A, Le Foll B. The CB1 Neutral Antagonist AM4113 Retains the Therapeutic Efficacy of the Inverse Agonist Rimonabant for Nicotine Dependence and Weight Loss with Better Psychiatric Tolerability. Int J Neuropsychopharmacol 2016; 19:pyw068. [PMID: 27493155 PMCID: PMC5203757 DOI: 10.1093/ijnp/pyw068] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 07/31/2016] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Multiple studies suggest a pivotal role of the endocannabinoid system in regulating the reinforcing effects of various substances of abuse. Rimonabant, a CB1 inverse agonist found to be effective for smoking cessation, was associated with an increased risk of anxiety and depression. Here we evaluated the effects of the CB1 neutral antagonist AM4113 on the abuse-related effects of nicotine and its effects on anxiety and depressive-like behavior in rats. METHODS Rats were trained to self-administer nicotine under a fixed-ratio 5 or progressive-ratio schedules of reinforcement. A control group was trained to self-administer food. The acute/chronic effects of AM4113 pretreatment were evaluated on nicotine taking, motivation for nicotine, and cue-, nicotine priming- and yohimbine-induced reinstatement of nicotine-seeking. The effects of AM4113 in the basal firing and bursting activity of midbrain dopamine neurons were evaluated in a separate group of animals treated with nicotine. Anxiety/depression-like effects of AM4113 and rimonabant were evaluated 24h after chronic (21 days) pretreatment (0, 1, 3, and 10mg/kg, 1/d). RESULTS AM4113 significantly attenuated nicotine taking, motivation for nicotine, as well as cue-, priming- and stress-induced reinstatement of nicotine-seeking behavior. These effects were accompanied by a decrease of the firing and burst rates in the ventral tegmental area dopamine neurons in response to nicotine. On the other hand, AM4113 pretreatment did not have effects on operant responding for food. Importantly, AM4113 did not have effects on anxiety and showed antidepressant-like effects. CONCLUSION Our results indicate that AM4113 could be a promising therapeutic option for the prevention of relapse to nicotine-seeking while lacking anxiety/depression-like side effects.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Bernard Le Foll
- Translational Addiction Research Laboratory (Dr Gueye, Mr Pryslawsky, Dr Trigo, and Dr Le Foll), Alcohol Research and Treatment Clinic, Addiction Medicine Services, Ambulatory Care and Structured Treatments (Dr Le Foll), and Campbell Family Mental Health Research Institute (Dr Le Foll), Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Family and Community Medicine, Department of Pharmacology, and Department of Psychiatry, Division of Brain and Therapeutics, University of Toronto, Toronto, ON, Canada (Dr Le Foll); Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada (Dr Le Foll); Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Greece (Ms Poulia and Drs Delis and Antoniou); Department of Anatomy and Cell Biology, The Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada (Drs Loureiro and Laviolette); Center for Drug Discovery, Department of Pharmaceutical Sciences and Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA (Drs Vemuri and Makriyannis).
| |
Collapse
|
66
|
Blockade of Nicotine and Cannabinoid Reinforcement and Relapse by a Cannabinoid CB1-Receptor Neutral Antagonist AM4113 and Inverse Agonist Rimonabant in Squirrel Monkeys. Neuropsychopharmacology 2016; 41:2283-93. [PMID: 26888056 PMCID: PMC4946059 DOI: 10.1038/npp.2016.27] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 02/08/2016] [Accepted: 02/16/2016] [Indexed: 01/08/2023]
Abstract
Nicotine, the main psychoactive component of tobacco, and (-)-Δ(9)-tetrahydrocannabinol (THC), the main psychoactive ingredient in cannabis, play major roles in tobacco and marijuana dependence as reinforcers of drug-seeking and drug-taking behavior. Drugs that act as inverse agonists of cannabinoid CB1 receptors in the brain can attenuate the rewarding and abuse-related effects of nicotine and THC, but their clinical use is hindered by potentially serious side effects. The recently developed CB1-receptor neutral antagonists may provide an alternative therapeutic approach to nicotine and cannabinoid dependence. Here we compare attenuation of nicotine and THC reinforcement and reinstatement in squirrel monkeys by the CB1-receptor inverse agonist rimonabant and by the recently developed CB1-receptor neutral antagonist AM4113. Both rimonabant and AM4113 reduced two effects of nicotine and THC that play major roles in tobacco and marijuana dependence: (1) maintenance of high rates of drug-taking behavior, and (2) priming- or cue-induced reinstatement of drug-seeking behavior in abstinent subjects (models of relapse). In contrast, neither rimonabant nor AM4113 modified cocaine-reinforced or food-reinforced operant behavior under similar experimental conditions. However, both rimonabant and AM4113 reduced cue-induced reinstatement in monkeys trained to self-administer cocaine, suggesting the involvement of a common cannabinoid-mediated mechanism in the cue-induced reinstatement for different drugs of abuse. These findings point to CB1-receptor neutral antagonists as a new class of medications for treatment of both tobacco dependence and cannabis dependence.
Collapse
|
67
|
Martín-García E, Bourgoin L, Cathala A, Kasanetz F, Mondesir M, Gutiérrez-Rodriguez A, Reguero L, Fiancette JF, Grandes P, Spampinato U, Maldonado R, Piazza PV, Marsicano G, Deroche-Gamonet V. Differential Control of Cocaine Self-Administration by GABAergic and Glutamatergic CB1 Cannabinoid Receptors. Neuropsychopharmacology 2016; 41:2192-205. [PMID: 26612422 PMCID: PMC4946049 DOI: 10.1038/npp.2015.351] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 11/13/2015] [Accepted: 11/19/2015] [Indexed: 01/19/2023]
Abstract
The type 1 cannabinoid receptor (CB1) modulates numerous neurobehavioral processes and is therefore explored as a target for the treatment of several mental and neurological diseases. However, previous studies have investigated CB1 by targeting it globally, regardless of its two main neuronal localizations on glutamatergic and GABAergic neurons. In the context of cocaine addiction this lack of selectivity is critical since glutamatergic and GABAergic neuronal transmission is involved in different aspects of the disease. To determine whether CB1 exerts different control on cocaine seeking according to its two main neuronal localizations, we used mutant mice with deleted CB1 in cortical glutamatergic neurons (Glu-CB1) or in forebrain GABAergic neurons (GABA-CB1). In Glu-CB1, gene deletion concerns the dorsal telencephalon, including neocortex, paleocortex, archicortex, hippocampal formation and the cortical portions of the amygdala. In GABA-CB1, it concerns several cortical and non-cortical areas including the dorsal striatum, nucleus accumbens, thalamic, and hypothalamic nuclei. We tested complementary components of cocaine self-administration, separating the influence of primary and conditioned effects. Mechanisms underlying each phenotype were explored using in vivo microdialysis and ex vivo electrophysiology. We show that CB1 expression in forebrain GABAergic neurons controls mouse sensitivity to cocaine, while CB1 expression in cortical glutamatergic neurons controls associative learning processes. In accordance, in the nucleus accumbens, GABA-CB1 receptors control cocaine-induced dopamine release and Glu-CB1 receptors control AMPAR/NMDAR ratio; a marker of synaptic plasticity. Our findings demonstrate a critical distinction of the altered balance of Glu-CB1 and GABA-CB1 activity that could participate in the vulnerability to cocaine abuse and addiction. Moreover, these novel insights advance our understanding of CB1 neuropathophysiology.
Collapse
Affiliation(s)
- Elena Martín-García
- INSERM U862, Pathophysiology of Addiction, NeuroCentre Magendie, Bordeaux, France,University of Bordeaux, Bordeaux, France,Departament de Ciencies Experimentals i de la Salut, Universitat Pompeu Fabra, PRBB, Barcelona, Spain
| | - Lucie Bourgoin
- INSERM U862, Pathophysiology of Addiction, NeuroCentre Magendie, Bordeaux, France,University of Bordeaux, Bordeaux, France
| | - Adeline Cathala
- INSERM U862, Pathophysiology of Addiction, NeuroCentre Magendie, Bordeaux, France,University of Bordeaux, Bordeaux, France
| | - Fernando Kasanetz
- INSERM U862, Pathophysiology of Addiction, NeuroCentre Magendie, Bordeaux, France,University of Bordeaux, Bordeaux, France
| | - Miguel Mondesir
- INSERM U862, Pathophysiology of Addiction, NeuroCentre Magendie, Bordeaux, France,University of Bordeaux, Bordeaux, France
| | - Ana Gutiérrez-Rodriguez
- Department of Neurosciences, Faculty of Medicine and Dentistry, University of the Basque Country UPV/EHU, Leioa, Spain,Achucarro Basque Center for Neuroscience, Bizkaia Science and Technology Park, Zamudio, Spain
| | - Leire Reguero
- Department of Neurosciences, Faculty of Medicine and Dentistry, University of the Basque Country UPV/EHU, Leioa, Spain,Achucarro Basque Center for Neuroscience, Bizkaia Science and Technology Park, Zamudio, Spain
| | - Jean- François Fiancette
- INSERM U862, Pathophysiology of Addiction, NeuroCentre Magendie, Bordeaux, France,University of Bordeaux, Bordeaux, France
| | - Pedro Grandes
- Department of Neurosciences, Faculty of Medicine and Dentistry, University of the Basque Country UPV/EHU, Leioa, Spain,Achucarro Basque Center for Neuroscience, Bizkaia Science and Technology Park, Zamudio, Spain
| | - Umberto Spampinato
- INSERM U862, Pathophysiology of Addiction, NeuroCentre Magendie, Bordeaux, France,University of Bordeaux, Bordeaux, France
| | - Rafael Maldonado
- Departament de Ciencies Experimentals i de la Salut, Universitat Pompeu Fabra, PRBB, Barcelona, Spain
| | - Pier Vincenzo Piazza
- INSERM U862, Pathophysiology of Addiction, NeuroCentre Magendie, Bordeaux, France,University of Bordeaux, Bordeaux, France
| | - Giovanni Marsicano
- University of Bordeaux, Bordeaux, France,INSERM U862, Endocannabinoids and Neuroadaptation, NeuroCentre Magendie, Bordeaux, France
| | - Véronique Deroche-Gamonet
- INSERM U862, Pathophysiology of Addiction, NeuroCentre Magendie, Bordeaux, France,University of Bordeaux, Bordeaux, France,CRI U862, Pathophysiology of Addiction, Neurocentre Magendie, 146 rue Léo Saignat, Bordeaux 33077, France, Tel: +33 5 57 57 36 80, Fax: +33 5 57 57 36 69, E-mail:
| |
Collapse
|
68
|
Tung LW, Lu GL, Lee YH, Yu L, Lee HJ, Leishman E, Bradshaw H, Hwang LL, Hung MS, Mackie K, Zimmer A, Chiou LC. Orexins contribute to restraint stress-induced cocaine relapse by endocannabinoid-mediated disinhibition of dopaminergic neurons. Nat Commun 2016; 7:12199. [PMID: 27448020 PMCID: PMC4961842 DOI: 10.1038/ncomms12199] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 06/10/2016] [Indexed: 12/31/2022] Open
Abstract
Orexins are associated with drug relapse in rodents. Here, we show that acute restraint stress in mice activates lateral hypothalamic (LH) orexin neurons, increases levels of orexin A and 2-arachidonoylglycerol (2-AG) in the ventral tegmental area (VTA), and reinstates extinguished cocaine-conditioned place preference (CPP). This stress-induced reinstatement of cocaine CPP depends on type 1 orexin receptors (OX1Rs), type 1 cannabinoid receptors (CB1Rs) and diacylglycerol lipase (DAGL) in the VTA. In dopaminergic neurons of VTA slices, orexin A presynaptically inhibits GABAergic transmission. This effect is prevented by internal GDP-β-S or inhibiting OX1Rs, CB1Rs, phospholipase C or DAGL, and potentiated by inhibiting 2-AG degradation. These results suggest that restraint stress activates LH orexin neurons, releasing orexins into the VTA to activate postsynaptic OX1Rs of dopaminergic neurons and generate 2-AG through a Gq-protein-phospholipase C-DAGL cascade. 2-AG retrogradely inhibits GABA release through presynaptic CB1Rs, leading to VTA dopaminergic disinhibition and reinstatement of cocaine CPP. Stress is a major cause of relapse to cocaine seeking behaviour. Tung et al. show that orexin mediates stress-induced reinstatement of cocaine seeking behaviour in mice by endocannabinoid-dependent disinhibition in the ventral tegmental area.
