51
|
Meinel DM, Sträßer K. Co-transcriptional mRNP formation is coordinated within a molecular mRNP packaging station in S. cerevisiae. Bioessays 2015; 37:666-77. [PMID: 25801414 PMCID: PMC5054900 DOI: 10.1002/bies.201400220] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In eukaryotes, the messenger RNA (mRNA), the blueprint of a protein‐coding gene, is processed and packaged into a messenger ribonucleoprotein particle (mRNP) by mRNA‐binding proteins in the nucleus. The steps of mRNP formation – transcription, processing, packaging, and the orchestrated release of the export‐competent mRNP from the site of transcription for nuclear mRNA export – are tightly coupled to ensure a highly efficient and regulated process. The importance of highly accurate nuclear mRNP formation is illustrated by the fact that mutations in components of this pathway lead to cellular inviability or to severe diseases in metazoans. We hypothesize that efficient mRNP formation is realized by a molecular mRNP packaging station, which is built by several recruitment platforms and coordinates the individual steps of mRNP formation.
Collapse
Affiliation(s)
- Dominik M Meinel
- Bavarian Health and Food Safety Authority, Oberschleißheim, Germany
| | - Katja Sträßer
- Institute of Biochemistry, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
52
|
Porrua O, Libri D. Transcription termination and the control of the transcriptome: why, where and how to stop. Nat Rev Mol Cell Biol 2015; 16:190-202. [DOI: 10.1038/nrm3943] [Citation(s) in RCA: 201] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
53
|
Smith-Kinnaman WR, Berna MJ, Hunter GO, True JD, Hsu P, Cabello GI, Fox MJ, Varani G, Mosley AL. The interactome of the atypical phosphatase Rtr1 in Saccharomyces cerevisiae. MOLECULAR BIOSYSTEMS 2015; 10:1730-41. [PMID: 24671508 DOI: 10.1039/c4mb00109e] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The phosphatase Rtr1 has been implicated in dephosphorylation of the RNA Polymerase II (RNAPII) C-terminal domain (CTD) during transcription elongation and in regulation of nuclear import of RNAPII. Although it has been shown that Rtr1 interacts with RNAPII in yeast and humans, the specific mechanisms that underlie Rtr1 recruitment to RNAPII have not been elucidated. To address this, we have performed an in-depth proteomic analysis of Rtr1 interacting proteins in yeast. Our studies revealed that hyperphosphorylated RNAPII is the primary interacting partner for Rtr1. To extend these findings, we performed quantitative proteomic analyses of Rtr1 interactions in yeast strains deleted for CTK1, the gene encoding the catalytic subunit of the CTD kinase I (CTDK-I) complex. Interestingly, we found that the interaction between Rtr1 and RNAPII is decreased in ctk1Δ strains. We hypothesize that serine-2 CTD phosphorylation is required for Rtr1 recruitment to RNAPII during transcription elongation.
Collapse
Affiliation(s)
- Whitney R Smith-Kinnaman
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Abstract
Transcription elongation by RNA polymerase II (RNAP II) involves the coordinated action of numerous regulatory factors. Among these are chromatin-modifying enzymes, which generate a stereotypic and conserved pattern of histone modifications along transcribed genes. This pattern implies a precise coordination between regulators of histone modification and the RNAP II elongation complex. Here I review the pathways and molecular events that regulate co-transcriptional histone modifications. Insight into these events will illuminate the assembly of functional RNAP II elongation complexes and how the chromatin landscape influences their composition and function.
Collapse
Affiliation(s)
- Jason C Tanny
- a Department of Pharmacology and Therapeutics ; McGill University ; Montreal , Canada
| |
Collapse
|
55
|
Allepuz-Fuster P, Martínez-Fernández V, Garrido-Godino AI, Alonso-Aguado S, Hanes SD, Navarro F, Calvo O. Rpb4/7 facilitates RNA polymerase II CTD dephosphorylation. Nucleic Acids Res 2014; 42:13674-88. [PMID: 25416796 PMCID: PMC4267648 DOI: 10.1093/nar/gku1227] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 11/04/2014] [Accepted: 11/10/2014] [Indexed: 12/11/2022] Open
Abstract
The Rpb4 and Rpb7 subunits of eukaryotic RNA polymerase II (RNAPII) participate in a variety of processes from transcription, DNA repair, mRNA export and decay, to translation regulation and stress response. However, their mechanism(s) of action remains unclear. Here, we show that the Rpb4/7 heterodimer in Saccharomyces cerevisiae plays a key role in controlling phosphorylation of the carboxy terminal domain (CTD) of the Rpb1 subunit of RNAPII. Proper phosphorylation of the CTD is critical for the synthesis and processing of RNAPII transcripts. Deletion of RPB4, and mutations that disrupt the integrity of Rpb4/7 or its recruitment to the RNAPII complex, increased phosphorylation of Ser2, Ser5, Ser7 and Thr4 within the CTD. RPB4 interacted genetically with genes encoding CTD phosphatases (SSU72, FCP1), CTD kinases (KIN28, CTK1, SRB10) and a prolyl isomerase that targets the CTD (ESS1). We show that Rpb4 is important for Ssu72 and Fcp1 phosphatases association, recruitment and/or accessibility to the CTD, and that this correlates strongly with Ser5P and Ser2P levels, respectively. Our data also suggest that Fcp1 is the Thr4P phosphatase in yeast. Based on these and other results, we suggest a model in which Rpb4/7 helps recruit and potentially stimulate the activity of CTD-modifying enzymes, a role that is central to RNAPII function.
Collapse
Affiliation(s)
- Paula Allepuz-Fuster
- Instituto de Biología Funcional y Genómica, CSIC/Universidad de Salamanca, Salamanca 37007, Spain
| | - Verónica Martínez-Fernández
- Departamento de Biología Experimental, Facultad de Ciencias Experimentales, Universidad de Jaén, Jaén 23071, Spain
| | - Ana I. Garrido-Godino
- Departamento de Biología Experimental, Facultad de Ciencias Experimentales, Universidad de Jaén, Jaén 23071, Spain
| | - Sergio Alonso-Aguado
- Instituto de Biología Funcional y Genómica, CSIC/Universidad de Salamanca, Salamanca 37007, Spain
| | - Steven D. Hanes
- Department of Biochemistry and Molecular Biology, Upstate Medical University, Syracuse, NY 13210, USA
| | - Francisco Navarro
- Departamento de Biología Experimental, Facultad de Ciencias Experimentales, Universidad de Jaén, Jaén 23071, Spain
| | - Olga Calvo
- Instituto de Biología Funcional y Genómica, CSIC/Universidad de Salamanca, Salamanca 37007, Spain
| |
Collapse
|
56
|
Chasman D, Ho YH, Berry DB, Nemec CM, MacGilvray ME, Hose J, Merrill AE, Lee MV, Will JL, Coon JJ, Ansari AZ, Craven M, Gasch AP. Pathway connectivity and signaling coordination in the yeast stress-activated signaling network. Mol Syst Biol 2014; 10:759. [PMID: 25411400 PMCID: PMC4299600 DOI: 10.15252/msb.20145120] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Stressed cells coordinate a multi-faceted response spanning many levels of physiology. Yet
knowledge of the complete stress-activated regulatory network as well as design principles for
signal integration remains incomplete. We developed an experimental and computational approach to
integrate available protein interaction data with gene fitness contributions, mutant transcriptome
profiles, and phospho-proteome changes in cells responding to salt stress, to infer the
salt-responsive signaling network in yeast. The inferred subnetwork presented many novel predictions
by implicating new regulators, uncovering unrecognized crosstalk between known pathways, and
pointing to previously unknown ‘hubs’ of signal integration. We exploited these
predictions to show that Cdc14 phosphatase is a central hub in the network and that modification of
RNA polymerase II coordinates induction of stress-defense genes with reduction of growth-related
transcripts. We find that the orthologous human network is enriched for cancer-causing genes,
underscoring the importance of the subnetwork's predictions in understanding stress
biology.
