51
|
Guo XB, Deng X, Wei Y. Hematopoietic Substrate-1-Associated Protein X-1 Regulates the Proliferation and Apoptosis of Endothelial Progenitor Cells Through Akt Pathway Modulation. Stem Cells 2017; 36:406-419. [PMID: 29139175 DOI: 10.1002/stem.2741] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 11/05/2017] [Accepted: 11/09/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Xin-Bin Guo
- Department of Neuro-interventional Radiology; The First Affiliated Hospital of Zhengzhou University; Zhengzhou People's Republic of China
| | - Xin Deng
- Department of Neuro-surgery; The First Affiliated Hospital of Zhengzhou University; Zhengzhou People's Republic of China
| | - Ying Wei
- Department of Neuro-interventional Radiology; The First Affiliated Hospital of Zhengzhou University; Zhengzhou People's Republic of China
| |
Collapse
|
52
|
Wang Y, Liu HN, Zhen Z, Yiu KH, Tse HF, Pelekos G, Tonetti M, Jin L. Periodontal treatment modulates gene expression of endothelial progenitor cells in diabetic patients. J Clin Periodontol 2017; 44:1253-1263. [DOI: 10.1111/jcpe.12806] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2017] [Indexed: 11/28/2022]
Affiliation(s)
- Yi Wang
- Discipline of Periodontology; Faculty of Dentistry; The University of Hong Kong; Hong Kong SAR China
| | - Hin Nam Liu
- Discipline of Periodontology; Faculty of Dentistry; The University of Hong Kong; Hong Kong SAR China
| | - Zhe Zhen
- Division of Cardiology; Department of Medicine; Li Ka Shing Faculty of Medicine; The University of Hong Kong; Hong Kong SAR China
| | - Kai Hang Yiu
- Division of Cardiology; Department of Medicine; Li Ka Shing Faculty of Medicine; The University of Hong Kong; Hong Kong SAR China
| | - Hung Fat Tse
- Division of Cardiology; Department of Medicine; Li Ka Shing Faculty of Medicine; The University of Hong Kong; Hong Kong SAR China
| | - George Pelekos
- Discipline of Periodontology; Faculty of Dentistry; The University of Hong Kong; Hong Kong SAR China
| | - Maurizio Tonetti
- Discipline of Periodontology; Faculty of Dentistry; The University of Hong Kong; Hong Kong SAR China
| | - Lijian Jin
- Discipline of Periodontology; Faculty of Dentistry; The University of Hong Kong; Hong Kong SAR China
| |
Collapse
|
53
|
Lin Y, Gil CH, Yoder MC. Differentiation, Evaluation, and Application of Human Induced Pluripotent Stem Cell-Derived Endothelial Cells. Arterioscler Thromb Vasc Biol 2017; 37:2014-2025. [PMID: 29025705 DOI: 10.1161/atvbaha.117.309962] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 09/26/2017] [Indexed: 12/13/2022]
Abstract
The emergence of induced pluripotent stem cell (iPSC) technology paves the way to generate large numbers of patient-specific endothelial cells (ECs) that can be potentially delivered for regenerative medicine in patients with cardiovascular disease. In the last decade, numerous protocols that differentiate EC from iPSC have been developed by many groups. In this review, we will discuss several common strategies that have been optimized for human iPSC-EC differentiation and subsequent studies that have evaluated the potential of human iPSC-EC as a cell therapy or as a tool in disease modeling. In addition, we will emphasize the importance of using in vivo vessel-forming ability and in vitro clonogenic colony-forming potential as a gold standard with which to evaluate the quality of human iPSC-EC derived from various protocols.
Collapse
Affiliation(s)
- Yang Lin
- From the Department of Pediatrics, Herman B. Wells Center for Pediatric Research (Y.L., C.-H.G., M.C.Y.) and Department of Biochemistry and Molecular Biology (Y.L., M.C.Y.), Indiana University School of Medicine, Indianapolis
| | - Chang-Hyun Gil
- From the Department of Pediatrics, Herman B. Wells Center for Pediatric Research (Y.L., C.-H.G., M.C.Y.) and Department of Biochemistry and Molecular Biology (Y.L., M.C.Y.), Indiana University School of Medicine, Indianapolis
| | - Mervin C Yoder
- From the Department of Pediatrics, Herman B. Wells Center for Pediatric Research (Y.L., C.-H.G., M.C.Y.) and Department of Biochemistry and Molecular Biology (Y.L., M.C.Y.), Indiana University School of Medicine, Indianapolis.