Collapse
Affiliation(s)
- Li-Wei Tung
- Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Guan-Ling Lu
- Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Yen-Hsien Lee
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, No. 250 Wuxing Street, Taipei 11031, Taiwan
| | - Lung Yu
- Institute of Behavioral Medicine, College of Medicine, National Cheng Kung University, No.1, University Road, Tainan City 70101, Taiwan
| | - Hsin-Jung Lee
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Emma Leishman
- Gill Center and the Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana 47405, USA
| | - Heather Bradshaw
- Gill Center and the Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana 47405, USA
| | - Ling-Ling Hwang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, No. 250 Wuxing Street, Taipei 11031, Taiwan.,Department of Physiology, College of Medicine, Taipei Medical University, No. 250 Wuxing Street, Taipei 11031, Taiwan
| | - Ming-Shiu Hung
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli County 35053, Taiwan
| | - Ken Mackie
- Gill Center and the Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana 47405, USA
| | - Andreas Zimmer
- Institute for Molecular Psychiatry, Medical Faculty, University of Bonn, 53127 Bonn, Germany
| | - Lih-Chu Chiou
- Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei 100, Taiwan.,Department of Pharmacology, College of Medicine, National Taiwan University, Taipei 100, Taiwan.,Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei 100, Taiwan.,Research Center for Chinese Medicine &Acupuncture, China Medical University, Taichung 40447, Taiwan
| |
Collapse
|
69
|
Zlebnik NE, Cheer JF. Beyond the CB1 Receptor: Is Cannabidiol the Answer for Disorders of Motivation? Annu Rev Neurosci 2016; 39:1-17. [PMID: 27023732 DOI: 10.1146/annurev-neuro-070815-014038] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The Cannabis sativa plant has been used to treat various physiological and psychiatric conditions for millennia. Current research is focused on isolating potentially therapeutic chemical constituents from the plant for use in the treatment of many central nervous system disorders. Of particular interest is the primary nonpsychoactive constituent cannabidiol (CBD). Unlike Δ(9)-tetrahydrocannabinol (THC), CBD does not act through the cannabinoid type 1 (CB1) receptor but has many other receptor targets that may play a role in psychiatric disorders. Here we review preclinical and clinical data outlining the therapeutic efficacy of CBD for the treatment of motivational disorders such as drug addiction, anxiety, and depression. Across studies, findings suggest promising treatment effects and potentially overlapping mechanisms of action for CBD in these disorders and indicate the need for further systematic investigation of the viability of CBD as a psychiatric pharmacotherapy.
Collapse
Affiliation(s)
- Natalie E Zlebnik
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201;
| | - Joseph F Cheer
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201; .,Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland 21201;
| |
Collapse
|
70
|
CB1 receptor antagonism blocks stress-potentiated reinstatement of cocaine seeking in rats. Psychopharmacology (Berl) 2016; 233:99-109. [PMID: 26455361 PMCID: PMC4703460 DOI: 10.1007/s00213-015-4092-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 09/18/2015] [Indexed: 01/02/2023]
Abstract
RATIONALE Under some conditions, stress, rather than directly triggering cocaine seeking, potentiates reinstatement to other stimuli, including a subthreshold cocaine dose. The mechanisms responsible for stress-potentiated reinstatement are not well defined. Endocannabinoid signaling is increased by stress and regulates synaptic transmission in brain regions implicated in motivated behavior. OBJECTIVES The objective of this study was to test the hypothesis that cannabinoid type 1 receptor (CB1R) signaling is required for stress-potentiated reinstatement of cocaine seeking in rats. METHODS Following i.v. cocaine self-administration (2 h access/day) and extinction in male rats, footshock stress alone does not reinstate cocaine seeking but reinstatement is observed when footshock is followed by an injection of an otherwise subthreshold dose of cocaine (2.5 mg/kg, i.p.). CB1R involvement was tested by systemic administration of the CB1R antagonist AM251 (0, 1, or 3 mg/kg, i.p.) prior to testing for stress-potentiated reinstatement. RESULTS Stress-potentiated reinstatement was blocked by both 1 and 3 mg/kg AM251. By contrast, AM251 only attenuated food-reinforced lever pressing at the higher dose (i.e., 3 mg/kg) and did not affect locomotor activity at either dose tested. Neither high-dose cocaine-primed reinstatement (10 mg/kg, i.p.) nor footshock stress-triggered reinstatement following long-access cocaine self-administration (6 h access/day) was affected by AM251 pretreatment. Footshock stress increased concentrations of both endocannabinoids, N-arachidonylethanolamine and 2-arachidonoylglycerol, in regions of the prefrontal cortex. CONCLUSIONS These findings demonstrate that footshock stress increases prefrontal cortical endocannabinoids and stress-potentiated reinstatement is CB1R-dependent, suggesting that CB1R is a potential therapeutic target for relapse prevention, particularly in individuals whose cocaine use is stress-related.
Collapse
|
71
|
Morena M, Patel S, Bains JS, Hill MN. Neurobiological Interactions Between Stress and the Endocannabinoid System. Neuropsychopharmacology 2016; 41:80-102. [PMID: 26068727 PMCID: PMC4677118 DOI: 10.1038/npp.2015.166] [Citation(s) in RCA: 432] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 05/20/2015] [Accepted: 05/20/2015] [Indexed: 12/18/2022]
Abstract
Stress affects a constellation of physiological systems in the body and evokes a rapid shift in many neurobehavioral processes. A growing body of work indicates that the endocannabinoid (eCB) system is an integral regulator of the stress response. In the current review, we discuss the evidence to date that demonstrates stress-induced regulation of eCB signaling and the consequential role changes in eCB signaling have with respect to many of the effects of stress. Across a wide array of stress paradigms, studies have generally shown that stress evokes bidirectional changes in the two eCB molecules, anandamide (AEA) and 2-arachidonoyl glycerol (2-AG), with stress exposure reducing AEA levels and increasing 2-AG levels. Additionally, in almost every brain region examined, exposure to chronic stress reliably causes a downregulation or loss of cannabinoid type 1 (CB1) receptors. With respect to the functional role of changes in eCB signaling during stress, studies have demonstrated that the decline in AEA appears to contribute to the manifestation of the stress response, including activation of the hypothalamic-pituitary-adrenal (HPA) axis and increases in anxiety behavior, while the increased 2-AG signaling contributes to termination and adaptation of the HPA axis, as well as potentially contributing to changes in pain perception, memory and synaptic plasticity. More so, translational studies have shown that eCB signaling in humans regulates many of the same domains and appears to be a critical component of stress regulation, and impairments in this system may be involved in the vulnerability to stress-related psychiatric conditions, such as depression and posttraumatic stress disorder. Collectively, these data create a compelling argument that eCB signaling is an important regulatory system in the brain that largely functions to buffer against many of the effects of stress and that dynamic changes in this system contribute to different aspects of the stress response.
Collapse
Affiliation(s)
- Maria Morena
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada,Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, AB, Canada
| | - Sachin Patel
- Department of Molecular Physiology and Biophysics and Psychiatry, Vanderbilt Brain Institute, Vanderbilt-Kennedy Center for Research on Human Development, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jaideep S Bains
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada,Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Matthew N Hill
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada,Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, AB, Canada,Departments of Cell Biology and Anatomy and Psychiatry, University of Calgary, Calgary, AB, Canada,Departments of Cell Biology and Anatomy, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N4N1, Canada, Tel: +1 403 220 8466, Fax: +1 403 283 2700, E-mail:
| |
Collapse
|
72
|
Hernandez G, Cheer JF. To Act or Not to Act: Endocannabinoid/Dopamine Interactions in Decision-Making. Front Behav Neurosci 2015; 9:336. [PMID: 26733830 PMCID: PMC4681836 DOI: 10.3389/fnbeh.2015.00336] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 11/19/2015] [Indexed: 12/11/2022] Open
Abstract
Decision-making is an ethologically adaptive construct that is impaired in multiple psychiatric disorders. Activity within the mesocorticolimbic dopamine system has been traditionally associated with decision-making. The endocannabinoid system through its actions on inhibitory and excitatory synapses modulates dopamine activity and decision-making. The aim of this brief review is to present a synopsis of available data obtained when the endocannabinoid system is manipulated and dopamine activity recorded. To this end, we review research using different behavioral paradigms to provide further insight into how this ubiquitous signaling system biases dopamine-related behaviors to regulate decision-making.
Collapse
Affiliation(s)
- Giovanni Hernandez
- Faculté de Pharmacie, Université de Montréal Montréal, Quebec, QC, Canada
| | - Joseph F Cheer
- Department of Anatomy and Neurobiology, University of Maryland School of MedicineBaltimore, Maryland, MD, USA; Department of Psychiatry, University of Maryland School of MedicineBaltimore, Maryland, MD, USA
| |
Collapse
|
73
|
Covey DP, Wenzel JM, Cheer JF. Cannabinoid modulation of drug reward and the implications of marijuana legalization. Brain Res 2015; 1628:233-43. [PMID: 25463025 PMCID: PMC4442758 DOI: 10.1016/j.brainres.2014.11.034] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 11/11/2014] [Accepted: 11/15/2014] [Indexed: 10/24/2022]
Abstract
Marijuana is the most popular illegal drug worldwide. Recent trends indicate that this may soon change; not due to decreased marijuana use, but to an amendment in marijuana's illegal status. The cannabinoid type 1 (CB1) receptor mediates marijuana's psychoactive and reinforcing properties. CB1 receptors are also part of the brain endocannabinoid (eCB) system and support numerous forms of learning and memory, including the conditioned reinforcing properties of cues predicting reward or punishment. This is accomplished via eCB-dependent alterations in mesolimbic dopamine function, which plays an obligatory role in reward learning and motivation. Presynaptic CB1 receptors control midbrain dopamine neuron activity and thereby shape phasic dopamine release in target regions, particularly the nucleus accumbens (NAc). By also regulating synaptic input to the NAc, CB1 receptors modulate NAc output onto downstream neurons of the basal ganglia motor circuit, and thereby support goal-directed behaviors. Abused drugs promote short- and long-term adaptations in eCB-regulation of mesolimbic dopamine function, and thereby hijack neural systems related to the pursuit of rewards to promote drug abuse. By pharmacologically targeting the CB1 receptors, marijuana has preferential access to this neuronal system and can potently alter eCB-dependent processing of reward-related stimuli. As marijuana legalization progresses, greater access to this drug should increase the utility of marijuana as a research tool to better understand the eCB system, which has the potential to advance cannabinoid-based treatments for drug addiction.