Collapse
Affiliation(s)
- Deborah Chasman
- Department of Computer Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Yi-Hsuan Ho
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, USA
| | - David B Berry
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, USA
| | - Corey M Nemec
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | | | - James Hose
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, USA
| | - Anna E Merrill
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - M Violet Lee
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Jessica L Will
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, USA
| | - Joshua J Coon
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA Department of Biological Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Aseem Z Ansari
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA
| | - Mark Craven
- Department of Computer Sciences, University of Wisconsin-Madison, Madison, WI, USA Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, USA
| | - Audrey P Gasch
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, USA Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
57
|
Hanes SD. Prolyl isomerases in gene transcription. Biochim Biophys Acta Gen Subj 2014; 1850:2017-34. [PMID: 25450176 DOI: 10.1016/j.bbagen.2014.10.028] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 10/20/2014] [Accepted: 10/23/2014] [Indexed: 12/13/2022]
Abstract
BACKGROUND Peptidyl-prolyl isomerases (PPIases) are enzymes that assist in the folding of newly-synthesized proteins and regulate the stability, localization, and activity of mature proteins. They do so by catalyzing reversible (cis-trans) rotation about the peptide bond that precedes proline, inducing conformational changes in target proteins. SCOPE OF REVIEW This review will discuss how PPIases regulate gene transcription by controlling the activity of (1) DNA-binding transcription regulatory proteins, (2) RNA polymerase II, and (3) chromatin and histone modifying enzymes. MAJOR CONCLUSIONS Members of each family of PPIase (cyclophilins, FKBPs, and parvulins) regulate gene transcription at multiple levels. In all but a few cases, the exact mechanisms remain elusive. Structure studies, development of specific inhibitors, and new methodologies for studying cis/trans isomerization in vivo represent some of the challenges in this new frontier that merges two important fields. GENERAL SIGNIFICANCE Prolyl isomerases have been found to play key regulatory roles in all phases of the transcription process. Moreover, PPIases control upstream signaling pathways that regulate gene-specific transcription during development, hormone response and environmental stress. Although transcription is often rate-limiting in the production of enzymes and structural proteins, post-transcriptional modifications are also critical, and PPIases play key roles here as well (see other reviews in this issue). This article is part of a Special Issue entitled Proline-directed Foldases: Cell Signaling Catalysts and Drug Targets.
Collapse
Affiliation(s)
- Steven D Hanes
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 E Adams St., Syracuse, NY 13210 USA.
| |
Collapse
|
58
|
Bensaude O. Inhibiting eukaryotic transcription: Which compound to choose? How to evaluate its activity? Transcription 2014; 2:103-108. [PMID: 21922053 DOI: 10.4161/trns.2.3.16172] [Citation(s) in RCA: 425] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Accepted: 04/28/2011] [Indexed: 02/07/2023] Open
Abstract
This review first discusses ways in which we can evaluate transcription inhibition, describe changes in nuclear structure due to transcription inhibition, and report on genes that are paradoxically stimulated by transcription inhibition. Next, it summarizes the characteristics and mechanisms of commonly used inhibitors: α-amanitin is highly selective for RNAP II and RNAP III but its action is slow, actinomycin D is fast but its selectivity is poor, CDK9 inhibitors such as DRB and flavopiridol are fast and reversible but many genes escape transcription inhibition. New compounds, such as triptolide, are fast and selective and able to completely arrest transcription by triggering rapid degradation of RNAP II.
Collapse
|
59
|
Bowman EA, Kelly WG. RNA polymerase II transcription elongation and Pol II CTD Ser2 phosphorylation: A tail of two kinases. Nucleus 2014; 5:224-36. [PMID: 24879308 DOI: 10.4161/nucl.29347] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The transition between initiation and productive elongation during RNA Polymerase II (Pol II) transcription is a well-appreciated point of regulation across many eukaryotes. Elongating Pol II is modified by phosphorylation of serine 2 (Ser2) on its carboxy terminal domain (CTD) by two kinases, Bur1/Ctk1 in yeast and Cdk9/Cdk12 in metazoans. Here, we discuss the roles and regulation of these kinases and their relationship to Pol II elongation control, and focus on recent data from work in C. elegans that point out gaps in our current understand of transcription elongation.
Collapse
Affiliation(s)
- Elizabeth A Bowman
- National Institute of Environmental Health Sciences; Research Triangle Park, NC USA
| | | |
Collapse
|
60
|
Function and control of RNA polymerase II C-terminal domain phosphorylation in vertebrate transcription and RNA processing. Mol Cell Biol 2014; 34:2488-98. [PMID: 24752900 DOI: 10.1128/mcb.00181-14] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The C-terminal domain of the RNA polymerase II largest subunit (the Rpb1 CTD) is composed of tandem heptad repeats of the consensus sequence Y(1)S(2)P(3)T(4)S(5)P(6)S(7). We reported previously that Thr 4 is phosphorylated and functions in histone mRNA 3'-end formation in chicken DT40 cells. Here, we have extended our studies on Thr 4 and to other CTD mutations by using these cells. We found that an Rpb1 derivative containing only the N-terminal half of the CTD, as well as a similar derivative containing all-consensus repeats (26r), conferred full viability, while the C-terminal half, with more-divergent repeats, did not, reflecting a strong and specific defect in snRNA 3'-end formation. Mutation in 26r of all Ser 2 (S2A) or Ser 5 (S5A) residues resulted in lethality, while Ser 7 (S7A) mutants were fully viable. While S2A and S5A cells displayed defects in transcription and RNA processing, S7A cells behaved identically to 26r cells in all respects. Finally, we found that Thr 4 was phosphorylated by cyclin-dependent kinase 9 in cells and dephosphorylated both in vitro and in vivo by the phosphatase Fcp1.