| |
Collapse
|
54
|
Guo XB, Deng X, Wei Y. Homing of Cultured Endothelial Progenitor Cells and Their Effect on Traumatic Brain Injury in Rat Model. Sci Rep 2017. [PMID: 28646184 PMCID: PMC5482798 DOI: 10.1038/s41598-017-04153-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Transplanted endothelial progenitor cells (EPCs) may play an important role in reestablishing the endothelial integrity of the vessels after brain injury, and contribute to neurogenesis. We, therefore, tested the homing of ex vivo cultured peripheral blood-derived EPCs and their effect on injured brain tissue after intravenous administration. To track the homing of implanted EPCs in injured brain tissues, EPCs were labeled with DAPI and BrdU in vitro before transplantation. EPCs were transplanted into the host animal through peripheral administration through the femoral vein, and homing of EPCs was evaluated. The integration of intravenously injected EPCs into the injured brain tissue was demonstrated. Immunohistochemical staining showed that microvessel density in the perifocal region of EPCs-transplanted rats was significantly increased, and the numbers of BrdU+ cells in the DG of subventricular zone were increased in EPCs-transplanted rats as compared to the control group. Transplanted EPCs may play an important role in reestablishing the endothelial integrity in the vessels after brain injury and further contribute to neurogenesis. EPCs enhanced recovery following brain injury in a rat model of TBI.
Collapse
Affiliation(s)
- Xin-Bin Guo
- Department of Neuro-interventional Radiology, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe Road, Zhengzhou, 450052, China.
| | - Xin Deng
- Department of Neuro-interventional Radiology, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe Road, Zhengzhou, 450052, China
| | - Ying Wei
- Department of Neuro-interventional Radiology, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe Road, Zhengzhou, 450052, China
| |
Collapse
|
55
|
Volk-Draper LD, Hall KL, Wilber AC, Ran S. Lymphatic endothelial progenitors originate from plastic myeloid cells activated by toll-like receptor-4. PLoS One 2017; 12:e0179257. [PMID: 28598999 PMCID: PMC5466303 DOI: 10.1371/journal.pone.0179257] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 05/28/2017] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Myeloid-derived lymphatic endothelial cells (M-LECP) are induced by inflammation and play an important role in adult lymphangiogenesis. However, the mechanisms driving M-LECP differentiation are currently unclear. We previously showed that activation of Toll-like receptor-4 (TLR4) induces myeloid-lymphatic transition (MLT) of immortalized mouse myeloid cells. Here the goals were to assess the potential of different TLR4 ligands to induce pro-lymphatic reprogramming in human and mouse primary myeloid cells and to identify transcriptional changes regulating this process. METHODOLOGY/PRINCIPAL FINDINGS Human and mouse myeloid cells were reprogrammed to the lymphatic phenotype by TLR4 ligands including lipopolysaccharide (LPS), recombinant high mobility group box 1 protein (HMGB1), and paclitaxel. TLR4 induced similar MLT in cells from mice of different strains and immune status. Commonly induced genes were detected by transcriptional profiling in human and mouse myeloid cells from either immunocompetent or immunodeficient mice. Shared trends included: (1) novel expression of lymphatic-specific markers vascular endothelial growth factor receptor-3 (VEGFR-3), lymphatic vessel endothelial hyaluronan receptor-1 (LYVE-1) and podoplanin (PDPN) largely absent prior to induction; (2) lack of notable changes in blood vessel-specific markers; (3) transient expression of VEGFR-3, but sustained increase of vascular endothelial growth factor-C (VEGF-C) and a variety of inflammatory cytokines; (4) dependency of VEGFR-3 upregulation and other LEC genes on NF-κB; and (5) novel expression of lymphatic-specific (e.g., PROX1) and stem/progenitor (e.g., E2F1) transcription factors known for their roles in adult and embryonic vascular formation. M-LECP generated by TLR4 ligands in vitro were functional in vivo as demonstrated by significantly increased lymphatic vessel density and lymphatic metastasis detected in orthotopic breast cancer models. CONCLUSIONS/SIGNIFICANCE We established a novel TLR4-dependent protocol for in vitro production of functionally competent M-LECP from primary human or mouse myeloid cells and identified many potential regulators of this process. This information can be further exploited for research and therapeutic purposes.