Collapse
Affiliation(s)
- Dan P Covey
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jennifer M Wenzel
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Joseph F Cheer
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
74
|
Khaleghzadeh-Ahangar H, Haghparast A. Intra-accumbal CB1 receptor blockade reduced extinction and reinstatement of morphine. Physiol Behav 2015; 149:212-9. [DOI: 10.1016/j.physbeh.2015.06.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Revised: 05/19/2015] [Accepted: 06/03/2015] [Indexed: 11/27/2022]
|
75
|
Wang H, Treadway T, Covey DP, Cheer JF, Lupica CR. Cocaine-Induced Endocannabinoid Mobilization in the Ventral Tegmental Area. Cell Rep 2015; 12:1997-2008. [PMID: 26365195 PMCID: PMC4857883 DOI: 10.1016/j.celrep.2015.08.041] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 06/02/2015] [Accepted: 08/11/2015] [Indexed: 12/18/2022] Open
Abstract
Cocaine is a highly addictive drug that acts upon the brain’s reward circuitry via the inhibition of mono-amine uptake. Endogenous cannabinoids (eCB) are lipid molecules released from midbrain dopamine (DA) neurons that modulate cocaine’s effects through poorly understood mechanisms. We find that cocaine stimulates release of the eCB, 2-arach-idonoylglycerol (2-AG), in the rat ventral midbrain to suppress GABAergic inhibition of DA neurons, through activation of presynaptic cannabinoid CB1 receptors. Cocaine mobilizes 2-AG via inhibition of norepinephrine uptake and promotion of a cooperative interaction between Gq/11-coupled type-1 metabotropic glutamate and α1-adrenergic receptors to stimulate internal calcium stores and activate phospholipase C. The disinhibition of DA neurons by cocaine-mobilized 2-AG is also functionally relevant because it augments DA release in the nucleus accumbens in vivo. Our results identify a mechanism through which the eCB system can regulate the rewarding and addictive properties of cocaine.
Collapse
Affiliation(s)
- Huikun Wang
- Electrophysiology Research Section, Cellular Neurobiology Research Branch, National Institute on Drug Abuse, 251 Bayview Boulevard, Suite 200, Baltimore, MD 21224, USA
| | - Tyler Treadway
- Electrophysiology Research Section, Cellular Neurobiology Research Branch, National Institute on Drug Abuse, 251 Bayview Boulevard, Suite 200, Baltimore, MD 21224, USA
| | - Daniel P Covey
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Joseph F Cheer
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Carl R Lupica
- Electrophysiology Research Section, Cellular Neurobiology Research Branch, National Institute on Drug Abuse, 251 Bayview Boulevard, Suite 200, Baltimore, MD 21224, USA.
| |
Collapse
|
76
|
Broos N, Loonstra R, van Mourik Y, Schetters D, Schoffelmeer ANM, Pattij T, De Vries TJ. Subchronic administration of atomoxetine causes an enduring reduction in context-induced relapse to cocaine seeking without affecting impulsive decision making. Addict Biol 2015; 20:714-23. [PMID: 25056833 DOI: 10.1111/adb.12168] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Previous work has established a robust relationship between impulsivity and addiction, and revealed that impulsive decision making predisposes the vulnerability to cocaine-seeking behavior in rats. An important next step is to assess whether elevated relapse vulnerability can be treated via the reduction of impulsive decision making. Therefore, this study explored whether subchronic atomoxetine treatment can reduce relapse vulnerability by reducing impulsive decision making. Rats were trained in the delayed reward task and were subjected to 3 weeks of cocaine self-administration. Following drug self-administration, animals were divided to different experimental groups and received the noradrenaline transporter inhibitor and attention-deficit/hyperactivity disorder drug atomoxetine or vehicle subchronically for 20 days. On days 1 and 10 after treatment cessation, a context-induced reinstatement test was performed. Throughout the entire experiment, changes in impulsive decision making were continuously monitored. Subchronic treatment with atomoxetine reduced context-induced reinstatement both 1 and 10 days after treatment cessation, only in animals receiving no extinction training. Interestingly, neither subchronic nor acute atomoxetine treatments affected impulsive decision making. Our data indicate that the enduring reduction in relapse sensitivity by atomoxetine occurred independent of a reduction in impulsive decision making. Nonetheless, repeated atomoxetine administration seems a promising pharmacotherapeutical strategy to prevent relapse to cocaine seeking in abstinent drug-dependent subjects.
Collapse
Affiliation(s)
- Nienke Broos
- Department of Anatomy and Neurosciences; Neuroscience Campus Amsterdam; VU University Medical Center; Amsterdam The Netherlands
| | - Rhianne Loonstra
- Department of Anatomy and Neurosciences; Neuroscience Campus Amsterdam; VU University Medical Center; Amsterdam The Netherlands
| | - Yvar van Mourik
- Department of Anatomy and Neurosciences; Neuroscience Campus Amsterdam; VU University Medical Center; Amsterdam The Netherlands
| | - Dustin Schetters
- Department of Anatomy and Neurosciences; Neuroscience Campus Amsterdam; VU University Medical Center; Amsterdam The Netherlands
| | - Anton N. M. Schoffelmeer
- Department of Anatomy and Neurosciences; Neuroscience Campus Amsterdam; VU University Medical Center; Amsterdam The Netherlands
| | - Tommy Pattij
- Department of Anatomy and Neurosciences; Neuroscience Campus Amsterdam; VU University Medical Center; Amsterdam The Netherlands
| | - Taco J. De Vries
- Department of Anatomy and Neurosciences; Neuroscience Campus Amsterdam; VU University Medical Center; Amsterdam The Netherlands
| |
Collapse
|
77
|
BDNF interacts with endocannabinoids to regulate cocaine-induced synaptic plasticity in mouse midbrain dopamine neurons. J Neurosci 2015; 35:4469-81. [PMID: 25762688 DOI: 10.1523/jneurosci.2924-14.2015] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) and endocannabinoids (eCBs) have been individually implicated in behavioral effects of cocaine. The present study examined how BDNF-eCB interaction regulates cocaine-induced synaptic plasticity in the ventral tegmental area and behavioral effects. We report that BDNF and selective tyrosine kinase receptor B (TrkB) agonist 7,8-dihydroxyflavone (DHF) activated the TrkB receptor to facilitate two forms of eCB-mediated synaptic depression, depolarization-induced suppression of inhibition (DSI), and long-term depression (I-LTD) of IPSCs in ventral tegmental area dopamine neurons in mouse midbrain slices. The facilitation appears to be mediated by an increase in eCB production via phospholipase Cγ pathway, but not by an increase in CB1 receptor responsiveness or a decrease in eCB hydrolysis. Using Cre-loxP technology to specifically delete BDNF in dopamine neurons, we showed that eCB-mediated I-LTD, cocaine-induced reduction of GABAergic inhibition, and potentiation of glutamatergic excitation remained intact in wild-type control mice, but were impaired in BDNF conditional knock-out mice. We also showed that cocaine-induced conditioned place preference was attenuated in BDNF conditional knock-out mice, in vivo pretreatments with DHF before place conditioning restored cocaine conditioned place preference in these mice, and the behavioral effect of DHF was blocked by a CB₁ receptor antagonist. Together, these results suggest that BDNF in dopamine neurons regulates eCB responses, cocaine-induced synaptic plasticity, and associative learning.
Collapse
|
78
|
Hu SSJ, Liu YW, Yu L. Medial prefrontal cannabinoid CB1 receptors modulate consolidation and extinction of cocaine-associated memory in mice. Psychopharmacology (Berl) 2015; 232:1803-15. [PMID: 25420608 DOI: 10.1007/s00213-014-3812-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 11/10/2014] [Indexed: 01/06/2023]
Abstract
RATIONALE Cannabinoid CB1 receptors are implicated in various forms of learning and memory, including acquisition and reinstatement of cocaine-associated memory. However, roles of CB1 receptors in consolidation and extinction processes of cocaine-associated memory and the brain areas potentially involved remain unknown. OBJECTIVE This study examined the effect of rimonabant, a CB1 receptor antagonist, administered systemically or directly into the medial prefrontal cortex (mPFC) on memory consolidation and extinction of cocaine-induced conditioned place preference (CPP). MATERIALS AND METHODS Male C57BL/6J mice were trained to acquire cocaine-induced CPP. Rimonabant (0.1-3 mg/kg, i.p. or 1.5 μg bilaterally in the mPFC) or vehicle was administered either immediately after each CPP training (consolidation) or forced extinction (extinction) trial. Cocaine-induced CPP was tested after training, extinction, or cocaine priming. RESULTS Systemic or intra-mPFC administration of rimonabant impaired consolidation of CPP induced by a high dose (20 or 40 mg/kg) of cocaine but facilitated that induced by a low dose (2.5, 5, or 10 mg/kg). Moreover, systemic or intra-mPFC administration of rimonabant enhanced extinction of CPP memory induced by a high-dose (20 mg/kg) cocaine. CONCLUSION Our results suggest that antagonism of CB1 receptors in the mPFC bidirectionally modulates consolidation but facilitates extinction of cocaine-induced CPP memory. Therefore, CB1 receptor blockade with the concomitant extinction behavioral procedure may hint important therapeutic intervention strategies for the heavy cocaine addicts in a clinical setting.
Collapse
Affiliation(s)
- Sherry Shu-Jung Hu
- Cannabinoid Signaling Laboratory, Department of Psychology, National Cheng Kung University, 1 University Rd., Tainan, 70101, Taiwan,
| | | | | |
Collapse
|
79
|
Picone RP, Kendall DA. Minireview: From the bench, toward the clinic: therapeutic opportunities for cannabinoid receptor modulation. Mol Endocrinol 2015; 29:801-13. [PMID: 25866875 DOI: 10.1210/me.2015-1062] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The effects of cannabinoids have been known for centuries and over the past several decades two G protein-coupled receptors, CB1 and CB2, that are responsible for their activity have been identified. Endogenous lipid-derived cannabinergic agents have been found, biosynthetic and catabolic machinery has been characterized, and synthetic agents have been designed to modulate these receptors. Selective agents including agonists, antagonists, inverse agonists, and novel allosteric modulators targeting either CB1 or CB2 have been developed to inhibit or augment their basal tone. As a result, the role these receptors play in human physiology and their potential therapeutic applications in disease states are being elucidated. The CB1 receptor, although ubiquitous, is densely expressed in the brain, and CB2 is largely found on cells of immune origin. This minireview highlights the role of CB1 in excitotoxic assaults in the brain and its potential to limit addiction liability. In addition, it will examine the relationship between receptor activity and stimulation of insulin release from pancreatic β-cells, insulin resistance, and feeding behavior leading toward obesity. The roles of CB2 in the neuropathology of amyotrophic lateral sclerosis and in the central manifestations of chronic HIV infection potentially converge at inflammatory cell activation, thereby providing an opportunity for intervention. Last, CB2 modulation is discussed in the context of an experimental model of postmenopausal osteoporosis. Achieving exquisite receptor selectivity and elucidating the mechanisms underlying receptor inhibition and activation will be essential for the development of the next generation of cannabinergic-based therapeutic agents.