Collapse
|
61
|
Coulombe C, Poitras C, Nordell-Markovits A, Brunelle M, Lavoie MA, Robert F, Jacques PÉ. VAP: a versatile aggregate profiler for efficient genome-wide data representation and discovery. Nucleic Acids Res 2014; 42:W485-93. [PMID: 24753414 PMCID: PMC4086060 DOI: 10.1093/nar/gku302] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The analysis of genomic data such as ChIP-Seq usually involves representing the signal intensity level over genes or other genetic features. This is often illustrated as a curve (representing the aggregate profile of a group of genes) or as a heatmap (representing individual genes). However, no specific resource dedicated to easily generating such profiles is currently available. We therefore built the versatile aggregate profiler (VAP), designed to be used by experimental and computational biologists to generate profiles of genomic datasets over groups of regions of interest, using either an absolute or a relative method. Graphical representation of the results is automatically generated, and subgrouping can be performed easily, based on the orientation of the flanking annotations. The outputs include statistical measures to facilitate comparisons between groups or datasets. We show that, through its intuitive design and flexibility, VAP can help avoid misinterpretations of genomics data. VAP is highly efficient and designed to run on laptop computers by using a memory footprint control, but can also be easily compiled and run on servers. VAP is accessible at http://lab-jacques.recherche.usherbrooke.ca/vap/.
Collapse
Affiliation(s)
- Charles Coulombe
- Département d'informatique, Faculté des sciences, Université de Sherbrooke, Sherbrooke, Québec, J1K 2R1, Canada
| | - Christian Poitras
- Institut de recherches cliniques de Montréal, Montréal, Québec, H2W 1R7, Canada
| | - Alexei Nordell-Markovits
- Département d'informatique, Faculté des sciences, Université de Sherbrooke, Sherbrooke, Québec, J1K 2R1, Canada Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, Québec, J1K 2R1, Canada
| | - Mylène Brunelle
- Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, Québec, J1K 2R1, Canada
| | - Marc-André Lavoie
- Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, Québec, J1K 2R1, Canada
| | - François Robert
- Institut de recherches cliniques de Montréal, Montréal, Québec, H2W 1R7, Canada Département de médecine, Faculté de médecine, Université de Montréal, Montréal, Québec, H3T 1J4, Canada
| | - Pierre-Étienne Jacques
- Département d'informatique, Faculté des sciences, Université de Sherbrooke, Sherbrooke, Québec, J1K 2R1, Canada Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, Québec, J1K 2R1, Canada Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Sherbrooke, Québec, J1H 5N4, Canada
| |
Collapse
|
62
|
Jeronimo C, Robert F. Kin28 regulates the transient association of Mediator with core promoters. Nat Struct Mol Biol 2014; 21:449-55. [PMID: 24704787 PMCID: PMC3997488 DOI: 10.1038/nsmb.2810] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 03/11/2014] [Indexed: 12/23/2022]
Abstract
Mediator is an essential, broadly used eukaryotic transcriptional coactivator. How and what Mediator communicates from activators to RNA polymerase II (RNAPII) remains an open question. Here we performed genome-wide location profiling of Saccharomyces cerevisiae Mediator subunits. Mediator is not found at core promoters but rather occupies the upstream activating sequence, upstream of the pre-initiation complex. In the absence of Kin28 (CDK7) kinase activity or in cells in which the RNAPII C-terminal domain is mutated to replace Ser5 with alanine, however, Mediator accumulates at core promoters together with RNAPII. We propose that Mediator is released quickly from promoters after phosphorylation of Ser5 by Kin28 (CDK7), which also allows for RNAPII to escape from the promoter.
Collapse
Affiliation(s)
- Célia Jeronimo
- Institut de recherches cliniques de Montréal, Montréal, Québec, Canada
| | - François Robert
- 1] Institut de recherches cliniques de Montréal, Montréal, Québec, Canada. [2] Département de Médecine, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
63
|
Napolitano G, Lania L, Majello B. RNA polymerase II CTD modifications: how many tales from a single tail. J Cell Physiol 2014; 229:538-44. [PMID: 24122273 DOI: 10.1002/jcp.24483] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 09/30/2013] [Indexed: 12/31/2022]
Abstract
Eukaryote's RNA polymerases II (RNAPII) have the feature to contain, at the carbossi-terminal region of their largest subunit Rpb1, a unique CTD domain. Rpb1-CTD is composed of an increasing number of repetitions of the Y1 S2 P3 T4 S5 P6 S7 heptad that goes in parallel with the developmental level of organisms. Because of its composition, the CTD domain has a huge structural plasticity; virtually all the residues can be subjected to post-translational modifications and the two prolines can either be in cis or trans conformations. In light of these features, it is reasonable to think that different specific nuances of CTD modification and interacting factors take place not only on different gene promoters but also during different stages of the transcription cycle and reasonably might have a role even if the polymerase is on or off the DNA template. Rpb1-CTD domain is involved not only in regulating transcriptional rates, but also in all co-transcriptional processes, such as pre-mRNA processing, splicing, cleavage, and export. Moreover, recent studies highlight a role of CTD in DNA replication and in maintenance of genomic stability and specific CTD-modifications have been related to different CTD functions. In this paper, we examine results from the most recent CTD-related literature and give an overview of the general function of Rpb1-CTD in transcription, transcription-related and non transcription-related processes in which it has been recently shown to be involved in.
Collapse
|
64
|
Bösken CA, Farnung L, Hintermair C, Merzel Schachter M, Vogel-Bachmayr K, Blazek D, Anand K, Fisher RP, Eick D, Geyer M. The structure and substrate specificity of human Cdk12/Cyclin K. Nat Commun 2014; 5:3505. [PMID: 24662513 PMCID: PMC3973122 DOI: 10.1038/ncomms4505] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 02/25/2014] [Indexed: 02/06/2023] Open
Abstract
Phosphorylation of the RNA polymerase II C-terminal domain (CTD) by cyclin-dependent kinases is important for productive transcription. Here we determine the crystal structure of Cdk12/CycK and analyse its requirements for substrate recognition. Active Cdk12/CycK is arranged in an open conformation similar to that of Cdk9/CycT but different from those of cell cycle kinases. Cdk12 contains a C-terminal extension that folds onto the N- and C-terminal lobes thereby contacting the ATP ribose. The interaction is mediated by an HE motif followed by a polybasic cluster that is conserved in transcriptional CDKs. Cdk12/CycK showed the highest activity on a CTD substrate prephosphorylated at position Ser7, whereas the common Lys7 substitution was not recognized. Flavopiridol is most potent towards Cdk12 but was still 10-fold more potent towards Cdk9. T-loop phosphorylation of Cdk12 required coexpression with a Cdk-activating kinase. These results suggest the regulation of Pol II elongation by a relay of transcriptionally active CTD kinases. Cyclin-dependent kinase 12 (Cdk12) phosphorylates the C-terminal domain (CTD) of RNA polymerase II to regulate transcription. Here, the authors solve the crystal structure of the Cdk12 kinase domain and show that Cdk12 has its highest activity on a CTD substrate that carries a serine 7 phosphorylation.