Collapse
Affiliation(s)
- Lisa D. Volk-Draper
- Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL, United States of America
| | - Kelly L. Hall
- Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL, United States of America
| | - Andrew C. Wilber
- Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL, United States of America
- Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL, United States of America
| | - Sophia Ran
- Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL, United States of America
- Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL, United States of America
- * E-mail:
| |
Collapse
|
56
|
Möbius MA, Thébaud B. Bronchopulmonary Dysplasia: Where Have All the Stem Cells Gone?: Origin and (Potential) Function of Resident Lung Stem Cells. Chest 2017; 152:1043-1052. [PMID: 28479114 DOI: 10.1016/j.chest.2017.04.173] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 04/05/2017] [Accepted: 04/25/2017] [Indexed: 12/12/2022] Open
Abstract
Celebrating its 50th anniversary in 2017, bronchopulmonary dysplasia (BPD)-the chronic lung disease of prematurity that follows ventilator and oxygen therapy for acute respiratory failure-remains the most frequent complication of extreme prematurity. Survival of premature infants born at increasingly earlier stages of gestation has made the prevention of lung injury increasingly challenging. BPD is postulated to be a misdirection of many functions in the developing lung, including growth factor signalling and matrix as well as cellular composition, resulting in impaired alveolar and lung vascular growth. Despite improvements in understanding the mechanisms that regulate normal lung development, BPD remains without therapies. Insights into stem cell biology have identified the repair potential of stem cells. Promising preclinical studies demonstrated the lung protective effects of stem cell-based therapies in animal models mimicking BPD, leading to early-phase clinical trials. Although the time is ripe to conduct well-designed early-phase clinical trials, much more needs to be learned about the biology of these cells to develop safe, efficient, high-quality, clinical-grade cell products. Stem cells are essential for normal organ development, maintenance, and repair. It is therefore biologically plausible that exhaustion/dysfunction of resident lung stem cells contributes to the inability of the immature lung to repair itself. Understanding how normal lung stem cells function and how these cells are perturbed in BPD may prove useful in designing superior cell products with enhanced repair capabilities to ensure the successful translation of basic research into clinical practice.
Collapse
Affiliation(s)
- Marius Alexander Möbius
- Department of Neonatology and Pediatric Critical Care Medicine, Technische Universität Dresden, Dresden, Germany; DFG Research Center and Cluster of Excellence for Regenerative Therapies (CRTD), Technische Universität Dresden, Dresden, Germany; Regenerative Medicine Program, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Bernard Thébaud
- Regenerative Medicine Program, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada; Division of Neonatology, Department of Pediatrics, Children's Hospital of Eastern Ontario (CHEO) and CHEO Research Institute, University of Ottawa, Ottawa, ON, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
57
|
Ferratge S, Ha G, Carpentier G, Arouche N, Bascetin R, Muller L, Germain S, Uzan G. Initial clonogenic potential of human endothelial progenitor cells is predictive of their further properties and establishes a functional hierarchy related to immaturity. Stem Cell Res 2017; 21:148-159. [PMID: 28499264 DOI: 10.1016/j.scr.2017.04.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 01/24/2017] [Accepted: 04/14/2017] [Indexed: 12/13/2022] Open
Abstract
Endothelial progenitor cells (EPCs) generate in vitro Endothelial Colony Forming Cells (ECFCs) combining features of endothelial and stem/progenitor cells. Their angiogenic properties confer them a therapeutic potential for treating ischemic lesions. They may be isolated from umbilical cord blood (CB-ECFCs) or peripheral adult blood (AB-ECFCs). It is generally accepted that CB-ECFCs are more clonogenic, proliferative and angiogenic than AB-ECFCs. Nevertheless, only a few studies have focused on the functional heterogeneity of CB-ECFCs from different individuals. Moreover, AB-ECFC loss of function is yet to be precisely described. We have focused on these two issues that are critical for clinical perspectives. The detailed clonogenic profile of CB-ECFCs and AB-ECFCs was obtained and revealed a high inter individual heterogeneity and the absence of correlation with age. Most CB-ECFCs yielded initial colonies and had functional properties similar to those of AB-ECFCs. Conversely, a high clonogenicity was associated with an enhanced proliferative and angiogenic potential and stemness gene overexpression, confirming that immaturity, lost by AB-ECFCs, was a prerequisite to functionality. We thus demonstrated the importance of selecting CB-ECFCs according to specific criteria, and we propose using the initial clonogenicity as a relevant marker of their potential efficacy on vascular repair.