Collapse
Affiliation(s)
- Robert P Picone
- Clinical Development (R.P.P.), Medical and Regulatory Affairs, Novo Nordisk Inc, Plainsboro, New Jersey 08536; and Department of Pharmaceutical Sciences (D.A.K.), University of Connecticut, Storrs, Connecticut 06269-3092
| | - Debra A Kendall
- Clinical Development (R.P.P.), Medical and Regulatory Affairs, Novo Nordisk Inc, Plainsboro, New Jersey 08536; and Department of Pharmaceutical Sciences (D.A.K.), University of Connecticut, Storrs, Connecticut 06269-3092
| |
Collapse
|
80
|
Marinho EAV, Oliveira-Lima AJ, Santos R, Hollais AW, Baldaia MA, Wuo-Silva R, Yokoyama TS, Takatsu-Coleman AL, Patti CL, Longo BM, Berro LF, Frussa-Filho R. Effects of rimonabant on the development of single dose-induced behavioral sensitization to ethanol, morphine and cocaine in mice. Prog Neuropsychopharmacol Biol Psychiatry 2015; 58:22-31. [PMID: 25496830 DOI: 10.1016/j.pnpbp.2014.11.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 11/01/2014] [Accepted: 11/18/2014] [Indexed: 11/19/2022]
Abstract
RATIONALE The endocannabinoid system has been implicated in the neurobiological mechanism underlying drug addiction, especially the primary rewarding dopamine-dependent processes. Therefore, endocannabinoid receptor antagonists, such as the CB1 cannabinoid antagonist rimonabant, have been proposed as candidates for preventive addiction therapies. OBJECTIVES Investigate the possible involvement of CB1 receptors in the development of behavioral sensitization to ethanol, morphine and cocaine in mice. METHODS We compared the effects of different doses of rimonabant (0.3, 1, 3 and 10mg/kg) on spontaneous locomotor activity in the open-field, hyperlocomotion induced by acute administration of ethanol (1.8g/kg), morphine (20mg/kg) or cocaine (10mg/kg) and on subsequent drug-induced locomotor sensitization using a two-injection protocol in mice. We also investigated a possible depressive-like effect of an acute rimonabant challenge at the highest dose and its potential anxiogenic property. RESULTS At the highest dose, rimonabant abolished ethanol- and cocaine-induced hyperlocomotion and behavioral sensitization without modifying spontaneous and central locomotor activity or inducing depressive-like behavior on the forced swim test in mice. The other doses of rimonabant also selectively blocked acute ethanol-induced central hyperlocomotion. Although rimonabant at 0.3 and 1mg/kg potentiated the central hyperlocomotion induced by acute morphine injection, it was effective in attenuating morphine-induced behavioral sensitization at all doses. CONCLUSIONS Because the neural basis of behavioral sensitization has been proposed to correspond to some components of addiction, our findings indicate that the endocannabinoid system might be involved in ethanol, cocaine and morphine abuse.
Collapse
Affiliation(s)
- Eduardo A V Marinho
- Departamento de Ciências da Saúde, Universidade Estadual de Santa Cruz - UESC, Ilhéus, BA, Brazil.
| | | | - Renan Santos
- Departamento de Fisiologia, Universidade Federal de São Paulo - UNIFESP, São Paulo, SP, Brazil
| | - André W Hollais
- Departamento de Fisiologia, Universidade Federal de São Paulo - UNIFESP, São Paulo, SP, Brazil
| | - Marilia A Baldaia
- Departamento de Farmacologia, Universidade Federal de São Paulo - UNIFESP, São Paulo, SP, Brazil
| | - Raphael Wuo-Silva
- Departamento de Fisiologia, Universidade Federal de São Paulo - UNIFESP, São Paulo, SP, Brazil
| | - Thais S Yokoyama
- Departamento de Fisiologia, Universidade Federal de São Paulo - UNIFESP, São Paulo, SP, Brazil
| | - André L Takatsu-Coleman
- Departamento de Psicobiologia, Universidade Federal de São Paulo - UNIFESP, São Paulo, SP, Brazil
| | - Camilla L Patti
- Departamento de Farmacologia, Universidade Federal de São Paulo - UNIFESP, São Paulo, SP, Brazil
| | - Beatriz M Longo
- Departamento de Fisiologia, Universidade Federal de São Paulo - UNIFESP, São Paulo, SP, Brazil; Departamento de Farmacologia, Universidade Federal de São Paulo - UNIFESP, São Paulo, SP, Brazil
| | - Laís F Berro
- Departamento de Psicobiologia, Universidade Federal de São Paulo - UNIFESP, São Paulo, SP, Brazil.
| | - Roberto Frussa-Filho
- Departamento de Farmacologia, Universidade Federal de São Paulo - UNIFESP, São Paulo, SP, Brazil; Departamento de Psicobiologia, Universidade Federal de São Paulo - UNIFESP, São Paulo, SP, Brazil
| |
Collapse
|
81
|
McCreary AC, Müller CP, Filip M. Psychostimulants: Basic and Clinical Pharmacology. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2015; 120:41-83. [PMID: 26070753 DOI: 10.1016/bs.irn.2015.02.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Substance use disorder, and particularly psychostimulant use disorder, has considerable socioeconomic burden globally. The psychostimulants include several chemical classes, being derivatives of benzoylecgonine, phenethylamine, phenylpropanolamine, or aminoaryloxazoline. Psychostimulant drugs activate the brain reward pathways of the mesoaccumbal system, and continued use leads to persistent neuroplastic and dysfunctional changes of a variety of structures involved in learning and memory, habit-forming learning, salience attribution, and inhibitory control. There are a variety of neurochemical and neurobehavioral changes in psychostimulant addiction, for example, dopaminergic, glutamatergic, serotonergic (5-HT-ergic), and γ-amino butyric acid (GABA) changes have all noted. In this chapter, we will review pharmacological changes associated with psychostimulant use and abuse in humans and animals, and on the basis of the best characterized and most widely abused psychostimulants (amphetamines, cocaine) discuss why use transitions into abuse and review basic science and clinical strategies that might assist in treating psychostimulant abuse.
Collapse
Affiliation(s)
| | - Christian P Müller
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany
| | - Małgorzata Filip
- Laboratory of Drug Addiction Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland; Department of Toxicology, Faculty of Pharmacy, Jagiellonian University, Krakow, Poland.
| |
Collapse
|
82
|
Moreira FA, Jupp B, Belin D, Dalley JW. Endocannabinoids and striatal function: implications for addiction-related behaviours. Behav Pharmacol 2015; 26:59-72. [PMID: 25369747 PMCID: PMC5398317 DOI: 10.1097/fbp.0000000000000109] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 09/26/2014] [Indexed: 12/24/2022]
Abstract
Since the identification and cloning of the major cannabinoid receptor expressed in the brain almost 25 years ago research has highlighted the potential of drugs that target the endocannabinoid system for treating addiction. The endocannabinoids, anandamide and 2-arachidonoyl glycerol, are lipid-derived metabolites found in abundance in the basal ganglia and other brain areas innervated by the mesocorticolimbic dopamine systems. Cannabinoid CB1 receptor antagonists/inverse agonists reduce reinstatement of responding for cocaine, alcohol and opiates in rodents. However, compounds acting on the endocannabinoid system may have broader application in treating drug addiction by ameliorating associated traits and symptoms such as impulsivity and anxiety that perpetuate drug use and interfere with rehabilitation. As a trait, impulsivity is known to predispose to addiction and facilitate the emergence of addiction to stimulant drugs. In contrast, anxiety and elevated stress responses accompany extended drug use and may underlie the persistence of drug intake in dependent individuals. In this article we integrate and discuss recent findings in rodents showing selective pharmacological modulation of impulsivity and anxiety by cannabinoid agents. We highlight the potential of selective inhibitors of endocannabinoid metabolism, directed at fatty acid amide hydrolase and monoacylglycerol lipase, to reduce anxiety and stress responses, and discuss novel mechanisms underlying the modulation of the endocannabinoid system, including the attenuation of impulsivity, anxiety, and drug reward by selective CB2 receptor agonists.
Collapse
Affiliation(s)
- Fabricio A. Moreira
- Department of Pharmacology, Institute of Biological Science, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Departments of Psychology
| | | | | | - Jeffrey W. Dalley
- Departments of Psychology
- Department of Psychiatry, Addenbrookes’s Hospital University of Cambridge, Cambridge, UK
| |
Collapse
|
83
|
Gamaleddin IH, Trigo JM, Gueye AB, Zvonok A, Makriyannis A, Goldberg SR, Le Foll B. Role of the endogenous cannabinoid system in nicotine addiction: novel insights. Front Psychiatry 2015; 6:41. [PMID: 25859226 PMCID: PMC4373509 DOI: 10.3389/fpsyt.2015.00041] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 03/06/2015] [Indexed: 12/22/2022] Open
Abstract
Several lines of evidence have shown that the endogenous cannabinoids are implicated in several neuropsychiatric diseases. Notably, preclinical and human clinical studies have shown a pivotal role of the cannabinoid system in nicotine addiction. The CB1 receptor inverse agonist/antagonist rimonabant (also known as SR141716) was effective to decrease nicotine-taking and nicotine-seeking in rodents, as well as the elevation of dopamine induced by nicotine in brain reward area. Rimonabant has been shown to improve the ability of smokers to quit smoking in randomized clinical trials. However, rimonabant was removed from the market due to increased risk of psychiatric side-effects observed in humans. Recently, other components of the endogenous cannabinoid system have been explored. Here, we present the recent advances on the understanding of the role of the different components of the cannabinoid system on nicotine's effects. Those recent findings suggest possible alternative ways of modulating the cannabinoid system that could have implication for nicotine dependence treatment.
Collapse
Affiliation(s)
- Islam Hany Gamaleddin
- Translational Addiction Research Laboratory, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health , Toronto, ON , Canada ; Directorate of Poison Control and Forensic Chemistry, Ministry of Health , Riyadh , Saudi Arabia
| | - Jose M Trigo
- Translational Addiction Research Laboratory, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health , Toronto, ON , Canada
| | - Aliou B Gueye
- Translational Addiction Research Laboratory, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health , Toronto, ON , Canada
| | - Alexander Zvonok
- Center for Drug Discovery, Bouvé College of Health Sciences, Northeastern University , Boston, MA , USA
| | - Alexandros Makriyannis
- Center for Drug Discovery, Bouvé College of Health Sciences, Northeastern University , Boston, MA , USA
| | - Steven R Goldberg
- Preclinical Pharmacology Section, Behavioral Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services , Baltimore, MD , USA
| | - Bernard Le Foll
- Translational Addiction Research Laboratory, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health , Toronto, ON , Canada ; Alcohol Research and Treatment Clinic, Addiction Medicine Services, Ambulatory Care and Structured Treatments, Centre for Addiction and Mental Health , Toronto, ON , Canada ; Department of Family and Community Medicine, Institute of Medical Sciences, University of Toronto , Toronto, ON , Canada ; Department of Psychiatry, Institute of Medical Sciences, University of Toronto , Toronto, ON , Canada ; Department of Pharmacology and Toxicology, Institute of Medical Sciences, University of Toronto , Toronto, ON , Canada
| |
Collapse
|
84
|
Baimel C, Bartlett SE, Chiou LC, Lawrence AJ, Muschamp JW, Patkar O, Tung LW, Borgland SL. Orexin/hypocretin role in reward: implications for opioid and other addictions. Br J Pharmacol 2015; 172:334-48. [PMID: 24641197 PMCID: PMC4292951 DOI: 10.1111/bph.12639] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 01/24/2014] [Accepted: 01/31/2014] [Indexed: 12/11/2022] Open
Abstract
UNLABELLED Addiction is a devastating disorder that affects 15.3 million people worldwide. While prevalent, few effective treatments exist. Orexin receptors have been proposed as a potential target for anti-craving medications. Orexins, also known as hypocretins, are neuropeptides produced in neurons of the lateral and dorsomedial hypothalamus and perifornical area, which project widely throughout the brain. The absence of orexins in rodents and humans leads to narcolepsy. However, orexins also have an established role in reward seeking. This review will discuss some of the original studies describing the roles of the orexins in reward seeking as well as specific works that were presented at the 2013 International Narcotics Research Conference. Orexin signalling can promote drug-induced plasticity of glutamatergic synapses onto dopamine neurons of the ventral tegmental area (VTA), a brain region implicated in motivated behaviour. Additional evidence suggests that orexin signalling can also promote drug seeking by initiating an endocannabinoid-mediated synaptic depression of GABAergic inputs to the VTA, and thereby disinhibiting dopaminergic neurons. Orexin neurons co-express the inhibitory opioid peptide dynorphin. It has been proposed that orexin in the VTA may not mediate reward per se, but rather occludes the 'anti-reward' effects of dynorphin. Finally, orexin signalling in the prefrontal cortex and the central amygdala is implicated in reinstatement of reward seeking. This review will highlight recent work describing the role of orexin signalling in cellular processes underlying addiction-related behaviours and propose novel hypotheses for the mechanisms by which orexin signalling may impart drug seeking. LINKED ARTICLES This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2.