Collapse
Affiliation(s)
- Christian A Bösken
- 1] Group Physical Biochemistry, Center of Advanced European Studies and Research, Ludwig-Erhard-Allee 2, Bonn 53175, Germany [2] Department of Physical Biochemistry, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, Dortmund 44227, Germany
| | - Lucas Farnung
- Department of Physical Biochemistry, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, Dortmund 44227, Germany
| | - Corinna Hintermair
- Department of Molecular Epigenetics, Helmholtz Center Munich, Center for Integrated Protein Science (CIPSM), Marchioninistrasse 25, München 81377, Germany
| | - Miriam Merzel Schachter
- Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Karin Vogel-Bachmayr
- Department of Physical Biochemistry, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, Dortmund 44227, Germany
| | - Dalibor Blazek
- Central European Institute of Technology (CEITEC), Masaryk University, Brno 62500, Czech Republic
| | - Kanchan Anand
- Group Physical Biochemistry, Center of Advanced European Studies and Research, Ludwig-Erhard-Allee 2, Bonn 53175, Germany
| | - Robert P Fisher
- Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Dirk Eick
- Department of Molecular Epigenetics, Helmholtz Center Munich, Center for Integrated Protein Science (CIPSM), Marchioninistrasse 25, München 81377, Germany
| | - Matthias Geyer
- 1] Group Physical Biochemistry, Center of Advanced European Studies and Research, Ludwig-Erhard-Allee 2, Bonn 53175, Germany [2] Department of Physical Biochemistry, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, Dortmund 44227, Germany
| |
Collapse
|
65
|
The Ess1 prolyl isomerase: traffic cop of the RNA polymerase II transcription cycle. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:316-33. [PMID: 24530645 DOI: 10.1016/j.bbagrm.2014.02.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Revised: 02/01/2014] [Accepted: 02/03/2014] [Indexed: 11/23/2022]
Abstract
Ess1 is a prolyl isomerase that regulates the structure and function of eukaryotic RNA polymerase II. Ess1 works by catalyzing the cis/trans conversion of pSer5-Pro6 bonds, and to a lesser extent pSer2-Pro3 bonds, within the carboxy-terminal domain (CTD) of Rpb1, the largest subunit of RNA pol II. Ess1 is conserved in organisms ranging from yeast to humans. In budding yeast, Ess1 is essential for growth and is required for efficient transcription initiation and termination, RNA processing, and suppression of cryptic transcription. In mammals, Ess1 (called Pin1) functions in a variety of pathways, including transcription, but it is not essential. Recent work has shown that Ess1 coordinates the binding and release of CTD-binding proteins that function as co-factors in the RNA pol II complex. In this way, Ess1 plays an integral role in writing (and reading) the so-called CTD code to promote production of mature RNA pol II transcripts including non-coding RNAs and mRNAs.
Collapse
|
66
|
Lenstra TL, Tudek A, Clauder S, Xu Z, Pachis ST, van Leenen D, Kemmeren P, Steinmetz LM, Libri D, Holstege FCP. The role of Ctk1 kinase in termination of small non-coding RNAs. PLoS One 2013; 8:e80495. [PMID: 24324601 PMCID: PMC3851182 DOI: 10.1371/journal.pone.0080495] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 10/03/2013] [Indexed: 11/18/2022] Open
Abstract
Transcription termination in Saccharomyces cerevisiae can be performed by at least two distinct pathways and is influenced by the phosphorylation status of the carboxy-terminal domain (CTD) of RNA polymerase II (Pol II). Late termination of mRNAs is performed by the CPF/CF complex, the recruitment of which is dependent on CTD-Ser2 phosphorylation (Ser2P). Early termination of shorter cryptic unstable transcripts (CUTs) and small nucleolar/nuclear RNAs (sno/snRNAs) is performed by the Nrd1-Nab3-Sen1 (NNS) complex that binds phosphorylated CTD-Ser5 (Ser5P) via the CTD-interacting domain (CID) of Nrd1p. In this study, mutants of the different termination pathways were compared by genome-wide expression analysis. Surprisingly, the expression changes observed upon loss of the CTD-Ser2 kinase Ctk1p are more similar to those derived from alterations in the Ser5P-dependent NNS pathway, than from loss of CTD-Ser2P binding factors. Tiling array analysis of ctk1Δ cells reveals readthrough at snoRNAs, at many cryptic unstable transcripts (CUTs) and stable uncharacterized transcripts (SUTs), but only at some mRNAs. Despite the suggested predominant role in termination of mRNAs, we observed that a CTK1 deletion or a Pol II CTD mutant lacking all Ser2 positions does not result in a global mRNA termination defect. Rather, termination defects in these strains are widely observed at NNS-dependent genes. These results indicate that Ctk1p and Ser2 CTD phosphorylation have a wide impact in termination of small non-coding RNAs but only affect a subset of mRNA coding genes.
Collapse
Affiliation(s)
- Tineke L. Lenstra
- Molecular Cancer Research, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Agnieszka Tudek
- LEA Laboratory of Nuclear RNA Metabolism, Centre de de Génétique Moléculaire, C.N.R.S.-UPR3404, Gif sur Yvette, France
| | - Sandra Clauder
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Zhenyu Xu
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Spyridon T. Pachis
- Molecular Cancer Research, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Dik van Leenen
- Molecular Cancer Research, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Patrick Kemmeren
- Molecular Cancer Research, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Lars M. Steinmetz
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Domenico Libri
- LEA Laboratory of Nuclear RNA Metabolism, Centre de de Génétique Moléculaire, C.N.R.S.-UPR3404, Gif sur Yvette, France
- * E-mail: (DL); (FCPH)
| | - Frank C. P. Holstege
- Molecular Cancer Research, University Medical Center Utrecht, Utrecht, The Netherlands
- * E-mail: (DL); (FCPH)
| |
Collapse
|
67
|
Meinel DM, Burkert-Kautzsch C, Kieser A, O'Duibhir E, Siebert M, Mayer A, Cramer P, Söding J, Holstege FCP, Sträßer K. Recruitment of TREX to the transcription machinery by its direct binding to the phospho-CTD of RNA polymerase II. PLoS Genet 2013; 9:e1003914. [PMID: 24244187 PMCID: PMC3828145 DOI: 10.1371/journal.pgen.1003914] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 09/09/2013] [Indexed: 12/31/2022] Open
Abstract
Messenger RNA (mRNA) synthesis and export are tightly linked, but the molecular mechanisms of this coupling are largely unknown. In Saccharomyces cerevisiae, the conserved TREX complex couples transcription to mRNA export and mediates mRNP formation. Here, we show that TREX is recruited to the transcription machinery by direct interaction of its subcomplex THO with the serine 2-serine 5 (S2/S5) diphosphorylated CTD of RNA polymerase II. S2 and/or tyrosine 1 (Y1) phosphorylation of the CTD is required for TREX occupancy in vivo, establishing a second interaction platform necessary for TREX recruitment in addition to RNA. Genome-wide analyses show that the occupancy of THO and the TREX components Sub2 and Yra1 increases from the 5' to the 3' end of the gene in accordance with the CTD S2 phosphorylation pattern. Importantly, in a mutant strain, in which TREX is recruited to genes but does not increase towards the 3' end, the expression of long transcripts is specifically impaired. Thus, we show for the first time that a 5'-3' increase of a protein complex is essential for correct expression of the genome. In summary, we provide insight into how the phospho-code of the CTD directs mRNP formation and export through TREX recruitment.
