51
|
Boyle CC, Kuhlman KR, Dooley LN, Haydon MD, Robles TF, Ang YS, Pizzagalli DA, Bower JE. Inflammation and dimensions of reward processing following exposure to the influenza vaccine. Psychoneuroendocrinology 2019; 102:16-23. [PMID: 30496908 PMCID: PMC6420390 DOI: 10.1016/j.psyneuen.2018.11.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 11/15/2018] [Accepted: 11/19/2018] [Indexed: 01/04/2023]
Abstract
BACKGROUND Alterations in reward processing are a central feature of depression and may be influenced by inflammation. Indeed, inflammation is associated with deficits in reward-related processes in animal models and with dysregulation in reward-related neural circuitry in humans. However, the downstream behavioral manifestations of such impairments are rarely examined in humans. METHODS The influenza vaccination was used to elicit a mild inflammatory response in 41 healthy young adults (age range: 18-22, 30 female). Participants provided blood samples and completed behavioral measures of three key aspects of reward-reward motivation, reward learning, and reward sensitivity-before and 1 day after receiving the influenza vaccine. RESULTS The influenza vaccine led to mild but significant increases in circulating levels of the pro-inflammatory cytokine interleukin-6 (IL-6) (p < .001). Consistent with hypotheses, increases in IL-6 predicted lower reward motivation (p = .029). However, contrary to hypotheses, increases in IL-6 predicted increased performance on a reward learning task (p = .043) and were not associated with changes in reward sensitivity (p's > .288). CONCLUSIONS These findings contribute to an emerging literature on the nuanced associations between inflammation and reward and demonstrate that even mild alterations in inflammation are associated with multiple facets of reward processing.
Collapse
Affiliation(s)
- Chloe C. Boyle
- Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience and Behavior, University of California, Los Angeles, CA 90095,Corresponding Author: Chloe C. Boyle, PhD, Cousins Center for Psychoneuroimmunology, Medical Plaza 300, Los Angeles, CA 90095,
| | - Kate R. Kuhlman
- Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience and Behavior, University of California, Los Angeles, CA 90095,School of Social Ecology, University of California, Irvine, CA 92497
| | | | - Marcie D. Haydon
- Department of Psychology, University of California, Los Angeles, CA 90095
| | - Theodore F. Robles
- Department of Psychology, University of California, Los Angeles, CA 90095
| | - Yuen-Siang Ang
- Department of Psychiatry and McLean Hospital, Harvard Medical School, Belmont, MA 02478
| | - Diego A. Pizzagalli
- Department of Psychiatry and McLean Hospital, Harvard Medical School, Belmont, MA 02478
| | - Julienne E. Bower
- Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience and Behavior, University of California, Los Angeles, CA 90095,Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA 90095,Department of Psychology, University of California, Los Angeles, CA 90095
| |
Collapse
|
53
|
Müller T, Apps MA. Motivational fatigue: A neurocognitive framework for the impact of effortful exertion on subsequent motivation. Neuropsychologia 2019; 123:141-151. [DOI: 10.1016/j.neuropsychologia.2018.04.030] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 02/17/2018] [Accepted: 04/25/2018] [Indexed: 12/12/2022]
|
54
|
Salamone JD, Correa M, Ferrigno S, Yang JH, Rotolo RA, Presby RE. The Psychopharmacology of Effort-Related Decision Making: Dopamine, Adenosine, and Insights into the Neurochemistry of Motivation. Pharmacol Rev 2018; 70:747-762. [PMID: 30209181 PMCID: PMC6169368 DOI: 10.1124/pr.117.015107] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Effort-based decision making is studied using tasks that offer choices between high-effort options leading to more highly valued reinforcers versus low-effort/low-reward options. These tasks have been used to study the involvement of neural systems, including mesolimbic dopamine and related circuits, in effort-related aspects of motivation. Moreover, such tasks are useful as animal models of some of the motivational symptoms that are seen in people with depression, schizophrenia, Parkinson's disease, and other disorders. The present review will discuss the pharmacology of effort-related decision making and will focus on the use of these tasks for the development of drug treatments for motivational dysfunction. Research has identified pharmacological conditions that can alter effort-based choice and serve as models for depression-related symptoms (e.g., the vesicular monoamine transport-2 inhibitor tetrabenazine and proinflammatory cytokines). Furthermore, tests of effort-based choice have identified compounds that are particularly useful for stimulating high-effort work output and reversing the deficits induced by tetrabenazine and cytokines. These studies indicate that drugs that act by facilitating dopamine transmission, as well as adenosine A2A antagonists, are relatively effective at reversing effort-related impairments. Studies of effort-based choice may lead to the identification of drug targets that could be useful for treating motivational treatments that are resistant to commonly used antidepressants such as serotonin transport inhibitors.