Collapse
Affiliation(s)
- Corey Baimel
- Department of Physiology and Pharmacology, The University of CalgaryCalgary, AB, Canada
- Department of Anesthesiology, Pharmacology and Therapeutics, The University of British ColumbiaVancouver, BC, Canada
| | - Selena E Bartlett
- Translational Research Institute, Institute for Health and Biomedical Sciences, Faculty of Health Queensland University of TechnologyBrisbane, QLD, Australia
| | - Lih-Chu Chiou
- Graduate Institute of Pharmacology, College of Medicine, National Taiwan UniversityTaipei, Taiwan
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan UniversityTaipei, Taiwan
| | - Andrew J Lawrence
- Florey Institute of Neuroscience and Mental Health, University of MelbourneParkville, VIC, Australia
| | - John W Muschamp
- Center for Substance Abuse Research, Department of Pharmacology, School of Medicine, Temple UniversityPhiladelphia, PA, USA
| | - Omkar Patkar
- Translational Research Institute, Institute for Health and Biomedical Sciences, Faculty of Health Queensland University of TechnologyBrisbane, QLD, Australia
| | - Li-Wei Tung
- Graduate Institute of Pharmacology, College of Medicine, National Taiwan UniversityTaipei, Taiwan
| | - Stephanie L Borgland
- Department of Physiology and Pharmacology, The University of CalgaryCalgary, AB, Canada
| |
Collapse
|
85
|
Laricchiuta D, Petrosini L. Individual differences in response to positive and negative stimuli: endocannabinoid-based insight on approach and avoidance behaviors. Front Syst Neurosci 2014; 8:238. [PMID: 25565991 PMCID: PMC4273613 DOI: 10.3389/fnsys.2014.00238] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 11/28/2014] [Indexed: 01/12/2023] Open
Abstract
Approach and avoidance behaviors-the primary responses to the environmental stimuli of danger, novelty and reward-are associated with the brain structures that mediate cognitive functionality, reward sensitivity and emotional expression. Individual differences in approach and avoidance behaviors are modulated by the functioning of amygdaloid-hypothalamic-striatal and striatal-cerebellar networks implicated in action and reaction to salient stimuli. The nodes of these networks are strongly interconnected and by acting on them the endocannabinoid and dopaminergic systems increase the intensity of appetitive or defensive motivation. This review analyzes the approach and avoidance behaviors in humans and rodents, addresses neurobiological and neurochemical aspects of these behaviors, and proposes a possible synaptic plasticity mechanism, related to endocannabinoid-dependent long-term potentiation (LTP) and depression that allows responding to salient positive and negative stimuli.
Collapse
Affiliation(s)
- Daniela Laricchiuta
- IRCCS Fondazione Santa LuciaRome, Italy
- Department of Dynamic and Clinical Psychology, Faculty of Medicine and Psychology, University “Sapienza” of RomeRome, Italy
| | - Laura Petrosini
- IRCCS Fondazione Santa LuciaRome, Italy
- Department of Psychology, Faculty of Medicine and Psychology, University “Sapienza” of RomeRome, Italy
| |
Collapse
|
86
|
Blanco E, Pavón FJ, Palomino A, Luque-Rojas MJ, Serrano A, Rivera P, Bilbao A, Alen F, Vida M, Suárez J, Rodríguez de Fonseca F. Cocaine-induced behavioral sensitization is associated with changes in the expression of endocannabinoid and glutamatergic signaling systems in the mouse prefrontal cortex. Int J Neuropsychopharmacol 2014; 18:pyu024. [PMID: 25539508 PMCID: PMC4368868 DOI: 10.1093/ijnp/pyu024] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Endocannabinoids modulate the glutamatergic excitatory transmission by acting as retrograde messengers. A growing body of studies has reported that both signaling systems in the mesocorticolimbic neural circuitry are involved in the neurobiological mechanisms underlying drug addiction. METHODS We investigated whether the expression of both endocannabinoid and glutamatergic systems in the prefrontal cortex (PFC) were altered by an acute and/or repeated cocaine administration schedule that resulted in behavioral sensitization. We measured the protein and mRNA expression of the main endocannabinoid metabolic enzymes and the cannabinoid receptor type 1 (CB1). We also analyzed the mRNA expression of relevant components of the glutamate-signaling system, including glutamate-synthesizing enzymes, metabotropic receptors, and ionotropic receptors. RESULTS Although acute cocaine (10 mg/kg) produced no significant changes in the endocannabinoid-related proteins, repeated cocaine administration (20 mg/kg daily) induced a pronounced increase in the CB1 receptor expression. In addition, acute cocaine administration (10 mg/kg) in cocaine-sensitized mice (referred to as cocaine priming) induced a selective increase in the endocannabinoid-degrading enzymes fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL). These protein changes were accompanied by an overall decrease in the ratios of endocannabinoid synthesis/degradation, especially the N-acyl phosphatidylethanolamine phospholipase D/FAAH and diacylglycerol lipase alpha/MAGL ratios. Regarding mRNA expression, while acute cocaine administration produced a decrease in CB1 receptors and N-acyl phosphatidylethanolamine phospholipase D, repeated cocaine treatment enhanced CB1 receptor expression. Cocaine-sensitized mice that were administered priming injections of cocaine mainly displayed an increased FAAH expression. These endocannabinoid changes were associated with modifications in glutamatergic transmission-related genes. An overall decrease was observed in the mRNA expression of the glutamate-synthesizing gene kidney-type glutaminase (KGA), the metabotropic glutamate receptors (mGluR3 and GluR), and subunits of NMDA ionotropic receptors (NR1, NR2A, NR2B and NR2C) after acute cocaine administration, while mice repeatedly exposed to cocaine only displayed an increase in NR2C. However, in cocaine-sensitized mice primed with cocaine, this inhibition was reversed and a strong increase was detected in the mGluR5, NR2 subunits, and both GluR1 and GluR3. CONCLUSIONS These findings indicate that cocaine sensitization is associated with an endocannabinoid downregulation and a hyperglutamatergic state in the PFC that, overall, contribute to an enhanced glutamatergic input into PFC-projecting areas.
Collapse
Affiliation(s)
| | | | - Ana Palomino
- * These authors contributed equally as first authors
| | | | | | | | | | | | | | | | - Fernando Rodríguez de Fonseca
- Unidad de Gestión Clínica de Salud Mental, Instituto IBIMA-Hospital Regional Universitario de Málaga, Málaga, Spain (Drs Blanco, Pavón, Palomino, Luque-Rojas, Serrano, Rivera, Alen, Vida, Suárez, and de Fonseca); Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Facultad de Psicología, Universidad de Málaga, Málaga, Spain (Dr Blanco); Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty of Mannheim, University of Heidelberg, Mannheim, Germany (Dr Bilbao).
| |
Collapse
|
87
|
Castaneto MS, Gorelick DA, Desrosiers NA, Hartman RL, Pirard S, Huestis MA. Synthetic cannabinoids: epidemiology, pharmacodynamics, and clinical implications. Drug Alcohol Depend 2014; 144:12-41. [PMID: 25220897 PMCID: PMC4253059 DOI: 10.1016/j.drugalcdep.2014.08.005] [Citation(s) in RCA: 439] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 08/04/2014] [Accepted: 08/05/2014] [Indexed: 12/14/2022]
Abstract
BACKGROUND Synthetic cannabinoids (SC) are a heterogeneous group of compounds developed to probe the endogenous cannabinoid system or as potential therapeutics. Clandestine laboratories subsequently utilized published data to develop SC variations marketed as abusable designer drugs. In the early 2000s, SC became popular as "legal highs" under brand names such as Spice and K2, in part due to their ability to escape detection by standard cannabinoid screening tests. The majority of SC detected in herbal products have greater binding affinity to the cannabinoid CB1 receptor than does Δ(9)-tetrahydrocannabinol (THC), the primary psychoactive compound in the cannabis plant, and greater affinity at the CB1 than the CB2 receptor. In vitro and animal in vivo studies show SC pharmacological effects 2-100 times more potent than THC, including analgesic, anti-seizure, weight-loss, anti-inflammatory, and anti-cancer growth effects. SC produce physiological and psychoactive effects similar to THC, but with greater intensity, resulting in medical and psychiatric emergencies. Human adverse effects include nausea and vomiting, shortness of breath or depressed breathing, hypertension, tachycardia, chest pain, muscle twitches, acute renal failure, anxiety, agitation, psychosis, suicidal ideation, and cognitive impairment. Long-term or residual effects are unknown. Due to these public health consequences, many SC are classified as controlled substances. However, frequent structural modification by clandestine laboratories results in a stream of novel SC that may not be legally controlled or detectable by routine laboratory tests. METHODS We present here a comprehensive review, based on a systematic electronic literature search, of SC epidemiology and pharmacology and their clinical implications.