Collapse
Affiliation(s)
- Dominik M. Meinel
- Gene Center and Munich Center for Integrated Protein Science CIPSM at the Department of Biochemistry of the Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Cornelia Burkert-Kautzsch
- Gene Center and Munich Center for Integrated Protein Science CIPSM at the Department of Biochemistry of the Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Anja Kieser
- Gene Center and Munich Center for Integrated Protein Science CIPSM at the Department of Biochemistry of the Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Eoghan O'Duibhir
- Molecular Cancer Research, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Matthias Siebert
- Gene Center and Munich Center for Integrated Protein Science CIPSM at the Department of Biochemistry of the Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Andreas Mayer
- Gene Center and Munich Center for Integrated Protein Science CIPSM at the Department of Biochemistry of the Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Patrick Cramer
- Gene Center and Munich Center for Integrated Protein Science CIPSM at the Department of Biochemistry of the Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Johannes Söding
- Gene Center and Munich Center for Integrated Protein Science CIPSM at the Department of Biochemistry of the Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Frank C. P. Holstege
- Molecular Cancer Research, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Katja Sträßer
- Gene Center and Munich Center for Integrated Protein Science CIPSM at the Department of Biochemistry of the Ludwig-Maximilians-University of Munich, Munich, Germany
- * E-mail:
| |
Collapse
|
68
|
Corden JL. RNA polymerase II C-terminal domain: Tethering transcription to transcript and template. Chem Rev 2013; 113:8423-55. [PMID: 24040939 PMCID: PMC3988834 DOI: 10.1021/cr400158h] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jeffry L Corden
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine , 725 North Wolfe Street, Baltimore Maryland 21205, United States
| |
Collapse
|
69
|
Dronamraju R, Strahl BD. A feed forward circuit comprising Spt6, Ctk1 and PAF regulates Pol II CTD phosphorylation and transcription elongation. Nucleic Acids Res 2013; 42:870-81. [PMID: 24163256 PMCID: PMC3902893 DOI: 10.1093/nar/gkt1003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The C-terminal domain (CTD) of RNA polymerase II is sequentially modified for recruitment of numerous accessory factors during transcription. One such factor is Spt6, which couples transcription elongation with histone chaperone activity and the regulation of H3 lysine 36 methylation. Here, we show that CTD association of Spt6 is required for Ser2 CTD phosphorylation and for the protein stability of Ctk1 (the major Ser2 CTD kinase). We also find that Spt6 associates with Ctk1, and, unexpectedly, Ctk1 and Ser2 CTD phosphorylation are required for the stability of Spt6-thus revealing a Spt6-Ctk1 feed-forward loop that robustly maintains Ser2 phosphorylation during transcription. In addition, we find that the BUR kinase and the polymerase associated factor transcription complex function upstream of the Spt6-Ctk1 loop, most likely by recruiting Spt6 to the CTD at the onset of transcription. Consistent with requirement of Spt6 in histone gene expression and nucleosome deposition, mutation or deletion of members of the Spt6-Ctk1 loop leads to global loss of histone H3 and sensitivity to hydroxyurea. In sum, these results elucidate a new control mechanism for the regulation of RNAPII CTD phosphorylation during transcription elongation that is likely to be highly conserved.
Collapse
Affiliation(s)
- Raghuvar Dronamraju
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | |
Collapse
|
70
|
Luo Y, Yogesha SD, Cannon JR, Yan W, Ellington AD, Brodbelt JS, Zhang Y. novel modifications on C-terminal domain of RNA polymerase II can fine-tune the phosphatase activity of Ssu72. ACS Chem Biol 2013; 8:2042-52. [PMID: 23844594 DOI: 10.1021/cb400229c] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The C-terminal domain of RNA polymerase II (CTD) modulates the process of transcription through sequential phosphorylation/dephosphorylation of its heptide repeats, through which it recruits various transcription regulators. Ssu72 is the first characterized cis-specific CTD phosphatase that dephosphorylates Ser5 with a requirement for the adjacent Pro6 in a cis conformation. The recent discovery of Thr4 phosphorylation in the CTD calls into question whether such a modification can interfere with Ssu72 binding via the elimination of a conserved intramolecular hydrogen bond in the CTD that is potentially essential for recognition. To test if Thr4 phosphorylation will abolish Ser5 dephosphorylation by Ssu72, we determined the kinetic and structural properties of Drosophila Ssu72-symplekin in complex with the CTD peptide with consecutive phosphorylated Thr4 and Ser5. Our mass spectrometric and kinetic data established that Ssu72 does not dephosphorylate Thr4, but the existence of phosphoryl-Thr4 next to Ser5 reduces the activity of Ssu72 toward the CTD peptide by 4-fold. To our surprise, even though the intramolecular hydrogen bond is eliminated due to the phosphorylation of Thr4, the CTD adopts an almost identical conformation to be recognized by Ssu72 with Ser5 phosphorylated alone or both Thr4/Ser5 phosphorylated. Our results indicate that Thr4 phosphorylation will not abolish the essential Ssu72 activity, which is needed for cell survival. Instead, the phosphatase activity of Ssu72 is fine-tuned by Thr4 phosphorylation and eventually may lead to changes in transcription. Overall, we report the first case of structural and kinetic effects of phosphorylated Thr4 on CTD modifying enzymes. Our results support a model in which a combinatorial cascade of CTD modification can modulate transcription.