Collapse
Affiliation(s)
| | - Guillaume Ha
- INSERM U1197, Hôpital Paul Brousse, Villejuif, France
| | - Gilles Carpentier
- ERL CNRS 9215, Laboratoire CRRET, Université Paris Est Créteil, Faculté des Sciences et Technologies, Créteil, France
| | | | - Rümeyza Bascetin
- Center for Interdisciplinary Research in Biology, Collège de France, Paris, France; Inserm U1050, Paris, France; CNRS UMRS 7241, Paris, France
| | - Laurent Muller
- Center for Interdisciplinary Research in Biology, Collège de France, Paris, France; Inserm U1050, Paris, France; CNRS UMRS 7241, Paris, France
| | - Stéphane Germain
- Center for Interdisciplinary Research in Biology, Collège de France, Paris, France; Inserm U1050, Paris, France; CNRS UMRS 7241, Paris, France
| | - Georges Uzan
- INSERM U1197, Hôpital Paul Brousse, Villejuif, France.
| |
Collapse
|
58
|
Lv J, Zeng J, Zhao W, Cheng Y, Zhang L, Cai S, Hu G, Chen Y. Cdc42 regulates LPS-induced proliferation of primary pulmonary microvascular endothelial cells via ERK pathway. Microvasc Res 2016; 109:45-53. [PMID: 27769693 DOI: 10.1016/j.mvr.2016.10.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 09/21/2016] [Accepted: 10/17/2016] [Indexed: 12/17/2022]
Abstract
BACKGROUND After stimulation due to injury, cell division cycle protein 42 (Cdc42) restores and enhances barrier functions by strengthening intercellular adherens junctions; however, its influence on cell proliferation after injury remains unknown. OBJECTIVE In this study, we sought to investigate the effect of stimulation using small doses of lipopolysaccharide (LPS) on the proliferation of pulmonary microvascular endothelial cells (PMVECs). METHODS We stimulated PMVECs with different doses of LPS and evaluated the effects on cell proliferation. We also constructed a primary gene-knockout cell line lacking Cdc42 to verify the role of Cdc42 in regulating the proliferation of PMVECs that were stimulated using LPS and to explore related signaling pathways. RESULTS Stimulating PMVECs with small doses of LPS increased proliferation. Cdc42 is involved in regulating this process, which was mediated by the extracellular regulated protein kinase (ERK) pathway. CONCLUSIONS Cdc42 plays a role in regulating the proliferation of PMVECs stimulated with small doses of LPS, and this regulation involves the ERK pathway.
Collapse
Affiliation(s)
- Jiawen Lv
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Junchao Zeng
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Wen Zhao
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yuanxiong Cheng
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Lin Zhang
- Department of Histology and Embryology, School of Basic Medical Sciences Southern Medical University, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangzhou 510515, China
| | - Shaoxi Cai
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Guodong Hu
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Yinghua Chen
- Department of Histology and Embryology, School of Basic Medical Sciences Southern Medical University, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangzhou 510515, China.
| |
Collapse
|
59
|
Inhibition of autophagy ameliorates pulmonary microvascular dilation and PMVECs excessive proliferation in rat experimental hepatopulmonary syndrome. Sci Rep 2016; 6:30833. [PMID: 27480323 PMCID: PMC4969600 DOI: 10.1038/srep30833] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 07/11/2016] [Indexed: 02/08/2023] Open
Abstract
Hepatopulmonary syndrome (HPS) is a defective liver-induced pulmonary vascular disorder with massive pulmonary microvascular dilation and excessive proliferation of pulmonary microvascular endothelial cells (PMVECs). Growing evidence suggests that autophagy is involved in pulmonary diseases, protectively or detrimentally. Thus, it is interesting and important to explore whether autophagy might be involved in and critical in HPS. In the present study, we report that autophagy was activated in common bile duct ligation (CBDL) rats and cultured pulmonary PMVECs induced by CBDL rat serum, two accepted in vivo and in vitro experimental models of HPS. Furthermore, pharmacological inhibition of autophagy with 3-methyladenine (3-MA) significantly alleviated pathological alterations and typical symptom of HPS in CBDL rats in vivo, and consistently 3-MA significantly attenuated the CBDL rat serum-induced excessive proliferation of PMVECs in vitro. All these changes mediated by 3-MA might explain the observed prominent improvement of pulmonary appearance, edema, microvascular dilatation and arterial oxygenation in vivo. Collectively, these results suggest that autophagy activation may play a critical role in the pathogenesis of HPS, and autophagy inhibition may have a therapeutic potential for this disease.