Collapse
Affiliation(s)
- Marisol S Castaneto
- Chemistry and Drug Metabolism, Intramural Research Program, National Institute on Drug Abuse, NIH, Baltimore, MD, United States; Program in Toxicology, University of Maryland Baltimore, Baltimore, MD, United States
| | - David A Gorelick
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Nathalie A Desrosiers
- Chemistry and Drug Metabolism, Intramural Research Program, National Institute on Drug Abuse, NIH, Baltimore, MD, United States; Program in Toxicology, University of Maryland Baltimore, Baltimore, MD, United States
| | - Rebecca L Hartman
- Chemistry and Drug Metabolism, Intramural Research Program, National Institute on Drug Abuse, NIH, Baltimore, MD, United States; Program in Toxicology, University of Maryland Baltimore, Baltimore, MD, United States
| | - Sandrine Pirard
- Chemistry and Drug Metabolism, Intramural Research Program, National Institute on Drug Abuse, NIH, Baltimore, MD, United States
| | - Marilyn A Huestis
- Chemistry and Drug Metabolism, Intramural Research Program, National Institute on Drug Abuse, NIH, Baltimore, MD, United States.
| |
Collapse
|
88
|
Jupp B, Dalley JW. Convergent pharmacological mechanisms in impulsivity and addiction: insights from rodent models. Br J Pharmacol 2014; 171:4729-66. [PMID: 24866553 PMCID: PMC4209940 DOI: 10.1111/bph.12787] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 05/02/2014] [Accepted: 05/12/2014] [Indexed: 01/15/2023] Open
Abstract
Research over the last two decades has widely demonstrated that impulsivity, in its various forms, is antecedent to the development of drug addiction and an important behavioural trait underlying the inability of addicts to refrain from continued drug use. Impulsivity describes a variety of rapidly and prematurely expressed behaviours that span several domains from impaired response inhibition to an intolerance of delayed rewards, and is a core symptom of attention deficit hyperactivity disorder (ADHD) and other brain disorders. Various theories have been advanced to explain how impulsivity interacts with addiction both causally and as a consequence of chronic drug abuse; these acknowledge the strong overlaps in neural circuitry and mechanisms between impulsivity and addiction and the seemingly paradoxical treatment of ADHD with stimulant drugs with high abuse potential. Recent years have witnessed unprecedented progress in the elucidation of pharmacological mechanisms underpinning impulsivity. Collectively, this work has significantly improved the prospect for new therapies in ADHD as well as our understanding of the neural mechanisms underlying the shift from recreational drug use to addiction. In this review, we consider the extent to which pharmacological interventions that target impulsive behaviour are also effective in animal models of addiction. We highlight several promising examples of convergence based on empirical findings in rodent-based studies.
Collapse
Affiliation(s)
- B Jupp
- Behavioural and Clinical Neuroscience Institute and Department of Psychology, University of CambridgeCambridge, UK
- Florey Institute of Neuroscience and Mental Health, University of MelbourneParkville, Australia
| | - J W Dalley
- Behavioural and Clinical Neuroscience Institute and Department of Psychology, University of CambridgeCambridge, UK
- Department of Psychiatry, University of CambridgeCambridge, UK
| |
Collapse
|
89
|
Jing L, Qiu Y, Zhang Y, Li JX. Effects of the cannabinoid CB₁ receptor allosteric modulator ORG 27569 on reinstatement of cocaine- and methamphetamine-seeking behavior in rats. Drug Alcohol Depend 2014; 143:251-6. [PMID: 25169627 PMCID: PMC4161648 DOI: 10.1016/j.drugalcdep.2014.08.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 07/31/2014] [Accepted: 08/02/2014] [Indexed: 12/25/2022]
Abstract
BACKGROUND Cannabinoid CB1 receptors play an essential role in drug addiction. Given the side effect profiles of orthosteric CB1 antagonism, new strategies have been attempted to modulate this target, such as CB1 receptor allosteric modulation. However, the effect of CB1 allosteric modulation in drug addiction is unknown. The present study examined the effects of the CB1 receptor allosteric modulator ORG27569 on the reinstatement of cocaine- and methamphetamine-seeking behavior in rats. METHODS Rats were trained to self-administer 0.75 mg/kg cocaine or 0.05 mg/kg methamphetamine in 2-h daily sessions for 14 days which was followed by 7 days of extinction sessions in which rats responded on the levers with no programmed consequences. On reinstatement test sessions, rats were administered ORG27569 (1.0, 3.2, 5.6 mg/kg, i.p.) or SR141716A (3.2 mg/kg, i.p.) 10 min prior to re-exposure to cocaine- or methamphetamine-paired cues or a priming injection of cocaine (10mg/kg, i.p.) or methamphetamine (1mg/kg, i.p.). RESULTS Both cues and a priming injection of cocaine or methamphetamine significantly reinstated the extinguished active lever responding. Pretreatment with ORG27569 resulted in a dose-related attenuation of both cue- and drug-induced reinstatement of cocaine- and methamphetamine-seeking behavior. SR141716A also exhibited similar inhibitory action on reinstatement of drug-seeking behavior. CONCLUSION Negative allosteric modulation of CB1 receptors can produce similar functional antagonism as orthosteric CB1 receptor antagonists on reinstatement of drug-seeking behavior. Thus, ORG27569 or other negative allosteric modulators deserve further study as potentially effective pharmacotherapy for drug addiction.
Collapse
Affiliation(s)
- Li Jing
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, New York, USA
,Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Yanyan Qiu
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, New York, USA
| | - Yanan Zhang
- Research Triangle Institute, Research Triangle Park, North Carolina, USA
| | - Jun-Xu Li
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
90
|
Perry CJ, Zbukvic I, Kim JH, Lawrence AJ. Role of cues and contexts on drug-seeking behaviour. Br J Pharmacol 2014; 171:4636-72. [PMID: 24749941 PMCID: PMC4209936 DOI: 10.1111/bph.12735] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 04/04/2014] [Accepted: 04/10/2014] [Indexed: 01/15/2023] Open
Abstract
Environmental stimuli are powerful mediators of craving and relapse in substance-abuse disorders. This review examined how animal models have been used to investigate the cognitive mechanisms through which cues are able to affect drug-seeking behaviour. We address how animal models can describe the way drug-associated cues come to facilitate the development and persistence of drug taking, as well as how these cues are critical to the tendency to relapse that characterizes substance-abuse disorders. Drug-associated cues acquire properties of conditioned reinforcement, incentive motivation and discriminative control, which allow them to influence drug-seeking behaviour. Using these models, researchers have been able to investigate the pharmacology subserving the behavioural impact of environmental stimuli, some of which we highlight. Subsequently, we examine whether the impact of drug-associated stimuli can be attenuated via a process of extinction, and how this question is addressed in the laboratory. We discuss how preclinical research has been translated into behavioural therapies targeting substance abuse, as well as highlight potential developments to therapies that might produce more enduring changes in behaviour.
Collapse
Affiliation(s)
- Christina J Perry
- Behavioural Neuroscience Division, The Florey Institute of Neuroscience and Mental HealthParkville, Vic., Australia
- Florey Department of Neuroscience and Mental Health, University of MelbourneParkville, Vic., Australia
| | - Isabel Zbukvic
- Behavioural Neuroscience Division, The Florey Institute of Neuroscience and Mental HealthParkville, Vic., Australia
- Florey Department of Neuroscience and Mental Health, University of MelbourneParkville, Vic., Australia
| | - Jee Hyun Kim
- Behavioural Neuroscience Division, The Florey Institute of Neuroscience and Mental HealthParkville, Vic., Australia
- Florey Department of Neuroscience and Mental Health, University of MelbourneParkville, Vic., Australia
| | - Andrew J Lawrence
- Behavioural Neuroscience Division, The Florey Institute of Neuroscience and Mental HealthParkville, Vic., Australia
- Florey Department of Neuroscience and Mental Health, University of MelbourneParkville, Vic., Australia
| |
Collapse
|
91
|
Dore R, Valenza M, Wang X, Rice KC, Sabino V, Cottone P. The inverse agonist of CB1 receptor SR141716 blocks compulsive eating of palatable food. Addict Biol 2014; 19:849-61. [PMID: 23587012 DOI: 10.1111/adb.12056] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Dieting and the increased availability of highly palatable food are considered major contributing factors to the large incidence of eating disorders and obesity. This study was aimed at investigating the role of the cannabinoid (CB) system in a novel animal model of compulsive eating, based on a rapid palatable diet cycling protocol. Male Wistar rats were fed either continuously a regular chow diet (Chow/Chow, control group) or intermittently a regular chow diet for 2 days and a palatable, high-sucrose diet for 1 day (Chow/Palatable). Chow/Palatable rats showed spontaneous and progressively increasing hypophagia and body weight loss when fed the regular chow diet, and excessive food intake and body weight gain when fed the palatable diet. Diet-cycled rats dramatically escalated the intake of the palatable diet during the first hour of renewed access (7.5-fold compared to controls), and after withdrawal, they showed compulsive eating and heightened risk-taking behavior. The inverse agonist of the CB1 receptor, SR141716 reduced the excessive intake of palatable food with higher potency and the body weight with greater efficacy in Chow/Palatable rats, compared to controls. Moreover, SR141716 reduced compulsive eating and risk-taking behavior in Chow/Palatable rats. Finally, consistent with the behavioral and pharmacological observations, withdrawal from the palatable diet decreased the gene expression of the enzyme fatty acid amide hydrolase in the ventromedial hypothalamus while increasing that of CB1 receptors in the dorsal striatum in Chow/Palatable rats, compared to controls. These findings will help understand the role of the CB system in compulsive eating.
Collapse
Affiliation(s)
- Riccardo Dore
- Laboratory of Addictive Disorders; Departments of Pharmacology and Psychiatry; Boston University School of Medicine; Boston MA USA
| | - Marta Valenza
- Laboratory of Addictive Disorders; Departments of Pharmacology and Psychiatry; Boston University School of Medicine; Boston MA USA
- Department of Biomedical Sciences and Human Oncology; University of Bari Aldo Moro; Bari Italy
| | - Xiaofan Wang
- Laboratory of Addictive Disorders; Departments of Pharmacology and Psychiatry; Boston University School of Medicine; Boston MA USA
| | - Kenner C. Rice
- Chemical Biology Research Branch; National Institute on Drug Abuse and National Institute on Alcohol and Alcoholism; Rockville MD USA
| | - Valentina Sabino
- Laboratory of Addictive Disorders; Departments of Pharmacology and Psychiatry; Boston University School of Medicine; Boston MA USA
| | - Pietro Cottone
- Laboratory of Addictive Disorders; Departments of Pharmacology and Psychiatry; Boston University School of Medicine; Boston MA USA
| |
Collapse
|
92
|
Le Foll B, Pushparaj A, Pryslawsky Y, Forget B, Vemuri K, Makriyannis A, Trigo JM. Translational strategies for therapeutic development in nicotine addiction: rethinking the conventional bench to bedside approach. Prog Neuropsychopharmacol Biol Psychiatry 2014; 52:86-93. [PMID: 24140878 PMCID: PMC4002666 DOI: 10.1016/j.pnpbp.2013.10.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 10/08/2013] [Accepted: 10/09/2013] [Indexed: 12/16/2022]
Abstract
Tobacco produces an impressive burden of disease resulting in premature death in half of users. Despite effective smoking cessation medications (nicotine replacement therapies, bupropion and varenicline), there is a very high rate of relapse following quit attempts. The use of efficient strategies for the development of novel treatments is a necessity. A 'bench to bedside strategy' was initially used to develop cannabinoid CB1 receptor antagonists for the treatment of nicotine addiction. Unfortunately, after being tested on experimental animals, what seemed to be an interesting approach for the treatment of nicotine addiction resulted in serious unwanted side effects when tested in humans. Current research is focusing again on pre-clinical models in an effort to eliminate unwanted side effects while preserving the initially observed efficacy. A 'bed side to bench strategy' was used to study the role of the insula (part of the frontal cortex) in nicotine addiction. This line of research started based on clinical observations that patients suffering stroke-induced lesions to the insula showed a greater likelihood to report immediate smoking cessation without craving or relapse. Subsequently, animal models of addiction are used to explore the role of insula in addiction. Due to the inherent limitations existing in clinical versus preclinical studies, the possibility of close interaction between both models seems to be critical for the successful development of novel therapeutic strategies for nicotine dependence.