Collapse
Affiliation(s)
- Yonghua Luo
- Department
of Chemistry and Biochemistry and ‡Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin,
Texas 78712, United States
| | - S. D. Yogesha
- Department
of Chemistry and Biochemistry and ‡Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin,
Texas 78712, United States
| | - Joe R. Cannon
- Department
of Chemistry and Biochemistry and ‡Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin,
Texas 78712, United States
| | - Wupeng Yan
- Department
of Chemistry and Biochemistry and ‡Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin,
Texas 78712, United States
| | - Andrew D. Ellington
- Department
of Chemistry and Biochemistry and ‡Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin,
Texas 78712, United States
| | - Jennifer S. Brodbelt
- Department
of Chemistry and Biochemistry and ‡Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin,
Texas 78712, United States
| | - Yan Zhang
- Department
of Chemistry and Biochemistry and ‡Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin,
Texas 78712, United States
| |
Collapse
|
71
|
Suh H, Hazelbaker DZ, Soares LM, Buratowski S. The C-terminal domain of Rpb1 functions on other RNA polymerase II subunits. Mol Cell 2013; 51:850-8. [PMID: 24035501 DOI: 10.1016/j.molcel.2013.08.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 07/09/2013] [Accepted: 08/02/2013] [Indexed: 10/26/2022]
Abstract
The C-terminal domain (CTD) of Rpb1, the largest subunit of RNA polymerase II (RNApII), coordinates recruitment of RNA- and chromatin-modifying factors to transcription complexes. It is unclear whether the CTD communicates with the catalytic core region of Rpb1 and thus must be physically connected, or instead can function as an independent domain. To address this question, CTD was transferred to other RNApII subunits. Fusions to Rpb4 or Rpb6, two RNApII subunits located near the original position of CTD, support viability in a strain carrying a truncated Rpb1. In contrast, CTD fusion to Rpb9 on the other side of RNApII does not. Rpb4-CTD and Rpb6-CTD proteins are functional for phosphorylation and recruitment of various factors, albeit with some restrictions and minor defects. Normal CTD functions are not transferred to RNApI or RNApIII by Rbp6-CTD. These results show that, with some spatial constraints, CTD can function even when disconnected from Rpb1.
Collapse
Affiliation(s)
- Hyunsuk Suh
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
72
|
Aristizabal MJ, Negri GL, Benschop JJ, Holstege FCP, Krogan NJ, Kobor MS. High-throughput genetic and gene expression analysis of the RNAPII-CTD reveals unexpected connections to SRB10/CDK8. PLoS Genet 2013; 9:e1003758. [PMID: 24009531 PMCID: PMC3757075 DOI: 10.1371/journal.pgen.1003758] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 07/15/2013] [Indexed: 12/21/2022] Open
Abstract
The C-terminal domain (CTD) of RNA polymerase II (RNAPII) is composed of heptapeptide repeats, which play a key regulatory role in gene expression. Using genetic interaction, chromatin immunoprecipitation followed by microarrays (ChIP-on-chip) and mRNA expression analysis, we found that truncating the CTD resulted in distinct changes to cellular function. Truncating the CTD altered RNAPII occupancy, leading to not only decreases, but also increases in mRNA levels. The latter were largely mediated by promoter elements and in part were linked to the transcription factor Rpn4. The mediator subunit Cdk8 was enriched at promoters of these genes, and its removal not only restored normal mRNA and RNAPII occupancy levels, but also reduced the abnormally high cellular amounts of Rpn4. This suggested a positive role of Cdk8 in relationship to RNAPII, which contrasted with the observed negative role at the activated INO1 gene. Here, loss of CDK8 suppressed the reduced mRNA expression and RNAPII occupancy levels of CTD truncation mutants.
Collapse
Affiliation(s)
- Maria J. Aristizabal
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Gian Luca Negri
- School of Medicine and Medical Science, University College Dublin, Belfield, Dublin, Ireland
| | - Joris J. Benschop
- Molecular Cancer Research, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Frank C. P. Holstege
- Molecular Cancer Research, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Nevan J. Krogan
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, California, United States of America
| | - Michael S. Kobor
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
73
|
Affiliation(s)
- Dirk Eick
- Department of Molecular Epigenetics, Helmholtz Center Munich and Center for Integrated Protein Science Munich (CIPSM), Marchioninistrasse 25, 81377 Munich,
Germany
| | - Matthias Geyer
- Center of Advanced European Studies and Research, Group Physical Biochemistry,
Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
| |
Collapse
|
74
|
Jeronimo C, Bataille AR, Robert F. The Writers, Readers, and Functions of the RNA Polymerase II C-Terminal Domain Code. Chem Rev 2013; 113:8491-522. [DOI: 10.1021/cr4001397] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Célia Jeronimo
- Institut de recherches cliniques de Montréal, Montréal, Québec,
Canada H2W 1R7
| | - Alain R. Bataille
- Institut de recherches cliniques de Montréal, Montréal, Québec,
Canada H2W 1R7
| | - François Robert
- Institut de recherches cliniques de Montréal, Montréal, Québec,
Canada H2W 1R7
- Département
de Médecine,
Faculté de Médecine, Université de Montréal, Montréal, Québec,
Canada H3T 1J4
| |
Collapse
|
75
|
Aitken S, Alexander RD, Beggs JD. A rule-based kinetic model of RNA polymerase II C-terminal domain phosphorylation. J R Soc Interface 2013; 10:20130438. [PMID: 23804443 PMCID: PMC3730697 DOI: 10.1098/rsif.2013.0438] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The complexity of many RNA processing pathways is such that a conventional systems modelling approach is inadequate to represent all the molecular species involved. We demonstrate that rule-based modelling permits a detailed model of a complex RNA signalling pathway to be defined. Phosphorylation of the RNA polymerase II (RNAPII) C-terminal domain (CTD; a flexible tail-like extension of the largest subunit) couples pre-messenger RNA capping, splicing and 3' end maturation to transcriptional elongation and termination, and plays a central role in integrating these processes. The phosphorylation states of the serine residues of many heptapeptide repeats of the CTD alter along the coding region of genes as a function of distance from the promoter. From a mechanistic perspective, both the changes in phosphorylation and the location at which they take place on the genes are a function of the time spent by RNAPII in elongation as this interval provides the opportunity for the kinases and phosphatases to interact with the CTD. On this basis, we synthesize the available data to create a kinetic model of the action of the known kinases and phosphatases to resolve the phosphorylation pathways and their kinetics.
Collapse
Affiliation(s)
- Stuart Aitken
- MRC Human Genetics Unit, IGMM, University of Edinburgh, Edinburgh EH4 2XU, UK.
| | | | | |
Collapse
|
76
|
Hoffman K, Yoo H, Karagiannis J. Synthetically engineered rpb1 alleles altering RNA polymerase II carboxy terminal domain phosphorylation induce discrete morphogenetic defects in Schizosaccharomyces pombe. Commun Integr Biol 2013; 6:e23954. [PMID: 23710280 PMCID: PMC3656022 DOI: 10.4161/cib.23954] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Revised: 02/08/2013] [Accepted: 02/11/2013] [Indexed: 12/03/2022] Open
Abstract
In this report the phenotypic effects of systematic site-directed mutations in the fission yeast RNA pol II carboxy terminal domain (CTD) are investigated. Remarkably, we find that alterations in CTD structure and/or phosphorylation result in distinct phenotypic changes related to morphogenetic control. A hypothesis based upon the concepts of “informational entropy” and “algorithmic transformation” is developed to explicate/rationalize these results.