Collapse
|
60
|
Patel J, Donovan P, Khosrotehrani K. Concise Review: Functional Definition of Endothelial Progenitor Cells: A Molecular Perspective. Stem Cells Transl Med 2016; 5:1302-1306. [PMID: 27381992 DOI: 10.5966/sctm.2016-0066] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 04/25/2016] [Indexed: 01/10/2023] Open
Abstract
: Since the discovery of endothelial progenitor cells (EPCs) almost 2 decades ago, there has been great hope in their use in treating chronic ischemic disease. Unfortunately, to date, many of the clinical trials using EPCs have been hampered by the lack of clear definition of this cell population. Attributes of a progenitor population are self-renewal and multipotentiality. Major progress has been achieved moving from a definition of EPCs based on a candidate cell surface molecule to a functional definition based essentially on self-renewal hierarchy of endothelial colony-forming cells (ECFCs). More recent work has seized on this functional characterization to associate gene expression signatures with the self-renewal capacity of ECFCs. In particular, Notch signaling driving the quiescence of progenitors has been shown to be central to progenitor self-renewal. This new molecular definition has tremendous translational consequences, because progenitors have been shown to display greater vasculogenic potential. Also, this molecular definition of EPC self-renewal allows assessment of the quality of presumed EPC preparations. This promises to be the initial stage in progressing EPCs further into mainstream clinical use. SIGNIFICANCE The development of a therapy using endothelial progenitor cells provides great hope for patients in treating cardiovascular diseases going forward. For continual development of this therapy toward the clinical, further understanding of the fundamental biology of these cells is required. This will enable a greater understanding of their stemness capacity and provide insight into their ability to differentiate and drive tissue regeneration when injected into a host.
Collapse
Affiliation(s)
- Jatin Patel
- University of Queensland Centre for Clinical Research, Herston, Queensland, Australia
| | - Prudence Donovan
- University of Queensland Diamantina Institute, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Kiarash Khosrotehrani
- University of Queensland Centre for Clinical Research, Herston, Queensland, Australia University of Queensland Diamantina Institute, Translational Research Institute, Woolloongabba, Queensland, Australia
| |
Collapse
|
61
|
Fujinaga H, Fujinaga H, Watanabe N, Kato T, Tamano M, Terao M, Takada S, Ito Y, Umezawa A, Kuroda M. Cord blood-derived endothelial colony-forming cell function is disrupted in congenital diaphragmatic hernia. Am J Physiol Lung Cell Mol Physiol 2016; 310:L1143-54. [PMID: 27130531 DOI: 10.1152/ajplung.00357.2015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 04/22/2016] [Indexed: 01/07/2023] Open
Abstract
Vascular growth is necessary for normal lung development. Although endothelial progenitor cells (EPCs) play an important role in vascularization, little is known about EPC function in congenital diaphragmatic hernia (CDH), a severe neonatal condition that is associated with pulmonary hypoplasia. We hypothesized that the function of endothelial colony-forming cells (ECFCs), a type of EPC, is impaired in CDH. Cord blood (CB) was collected from full-term CDH patients and healthy controls. We assessed CB progenitor cell populations as well as plasma vascular endothelial growth factor (VEGF) and stromal cell-derived factor 1α (SDF1α) levels. CB ECFC clonogenicity; growth kinetics; migration; production of VEGF, SDF1α, and nitric oxide (NO); vasculogenic capacity; and mRNA expression of VEGF-A, fms-related tyrosine kinase 1 (FLT1), kinase insert domain receptor (KDR), nitric oxide synthase (NOS) 1-3, SDF1, and chemokine (C-X-C motif) receptor 4 (CXCR4) were also assessed. Compared with controls, CB ECFCs were decreased in CDH. CDH ECFCs had reduced potential for self-renewal, clonogenicity, proliferation, and migration. Their capacity for NO production was enhanced but their response to VEGF was blunted in CDH ECFCs. In vivo potential for de novo vasculogenesis was reduced in CDH ECFCs. There was no difference in CB plasma VEGF and SDF1α concentrations, VEGF and SDF1α production by ECFCs, and ECFC mRNA expression of VEGF-A, FLT1, KDR, NOS1-3, SDF1, and CXCR4 between CDH and control subjects. In conclusion, CB ECFC function is disrupted in CDH, but these changes may be caused by mechanisms other than alteration of VEGF-NO and SDF1-CXCR4 signaling.