Collapse
Affiliation(s)
- Bernard Le Foll
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, 33 Russell Street, Toronto, ON M5S 2S1, Canada; Alcohol Research and Treatment Clinic, Addiction Medicine Services, Ambulatory Care and Structured Treatments, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Family and Community Medicine, University of Toronto, Toronto, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada; Department of Psychiatry and Institute of Medical Sciences, University of Toronto, Toronto, Canada.
| | - Abhiram Pushparaj
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, 33 Russell Street, Toronto, ON M5S 2S1, Canada
| | - Yaroslaw Pryslawsky
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, 33 Russell Street, Toronto, ON M5S 2S1, Canada
| | - Benoit Forget
- Integrative Neurobiology of Cholinergic Systems, Department of Neuroscience, Pasteur Institute, 25 rue du Dr. Roux, Paris 75724, France
| | - Kiran Vemuri
- Center for Drug Discovery, Northeastern University, Boston, MA 02115-5005, United States; Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115-5005, United States; Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115-5005, United States
| | - Alexandros Makriyannis
- Center for Drug Discovery, Northeastern University, Boston, MA 02115-5005, United States; Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115-5005, United States; Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115-5005, United States
| | - Jose M Trigo
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, 33 Russell Street, Toronto, ON M5S 2S1, Canada
| |
Collapse
|
93
|
Laricchiuta D, Musella A, Rossi S, Centonze D. Behavioral and electrophysiological effects of endocannabinoid and dopaminergic systems on salient stimuli. Front Behav Neurosci 2014; 8:183. [PMID: 24904335 PMCID: PMC4032909 DOI: 10.3389/fnbeh.2014.00183] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 05/04/2014] [Indexed: 01/23/2023] Open
Abstract
Rewarding effects have been related to enhanced dopamine (DA) release in corticolimbic and basal ganglia structures. The DAergic and endocannabinoid interaction in the responses to reward is described. This study investigated the link between endocannabinoid and DAergic transmission in the processes that are related to response to two types of reward, palatable food and novelty. Mice treated with drugs acting on endocannabinoid system (ECS) (URB597, AM251) or DAergic system (haloperidol) were submitted to approach-avoidance conflict tasks with palatable food or novelty. In the same mice, the cannabinoid type-1 (CB1)-mediated GABAergic transmission in medium spiny neurons of the dorsomedial striatum was analyzed. The endocannabinoid potentiation by URB597 magnified approach behavior for reward (food and novelty) and in parallel inhibited dorsostriatal GABAergic neurotransmission. The decreased activity of CB1 receptor by AM251 (alone or with URB597) or of DAergic D2 receptor by haloperidol had inhibitory effects toward the reward and did not permit the inhibition of dorsostriatal GABAergic transmission. When haloperidol was coadministered with URB597, a restoration effect on reward and reward-dependent motor activity was observed, only if the reward was the palatable food. In parallel, the coadministration led to restoring inhibition of CB1-mediated GABAergic transmission. Thus, in the presence of simultaneous ECS activation and inhibition of DAergic system the response to reward appears to be a stimulus-dependent manner.
Collapse
Affiliation(s)
- Daniela Laricchiuta
- IRCCS Fondazione Santa Lucia Rome, Italy ; Dipartimento di Psicologia, Facoltà di Medicina e Psicologia, Università "Sapienza" di Roma Rome, Italy
| | - Alessandra Musella
- IRCCS Fondazione Santa Lucia Rome, Italy ; Dipartimento di Neuroscienze, Università Tor Vergata Rome, Italy
| | - Silvia Rossi
- IRCCS Fondazione Santa Lucia Rome, Italy ; Dipartimento di Neuroscienze, Università Tor Vergata Rome, Italy
| | - Diego Centonze
- IRCCS Fondazione Santa Lucia Rome, Italy ; Dipartimento di Neuroscienze, Università Tor Vergata Rome, Italy
| |
Collapse
|
94
|
Bystrowska B, Smaga I, Frankowska M, Filip M. Changes in endocannabinoid and N-acylethanolamine levels in rat brain structures following cocaine self-administration and extinction training. Prog Neuropsychopharmacol Biol Psychiatry 2014; 50:1-10. [PMID: 24334211 DOI: 10.1016/j.pnpbp.2013.12.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 11/25/2013] [Accepted: 12/05/2013] [Indexed: 12/14/2022]
Abstract
Preclinical investigations have demonstrated that drugs of abuse alter the levels of lipid-based signalling molecules, including endocannabinoids (eCBs) and N-acylethanolamines (NAEs), in the rodent brain. In addition, several drugs targeting eCBs and/or NAEs are implicated in reward and/or seeking behaviours related to the stimulation of dopamine systems in the brain. In our study, the brain levels of eCBs (anandamide (AEA) and 2-arachidonoylglycerol (2-AG)) and NAEs (oleoylethanolamide (OEA) and palmitoylethanolamide (PEA)) were analyzed via an LC-MS/MS method in selected brain structures of rats during cocaine self-administration and after extinction training according to the "yoked" control procedure. Repeated (14days) cocaine (0.5mg/kg/infusion) self-administration and yoked drug delivery resulted in a significant decrease (ca. 52%) in AEA levels in the cerebellum, whereas levels of 2-AG increased in the frontal cortex, the hippocampus and the cerebellum and decreased in the hippocampus and the dorsal striatum. In addition, we detected increases (>150%) in the levels of OEA and PEA in the limbic areas in both cocaine treated groups, as well as an increase in the tissue levels of OEA in the dorsal striatum in only the yoked cocaine group and increases in the tissue levels of PEA in the dorsal striatum (both cocaine groups) and the nucleus accumbens (yoked cocaine group only). Compared to the yoked saline control group, extinction training (10days) resulted in a potent reduction in AEA levels in the frontal cortex, the hippocampus and the nucleus accumbens and in 2-AG levels in the hippocampus, the dorsal striatum and the cerebellum. The decreases in the limbic and subcortical areas were more apparent for rats that self-administered cocaine. Following extinction, there was a region-specific change in the levels of NAEs in rats previously injected with cocaine; a potent increase (ca. 100%) in the levels of OEA and PEA was detected in the prefrontal cortex and the hippocampus, whilst a drop was noted in the striatal areas versus yoked saline yoked animals. Our findings support the previous pharmacological evidence that the eCB system and NAEs are involved in reinforcement and extinction of positively reinforced behaviours and that these lipid-derived molecules may represent promising targets for the development of new treatments for drug addiction.
Collapse
Affiliation(s)
- Beata Bystrowska
- Department of Toxicology, Collegium Medicum, Jagiellonian University, Medyczna 9, PL 30-688 Kraków, Poland.
| | - Irena Smaga
- Department of Toxicology, Collegium Medicum, Jagiellonian University, Medyczna 9, PL 30-688 Kraków, Poland
| | - Małgorzata Frankowska
- Laboratory of Drug Addiction Pharmacology, Department of Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, PL 31-343 Kraków, Poland
| | - Małgorzata Filip
- Department of Toxicology, Collegium Medicum, Jagiellonian University, Medyczna 9, PL 30-688 Kraków, Poland; Laboratory of Drug Addiction Pharmacology, Department of Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, PL 31-343 Kraków, Poland
| |
Collapse
|
95
|
Hernandez G, Oleson EB, Gentry RN, Abbas Z, Bernstein DL, Arvanitogiannis A, Cheer JF. Endocannabinoids promote cocaine-induced impulsivity and its rapid dopaminergic correlates. Biol Psychiatry 2014; 75:487-98. [PMID: 24138924 PMCID: PMC3943889 DOI: 10.1016/j.biopsych.2013.09.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 08/13/2013] [Accepted: 09/06/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND Impaired decision making, a hallmark of addiction, is hypothesized to arise from maladaptive plasticity in the mesolimbic dopamine pathway. The endocannabinoid system modulates dopamine activity through activation of cannabinoid type 1 receptors (CB1Rs). Here, we investigated whether impulsive behavior observed following cocaine exposure requires CB1R activation. METHODS We trained rats in a delay-discounting task. Following acquisition of stable performance, rats were exposed to cocaine (10 mg/kg, intraperitoneal) every other day for 14 days and locomotor activity was measured. Two days later, delay-discounting performance was re-evaluated. To assess reversal of impulsivity, injections of a CB1R antagonist (1.5 mg/kg, intraperitoneal) or vehicle were given 30 minutes before the task. During the second experiment, aimed at preventing impulsivity rather than reversing it, CB1Rs were antagonized before each cocaine injection. In this experiment, subsecond dopamine release was measured in the nucleus accumbens during delay-discounting sessions before and after cocaine treatment. RESULTS Blockade of CB1Rs reversed and prevented cocaine-induced impulsivity. Electrochemical results showed that during baseline and following disruption of endocannabinoid signaling, there was a robust increase in dopamine for immediate large rewards compared with immediate small rewards, but this effect reversed when the delay for the large reward was 10 seconds. In contrast, dopamine release always increased for one-pellet options at minimal or moderate delays in vehicle-treated rats. CONCLUSIONS Endocannabinoids play a critical role in changes associated with cocaine exposure. Cannabinoid type 1 receptor blockade may thus counteract maladaptive alterations in afferents to dopamine neurons, thereby preventing changes in dopaminergic activity underlying a loss of self-control.
Collapse
Affiliation(s)
| | - Erik B. Oleson
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, (Baltimore-Maryland)
| | - Ronny N. Gentry
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, (Baltimore-Maryland)
| | - Zarish Abbas
- Center for Studies in Behavioral Neurobiology, Concordia University (Montréal-Quebec)
| | - David L. Bernstein
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, (Baltimore-Maryland)
| | - A. Arvanitogiannis
- Center for Studies in Behavioral Neurobiology, Concordia University (Montréal-Quebec)
| | - Joseph F. Cheer
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, (Baltimore-Maryland),Department of Psychiatry, University of Maryland School of Medicine, (Baltimore-Maryland),Corresponding Author: 20 Penn Street, Baltimore MD, 21201. Phone: (410) 706 0112/Fax: (410) 706 2512.
| |
Collapse
|
96
|
Peciña M, Martínez-Jauand M, Hodgkinson C, Stohler C, Goldman D, Zubieta J. FAAH selectively influences placebo effects. Mol Psychiatry 2014; 19:385-91. [PMID: 24042479 PMCID: PMC4222079 DOI: 10.1038/mp.2013.124] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 08/01/2013] [Accepted: 08/14/2013] [Indexed: 11/09/2022]
Abstract
Endogenous opioid and cannabinoid systems are thought to act synergistically regulating antinociceptive and reward mechanisms. To further understand the human implications of the interaction between these two systems, we investigated the role of the common, functional missense variant Pro129Thr of the gene coding fatty acid amide hydrolase (FAAH), the major degrading enzyme of endocannabinoids, on psychophysical and neurotransmitter (dopaminergic, opioid) responses to pain and placebo-induced analgesia in humans. FAAH Pro129/Pro129 homozygotes, who constitute nearly half of the population, reported higher placebo analgesia and more positive affective states immediately and 24 h after placebo administration; no effects on pain report in the absence of placebo were observed. Pro129/Pro129 homozygotes also showed greater placebo-induced μ-opioid, but not D(2/3) dopaminergic, enhancements in neurotransmission in regions known involved in placebo effects. These results show that a common genetic variation affecting the function of the cannabinoid system is serving as a probe to demonstrate the involvement of cannabinoid and opioid transmitters on the formation of placebo effects.