Collapse
Affiliation(s)
- Kyle Hoffman
- Department of Biology; University of Western Ontario; London, ON Canada
| | | | | |
Collapse
|
77
|
Trypanosome cdc2-related kinase 9 controls spliced leader RNA cap4 methylation and phosphorylation of RNA polymerase II subunit RPB1. Mol Cell Biol 2013; 33:1965-75. [PMID: 23478263 DOI: 10.1128/mcb.00156-13] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Conserved from yeast to mammals, phosphorylation of the heptad repeat sequence Tyr(1)-Ser(2)-Pro(3)-Thr(4)-Ser(5)-Pro(6)-Ser(7) in the carboxy-terminal domain (CTD) of the largest RNA polymerase II (RNA Pol II) subunit, RPB1, mediates the enzyme's promoter escape and binding of RNA-processing factors, such as the m(7)G capping enzymes. The first critical step, Ser(5) phosphorylation, is carried out by cyclin-dependent kinase 7 (CDK7), a subunit of the basal transcription factor TFIIH. Many early-diverged protists, such as the lethal human parasite Trypanosoma brucei, however, lack the heptad repeats and, apparently, a CDK7 ortholog. Accordingly, characterization of trypanosome TFIIH did not identify a kinase component. The T. brucei CTD, however, is phosphorylated and essential for transcription. Here we show that silencing the expression of T. brucei cdc2-related kinase 9 (CRK9) leads to a loss of RPB1 phosphorylation. Surprisingly, this event did not impair RNA Pol II transcription or cotranscriptional m(7)G capping. Instead, we observed that CRK9 silencing led to a block of spliced leader (SL) trans splicing, an essential step in trypanosome mRNA maturation, that was caused by hypomethylation of the SL RNA's unique cap4.
Collapse
|
78
|
Liu J, Fan S, Lee CJ, Greenleaf AL, Zhou P. Specific interaction of the transcription elongation regulator TCERG1 with RNA polymerase II requires simultaneous phosphorylation at Ser2, Ser5, and Ser7 within the carboxyl-terminal domain repeat. J Biol Chem 2013; 288:10890-901. [PMID: 23436654 DOI: 10.1074/jbc.m113.460238] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human transcription elongation regulator TCERG1 physically couples transcription elongation and splicing events by interacting with splicing factors through its N-terminal WW domains and the hyperphosphorylated C-terminal domain (CTD) of RNA polymerase II through its C-terminal FF domains. Here, we report biochemical and structural characterization of the C-terminal three FF domains (FF4-6) of TCERG1, revealing a rigid integral domain structure of the tandem FF repeat that interacts with the hyperphosphorylated CTD (PCTD). Although FF4 and FF5 adopt a classical FF domain fold containing three orthogonally packed α helices and a 310 helix, FF6 contains an additional insertion helix between α1 and α2. The formation of the integral tandem FF4-6 repeat is achieved by merging the last helix of the preceding FF domain and the first helix of the following FF domain and by direct interactions between neighboring FF domains. Using peptide column binding assays and NMR titrations, we show that binding of the FF4-6 tandem repeat to the PCTD requires simultaneous phosphorylation at Ser(2), Ser(5), and Ser(7) positions within two consecutive Y(1)S(2)P(3)T(4)S(5)P(6)S(7) heptad repeats. Such a sequence-specific PCTD recognition is achieved through CTD-docking sites on FF4 and FF5 of TCERG1 but not FF6. Our study presents the first example of a nuclear factor requiring all three phospho-Ser marks within the heptad repeat of the CTD for high affinity binding and provides a molecular interpretation for the biochemical connection between the Ser(7) phosphorylation enrichment in the CTD of the transcribing RNA polymerase II over introns and co-transcriptional splicing events.
Collapse
Affiliation(s)
- Jiangxin Liu
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | |
Collapse
|
79
|
Lothrop AP, Torres MP, Fuchs SM. Deciphering post-translational modification codes. FEBS Lett 2013; 587:1247-57. [PMID: 23402885 DOI: 10.1016/j.febslet.2013.01.047] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Revised: 01/20/2013] [Accepted: 01/23/2013] [Indexed: 12/30/2022]
Abstract
Post-translational modifications (PTMs) occur on nearly all proteins. Many domains within proteins are modified on multiple amino acid sidechains by diverse enzymes to create a myriad of possible protein species. How these combinations of PTMs lead to distinct biological outcomes is only beginning to be understood. This manuscript highlights several examples of combinatorial PTMs in proteins, and describes recent technological developments, which are driving our ability to understand how PTM patterns may "code" for biological outcomes.
Collapse
Affiliation(s)
- Adam P Lothrop
- Department of Biology, Tufts University, 200 Boston Ave. Suite 4700, Medford, MA 02155, USA
| | | | | |
Collapse
|
80
|
Abstract
There is increasing evidence that certain Vacuolar protein sorting (Vps) proteins, factors that mediate vesicular protein trafficking, have additional roles in regulating transcription factors at the endosome. We found that yeast mutants lacking the phosphatidylinositol 3-phosphate [PI(3)P] kinase Vps34 or its associated protein kinase Vps15 display multiple phenotypes indicating impaired transcription elongation. These phenotypes include reduced mRNA production from long or G+C-rich coding sequences (CDS) without affecting the associated GAL1 promoter activity, and a reduced rate of RNA polymerase II (Pol II) progression through lacZ CDS in vivo. Consistent with reported genetic interactions with mutations affecting the histone acetyltransferase complex NuA4, vps15Δ and vps34Δ mutations reduce NuA4 occupancy in certain transcribed CDS. vps15Δ and vps34Δ mutants also exhibit impaired localization of the induced GAL1 gene to the nuclear periphery. We found unexpectedly that, similar to known transcription elongation factors, these and several other Vps factors can be cross-linked to the CDS of genes induced by Gcn4 or Gal4 in a manner dependent on transcriptional induction and stimulated by Cdk7/Kin28-dependent phosphorylation of the Pol II C-terminal domain (CTD). We also observed colocalization of a fraction of Vps15-GFP and Vps34-GFP with nuclear pores at nucleus-vacuole (NV) junctions in live cells. These findings suggest that Vps factors enhance the efficiency of transcription elongation in a manner involving their physical proximity to nuclear pores and transcribed chromatin.
Collapse
|
81
|
Gu B, Eick D, Bensaude O. CTD serine-2 plays a critical role in splicing and termination factor recruitment to RNA polymerase II in vivo. Nucleic Acids Res 2012; 41:1591-603. [PMID: 23275552 PMCID: PMC3561981 DOI: 10.1093/nar/gks1327] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Co-transcriptional pre-mRNA processing relies on reversible phosphorylation of the carboxyl-terminal domain (CTD) of Rpb1, the largest subunit of RNA polymerase II (RNAP II). In this study, we replaced in live cells the endogenous Rpb1 by S2A Rpb1, where the second serines (Ser2) in the CTD heptapeptide repeats were switched to alanines, to prevent phosphorylation. Although slower, S2A RNAP II was able to transcribe. However, it failed to recruit splicing components such as U2AF65 and U2 snRNA to transcription sites, although the recruitment of U1 snRNA was not affected. As a consequence, co-transcriptional splicing was impaired. Interestingly, the magnitude of the S2A RNAP II splicing defect was promoter dependent. In addition, S2A RNAP II showed an impaired recruitment of the cleavage factor PCF11 to pre-mRNA and a defect in 3'-end RNA cleavage. These results suggest that CTD Ser2 plays critical roles in co-transcriptional pre-mRNA maturation in vivo: It likely recruits U2AF65 to ensure an efficient co-transcriptional splicing and facilitates the recruitment of pre-mRNA 3'-end processing factors to enhance 3'-end cleavage.