Collapse
Affiliation(s)
- Hideshi Fujinaga
- Department of Molecular Pathology, Tokyo Medical University, Tokyo, Japan; Department of Reproductive Biology, National Institute for Child Health and Development, Tokyo, Japan; Division of Neonatology, Center for Maternal-Fetal and Neonatal Medicine, National Center for Child Health and Development, Tokyo, Japan;
| | - Hiroko Fujinaga
- Department of Reproductive Biology, National Institute for Child Health and Development, Tokyo, Japan
| | - Nobuyuki Watanabe
- Department of Human Genetics, National Institute for Child Health and Development, Tokyo, Japan; and
| | - Tomoko Kato
- Department of Systems BioMedicine, National Institute for Child Health and Development, Tokyo, Japan
| | - Moe Tamano
- Department of Systems BioMedicine, National Institute for Child Health and Development, Tokyo, Japan
| | - Miho Terao
- Department of Systems BioMedicine, National Institute for Child Health and Development, Tokyo, Japan
| | - Shuji Takada
- Department of Systems BioMedicine, National Institute for Child Health and Development, Tokyo, Japan
| | - Yushi Ito
- Division of Neonatology, Center for Maternal-Fetal and Neonatal Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Akihiro Umezawa
- Department of Reproductive Biology, National Institute for Child Health and Development, Tokyo, Japan
| | - Masahiko Kuroda
- Department of Molecular Pathology, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
62
|
Heise RL, Link PA, Farkas L. From Here to There, Progenitor Cells and Stem Cells Are Everywhere in Lung Vascular Remodeling. Front Pediatr 2016; 4:80. [PMID: 27583245 PMCID: PMC4988064 DOI: 10.3389/fped.2016.00080] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 07/20/2016] [Indexed: 01/27/2023] Open
Abstract
The field of stem cell biology, cell therapy, and regenerative medicine has expanded almost exponentially, in the last decade. Clinical trials are evaluating the potential therapeutic use of stem cells in many adult and pediatric lung diseases with vascular component, such as bronchopulmonary dysplasia (BPD), chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), or pulmonary arterial hypertension (PAH). Extensive research activity is exploring the lung resident and circulating progenitor cells and their contribution to vascular complications of chronic lung diseases, and researchers hope to use resident or circulating stem/progenitor cells to treat chronic lung diseases and their vascular complications. It is becoming more and more clear that progress in mechanobiology will help to understand the various influences of physical forces and extracellular matrix composition on the phenotype and features of the progenitor cells and stem cells. The current review provides an overview of current concepts in the field.
Collapse
Affiliation(s)
- Rebecca L Heise
- Department of Biomedical Engineering, School of Engineering, Virginia Commonwealth University , Richmond, VA , USA
| | - Patrick A Link
- Department of Biomedical Engineering, School of Engineering, Virginia Commonwealth University , Richmond, VA , USA
| | - Laszlo Farkas
- Department of Internal Medicine, Division of Pulmonary Disease and Critical Care Medicine, School of Medicine, Virginia Commonwealth University , Richmond, VA , USA
| |
Collapse
|
63
|
Alphonse RS, Vadivel A, Zhong S, McConaghy S, Ohls R, Yoder MC, Thébaud B. Corrigendum: The isolation and culture of endothelial colony-forming cells from human and rat lungs. Nat Protoc 2015; 11:192. [PMID: 26716702 DOI: 10.1038/nprot0116-192c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|