Collapse
Affiliation(s)
- John D Salamone
- Department of Psychological Sciences, University of Connecticut, Storrs, Connecticut (J.D.S., S.F., J.-H.Y., R.A.R., R.E.P.); and Area de Psicobiologia, Universitat de Jaume I, Castelló, Spain (M.C.)
| | - Mercè Correa
- Department of Psychological Sciences, University of Connecticut, Storrs, Connecticut (J.D.S., S.F., J.-H.Y., R.A.R., R.E.P.); and Area de Psicobiologia, Universitat de Jaume I, Castelló, Spain (M.C.)
| | - Sarah Ferrigno
- Department of Psychological Sciences, University of Connecticut, Storrs, Connecticut (J.D.S., S.F., J.-H.Y., R.A.R., R.E.P.); and Area de Psicobiologia, Universitat de Jaume I, Castelló, Spain (M.C.)
| | - Jen-Hau Yang
- Department of Psychological Sciences, University of Connecticut, Storrs, Connecticut (J.D.S., S.F., J.-H.Y., R.A.R., R.E.P.); and Area de Psicobiologia, Universitat de Jaume I, Castelló, Spain (M.C.)
| | - Renee A Rotolo
- Department of Psychological Sciences, University of Connecticut, Storrs, Connecticut (J.D.S., S.F., J.-H.Y., R.A.R., R.E.P.); and Area de Psicobiologia, Universitat de Jaume I, Castelló, Spain (M.C.)
| | - Rose E Presby
- Department of Psychological Sciences, University of Connecticut, Storrs, Connecticut (J.D.S., S.F., J.-H.Y., R.A.R., R.E.P.); and Area de Psicobiologia, Universitat de Jaume I, Castelló, Spain (M.C.)
| |
Collapse
|
55
|
Vichaya EG, Dantzer R. Inflammation-induced motivational changes: Perspective gained by evaluating positive and negative valence systems. Curr Opin Behav Sci 2018; 22:90-95. [PMID: 29888301 PMCID: PMC5987547 DOI: 10.1016/j.cobeha.2018.01.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Inflammation can profoundly impact motivated behavior, as is the case with inflammation-induced depression. By evaluating objectively measurable basic neurobehavioral processes involved in motivation, recent research indicates that inflammation generally reduces approach motivation and enhances avoidance motivation. Increased effort valuation largely mediates the effects of inflammation on approach motivation. Changes in reward valuation are not uniformly observed in approach motivation. However, inflammation increases the averseness of negative stimuli. Within the context of both approach and avoidance motivation, inflammation appears to enhance the contrast between concurrently presented stimuli. While changes in both approach and avoidance motivation appear to be mediated by midbrain dopaminergic neurotransmission to the ventral striatum, it is unclear if the enhanced contrast is mediated by the same system.
Collapse
Affiliation(s)
- Elisabeth G. Vichaya
- Division of Internal Medicine, Department of Symptom Research,
University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 384,
Houston, TX 77030, USA
| | - Robert Dantzer
- Division of Internal Medicine, Department of Symptom Research,
University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 384,
Houston, TX 77030, USA
| |
Collapse
|
56
|
Lacourt TE, Vichaya EG, Chiu GS, Dantzer R, Heijnen CJ. The High Costs of Low-Grade Inflammation: Persistent Fatigue as a Consequence of Reduced Cellular-Energy Availability and Non-adaptive Energy Expenditure. Front Behav Neurosci 2018; 12:78. [PMID: 29755330 PMCID: PMC5932180 DOI: 10.3389/fnbeh.2018.00078] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 04/09/2018] [Indexed: 02/03/2023] Open
Abstract
Chronic or persistent fatigue is a common, debilitating symptom of several diseases. Persistent fatigue has been associated with low-grade inflammation in several models of fatigue, including cancer-related fatigue and chronic fatigue syndrome. However, it is unclear how low-grade inflammation leads to the experience of fatigue. We here propose a model of an imbalance in energy availability and energy expenditure as a consequence of low-grade inflammation. In this narrative review, we discuss how chronic low-grade inflammation can lead to reduced cellular-energy availability. Low-grade inflammation induces a metabolic switch from energy-efficient oxidative phosphorylation to fast-acting, but less efficient, aerobic glycolytic energy production; increases reactive oxygen species; and reduces insulin sensitivity. These effects result in reduced glucose availability and, thereby, reduced cellular energy. In addition, emerging evidence suggests that chronic low-grade inflammation is associated with increased willingness to exert effort under specific circumstances. Circadian-rhythm changes and sleep disturbances might mediate the effects of inflammation on cellular-energy availability and non-adaptive energy expenditure. In the second part of the review, we present evidence for these metabolic pathways in models of persistent fatigue, focusing on chronic fatigue syndrome and cancer-related fatigue. Most evidence for reduced cellular-energy availability in relation to fatigue comes from studies on chronic fatigue syndrome. While the mechanistic evidence from the cancer-related fatigue literature is still limited, the sparse results point to reduced cellular-energy availability as well. There is also mounting evidence that behavioral-energy expenditure exceeds the reduced cellular-energy availability in patients with persistent fatigue. This suggests that an inability to adjust energy expenditure to available resources might be one mechanism underlying persistent fatigue.
Collapse
|