Collapse
Affiliation(s)
- M. Peciña
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | | | - C. Hodgkinson
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, Rockville, MD, USA
| | - C.S. Stohler
- School of Dentistry, University of Maryland, Baltimore, MD, USA
| | - D. Goldman
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, Rockville, MD, USA
| | - J.K. Zubieta
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA.,Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA, Department of Radiology, University of Michigan, Ann Arbor, MI, USA,Correspondence to: Jon-Kar Zubieta, MD., PhD. Molecular and Behavioral Neuroscience Institute University of Michigan 205 Zina Pitcher Place Ann Arbor, MI 48109-0720 Telephone: 734-763-6843 Fax: 734-647-4130
| |
Collapse
|
97
|
Blanco-Calvo E, Rivera P, Arrabal S, Vargas A, Pavón FJ, Serrano A, Castilla-Ortega E, Galeano P, Rubio L, Suárez J, Rodriguez de Fonseca F. Pharmacological blockade of either cannabinoid CB1 or CB2 receptors prevents both cocaine-induced conditioned locomotion and cocaine-induced reduction of cell proliferation in the hippocampus of adult male rat. Front Integr Neurosci 2014; 7:106. [PMID: 24409127 PMCID: PMC3884150 DOI: 10.3389/fnint.2013.00106] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Accepted: 12/18/2013] [Indexed: 11/14/2022] Open
Abstract
Addiction to major drugs of abuse, such as cocaine, has recently been linked to alterations in adult neurogenesis in the hippocampus. The endogenous cannabinoid system modulates this proliferative response as demonstrated by the finding that pharmacological activation/blockade of cannabinoid CB1 and CB2 receptors not only modulates neurogenesis but also modulates cell death in the brain. In the present study, we evaluated whether the endogenous cannabinoid system affects cocaine-induced alterations in cell proliferation. To this end, we examined whether pharmacological blockade of either CB1 (Rimonabant, 3 mg/kg) or CB2 receptors (AM630, 3 mg/kg) would affect cell proliferation [the cells were labeled with 5-bromo-2′-deoxyuridine (BrdU)] in the subventricular zone (SVZ) of the lateral ventricle and the dentate subgranular zone (SGZ). Additionally, we measured cell apoptosis (as monitored by the expression of cleaved caspase-3) and glial activation [by analyzing the expression of glial fibrillary acidic protein (GFAP) and Iba-1] in the striatum and hippocampus during acute and repeated (4 days) cocaine administration (20 mg/kg). The results showed that acute cocaine exposure decreased the number of BrdU-immunoreactive (ir) cells in the SVZ and SGZ. In contrast, repeated cocaine exposure reduced the number of BrdU-ir cells only in the SVZ. Both acute and repeated cocaine exposure increased the number of cleaved caspase-3-, GFAP- and Iba1-ir cells in the hippocampus, and this effect was counteracted by AM630 or Rimonabant, which increased the number of BrdU-, GFAP-, and Iba1-ir cells in the hippocampus. These results indicate that the changes in neurogenic, apoptotic and gliotic processes that were produced by repeated cocaine administration were normalized by pharmacological blockade of CB1 and CB2. The restorative effects of cannabinoid receptor blockade on hippocampal cell proliferation were associated with the prevention of the induction of conditioned locomotion but not with the prevention of cocaine-induced sensitization.
Collapse
Affiliation(s)
- Eduardo Blanco-Calvo
- Departament de Pedagogia i Psicologia, Facultat de Ciències de l'Educació, Universitat de Lleida Lleida, Spain ; Laboratorio de Investigación-UGC de Salud Mental, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga, Hospital Regional Universitario de Málaga Málaga, Spain
| | - Patricia Rivera
- Laboratorio de Investigación-UGC de Salud Mental, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga, Hospital Regional Universitario de Málaga Málaga, Spain
| | - Sergio Arrabal
- Laboratorio de Investigación-UGC de Salud Mental, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga, Hospital Regional Universitario de Málaga Málaga, Spain
| | - Antonio Vargas
- Laboratorio de Investigación-UGC de Salud Mental, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga, Hospital Regional Universitario de Málaga Málaga, Spain
| | - Francisco Javier Pavón
- Laboratorio de Investigación-UGC de Salud Mental, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga, Hospital Regional Universitario de Málaga Málaga, Spain
| | - Antonia Serrano
- Laboratorio de Investigación-UGC de Salud Mental, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga, Hospital Regional Universitario de Málaga Málaga, Spain
| | - Estela Castilla-Ortega
- Laboratorio de Investigación-UGC de Salud Mental, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga, Hospital Regional Universitario de Málaga Málaga, Spain
| | - Pablo Galeano
- Instituto de Investigaciones Cardiológicas Prof. Dr. Alberto C. Taquini, Universidad de Buenos Aires-CONICET Ciudad de Buenos Aires, Argentina
| | - Leticia Rubio
- Departamento de Anatomía y Medicina Legal y Forense, Facultad de Medicina, Universidad de Málaga Málaga, Spain
| | - Juan Suárez
- Laboratorio de Investigación-UGC de Salud Mental, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga, Hospital Regional Universitario de Málaga Málaga, Spain
| | - Fernando Rodriguez de Fonseca
- Laboratorio de Investigación-UGC de Salud Mental, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga, Hospital Regional Universitario de Málaga Málaga, Spain
| |
Collapse
|
98
|
Wenzel JM, Cheer JF. Endocannabinoid-dependent modulation of phasic dopamine signaling encodes external and internal reward-predictive cues. Front Psychiatry 2014; 5:118. [PMID: 25225488 PMCID: PMC4150350 DOI: 10.3389/fpsyt.2014.00118] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 08/13/2014] [Indexed: 11/13/2022] Open
Abstract
The mesolimbic dopamine (DA) system plays an integral role in incentive motivation and reward seeking and a growing body of evidence identifies signal transduction at cannabinoid receptors as a critical modulator of this system. Indeed, administration of exogenous cannabinoids results in burst firing of DA neurons of the ventral tegmental area and increases extracellular DA in the nucleus accumbens (NAcc). Implementation of fast-scan cyclic voltammetry (FSCV) confirms the ability of cannabinoids to augment DA within the NAcc on a subsecond timescale. The use of FSCV along with newly developed highly selective pharmacological compounds advances our understanding of how cannabinoids influence DA transmission and highlights a role for endocannabinoid-modulated subsecond DAergic activation in the incentive motivational properties of not only external, but also internal reward-predictive cues. For example, our laboratory has recently demonstrated that in mice responding under a fixed-interval (FI) schedule for food reinforcement, fluctuations in NAcc DA signal the principal cue predictive of reinforcer availability - time. That is, as the interval progresses, NAcc DA levels decline leading to accelerated food seeking and the resulting characteristic FI scallop pattern of responding. Importantly, administration of WIN 55,212-2, a synthetic cannabinoid agonist, or JZL184, an indirect cannabinoid agonist, increases DA levels during the interval and disrupts this pattern of responding. Along with a wealth of other reports, these results illustrate the role of cannabinoid receptor activation in the regulation of DA transmission and the control of temporally guided reward seeking. The current review will explore the striatal beat frequency model of interval timing as it pertains to cannabinoid signaling and propose a neurocircuitry through which this system modulates interoceptive time cues.
Collapse
Affiliation(s)
- Jennifer M Wenzel
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine , Baltimore, MD , USA
| | - Joseph F Cheer
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine , Baltimore, MD , USA ; Department of Psychiatry, University of Maryland School of Medicine , Baltimore, MD , USA
| |
Collapse
|
99
|
Panagis G, Mackey B, Vlachou S. Cannabinoid Regulation of Brain Reward Processing with an Emphasis on the Role of CB1 Receptors: A Step Back into the Future. Front Psychiatry 2014; 5:92. [PMID: 25132823 PMCID: PMC4117180 DOI: 10.3389/fpsyt.2014.00092] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 07/16/2014] [Indexed: 01/17/2023] Open
Abstract
Over the last decades, the endocannabinoid system has been implicated in a large variety of functions, including a crucial modulation of brain-reward circuits and the regulation of motivational processes. Importantly, behavioral studies have shown that cannabinoid compounds activate brain reward mechanisms and circuits in a similar manner to other drugs of abuse, such as nicotine, alcohol, cocaine, and heroin, although the conditions under which cannabinoids exert their rewarding effects may be more limited. Furthermore, there is evidence on the involvement of the endocannabinoid system in the regulation of cue- and drug-induced relapsing phenomena in animal models. The aim of this review is to briefly present the available data obtained using diverse behavioral experimental approaches in experimental animals, namely, the intracranial self-stimulation paradigm, the self-administration procedure, the conditioned place preference procedure, and the reinstatement of drug-seeking behavior procedure, to provide a comprehensive picture of the current status of what is known about the endocannabinoid system mechanisms that underlie modification of brain-reward processes. Emphasis is placed on the effects of cannabinoid 1 (CB1) receptor agonists, antagonists, and endocannabinoid modulators. Further, the role of CB1 receptors in reward processes is investigated through presentation of respective genetic ablation studies in mice. The vast majority of studies in the existing literature suggest that the endocannabinoid system plays a major role in modulating motivation and reward processes. However, much remains to be done before we fully understand these interactions. Further research in the future will shed more light on these processes and, thus, could lead to the development of potential pharmacotherapies designed to treat reward-dysfunction-related disorders.
Collapse
Affiliation(s)
- George Panagis
- Laboratory of Behavioral Neuroscience, Department of Psychology, School of Social Sciences, University of Crete , Rethymno , Greece
| | - Brian Mackey
- Laboratory of Behavioural Neuroscience, School of Nursing and Human Sciences, Faculty of Science and Health, Dublin City University , Dublin , Ireland
| | - Styliani Vlachou
- Laboratory of Behavioural Neuroscience, School of Nursing and Human Sciences, Faculty of Science and Health, Dublin City University , Dublin , Ireland
| |
Collapse
|
100
|
Rimonabant precipitates anxiety in rats withdrawn from palatable food: role of the central amygdala. Neuropsychopharmacology 2013; 38:2498-507. [PMID: 23793355 PMCID: PMC3799070 DOI: 10.1038/npp.2013.153] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Revised: 06/15/2013] [Accepted: 06/17/2013] [Indexed: 01/03/2023]
Abstract
The anti-obesity medication rimonabant, an antagonist of cannabinoid type-1 (CB(1)) receptor, was withdrawn from the market because of adverse psychiatric side effects, including a negative affective state. We investigated whether rimonabant precipitates a negative emotional state in rats withdrawn from palatable food cycling. The effects of systemic administration of rimonabant on anxiety-like behavior, food intake, body weight, and adrenocortical activation were assessed in female rats during withdrawal from chronic palatable diet cycling. The levels of the endocannabinoids, anandamide and 2-arachidonoylglycerol (2-AG), and the CB(1) receptor mRNA and the protein in the central nucleus of the amygdala (CeA) were also investigated. Finally, the effects of microinfusion of rimonabant in the CeA on anxiety-like behavior, and food intake were assessed. Systemic administration of rimonabant precipitated anxiety-like behavior and anorexia of the regular chow diet in rats withdrawn from palatable diet cycling, independently from the degree of adrenocortical activation. These behavioral observations were accompanied by increased 2-AG, CB(1) receptor mRNA, and protein levels selectively in the CeA. Finally, rimonabant, microinfused directly into the CeA, precipitated anxiety-like behavior and anorexia. Our data show that (i) the 2-AG-CB(1) receptor system within the CeA is recruited during abstinence from palatable diet cycling as a compensatory mechanism to dampen anxiety, and (ii) rimonabant precipitates a negative emotional state by blocking the beneficial heightened 2-AG-CB(1) receptor signaling in this brain area. These findings help elucidate the link between compulsive eating and anxiety, and it will be valuable to develop better pharmacological treatments for eating disorders and obesity.
Collapse
|