Collapse
Affiliation(s)
- Bo Gu
- Ecole Normale Supérieure, IBENS, 46, rue d'Ulm, Paris 75005, France
| | | | | |
Collapse
|
82
|
Xiang K, Manley JL, Tong L. An unexpected binding mode for a Pol II CTD peptide phosphorylated at Ser7 in the active site of the CTD phosphatase Ssu72. Genes Dev 2012; 26:2265-70. [PMID: 23070812 DOI: 10.1101/gad.198853.112] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Ssu72, an RNA polymerase II C-terminal domain (CTD) phospho-Ser5 (pSer5) phosphatase, was recently reported to have pSer7 phosphatase activity as well. We report here the crystal structure of a ternary complex of the N-terminal domain of human symplekin, human Ssu72, and a 10-mer pSer7 CTD peptide. Surprisingly, the peptide is bound in the Ssu72 active site with its backbone running in the opposite direction compared with a pSer5 peptide. The pSer7 phosphatase activity of Ssu72 is ∼4000-fold lower than its pSer5 phosphatase activity toward a peptide substrate, consistent with the structural observations.
Collapse
Affiliation(s)
- Kehui Xiang
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | | | |
Collapse
|
83
|
Hsin JP, Manley JL. The RNA polymerase II CTD coordinates transcription and RNA processing. Genes Dev 2012; 26:2119-37. [PMID: 23028141 DOI: 10.1101/gad.200303.112] [Citation(s) in RCA: 495] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The C-terminal domain (CTD) of the RNA polymerase II largest subunit consists of multiple heptad repeats (consensus Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7), varying in number from 26 in yeast to 52 in vertebrates. The CTD functions to help couple transcription and processing of the nascent RNA and also plays roles in transcription elongation and termination. The CTD is subject to extensive post-translational modification, most notably phosphorylation, during the transcription cycle, which modulates its activities in the above processes. Therefore, understanding the nature of CTD modifications, including how they function and how they are regulated, is essential to understanding the mechanisms that control gene expression. While the significance of phosphorylation of Ser2 and Ser5 residues has been studied and appreciated for some time, several additional modifications have more recently been added to the CTD repertoire, and insight into their function has begun to emerge. Here, we review findings regarding modification and function of the CTD, highlighting the important role this unique domain plays in coordinating gene activity.
Collapse
Affiliation(s)
- Jing-Ping Hsin
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | |
Collapse
|
84
|
Jasnovidova O, Stefl R. The CTD code of RNA polymerase II: a structural view. WILEY INTERDISCIPLINARY REVIEWS-RNA 2012; 4:1-16. [DOI: 10.1002/wrna.1138] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
85
|
Heidemann M, Hintermair C, Voß K, Eick D. Dynamic phosphorylation patterns of RNA polymerase II CTD during transcription. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1829:55-62. [PMID: 22982363 DOI: 10.1016/j.bbagrm.2012.08.013] [Citation(s) in RCA: 211] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 08/09/2012] [Accepted: 08/29/2012] [Indexed: 12/27/2022]
Abstract
The eukaryotic RNA polymerase II (RNAPII) catalyzes the transcription of all protein encoding genes and is also responsible for the generation of small regulatory RNAs. RNAPII has evolved a unique domain composed of heptapeptide repeats with the consensus sequence Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7 at the C-terminus (CTD) of its largest subunit (Rpb1). Dynamic phosphorylation patterns of serine residues in CTD during gene transcription coordinate the recruitment of factors to the elongating RNAPII and to the nascent transcript. Recent studies identified threonine 4 and tyrosine 1 as new CTD modifications and thereby expanded the "CTD code". In this review, we focus on CTD phosphorylation and its function in the RNAPII transcription cycle. We also discuss in detail the limitations of the phosphospecific CTD antibodies, which are used in all studies. This article is part of a Special Issue entitled: RNA Polymerase II Transcript Elongation.
Collapse
Affiliation(s)
- Martin Heidemann
- Department of Molecular Epigenetics, Center for Integrated Protein Science Munich, Munich, Germany
| | | | | | | |
Collapse
|
86
|
Porrua O, Hobor F, Boulay J, Kubicek K, D'Aubenton-Carafa Y, Gudipati RK, Stefl R, Libri D. In vivo SELEX reveals novel sequence and structural determinants of Nrd1-Nab3-Sen1-dependent transcription termination. EMBO J 2012; 31:3935-48. [PMID: 23032188 DOI: 10.1038/emboj.2012.237] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 07/26/2012] [Indexed: 11/09/2022] Open
Abstract
The Nrd1-Nab3-Sen1 (NNS) complex pathway is responsible for transcription termination of cryptic unstable transcripts and sn/snoRNAs. The NNS complex recognizes short motifs on the nascent RNA, but the presence of these sequences alone is not sufficient to define a functional terminator. We generated a homogeneous set of several hundreds of artificial, NNS-dependent terminators with an in vivo selection approach. Analysis of these terminators revealed novel and extended sequence determinants for transcription termination and NNS complex binding as well as supermotifs that are critical for termination. Biochemical and structural data revealed that affinity and specificity of RNA recognition by Nab3p relies on induced fit recognition implicating an α-helical extension of the RNA recognition motif. Interestingly, the same motifs can be recognized by the NNS or the mRNA termination complex depending on their position relative to the start of transcription, suggesting that they function as general transcriptional insulators to prevent interference between the non-coding and the coding yeast transcriptomes.
Collapse
Affiliation(s)
- Odil Porrua
- Centre de Génétique Moléculaire, Gif sur Yvette, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
87
|
Kubicek K, Cerna H, Holub P, Pasulka J, Hrossova D, Loehr F, Hofr C, Vanacova S, Stefl R. Serine phosphorylation and proline isomerization in RNAP II CTD control recruitment of Nrd1. Genes Dev 2012; 26:1891-6. [PMID: 22892239 DOI: 10.1101/gad.192781.112] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Recruitment of appropriate RNA processing factors to the site of transcription is controlled by post-translational modifications of the C-terminal domain (CTD) of RNA polymerase II (RNAP II). Here, we report the solution structure of the Ser5 phosphorylated (pSer5) CTD bound to Nrd1. The structure reveals a direct recognition of pSer5 by Nrd1 that requires the cis conformation of the upstream pSer5-Pro6 peptidyl-prolyl bond of the CTD. Mutations at the complex interface diminish binding affinity and impair processing or degradation of noncoding RNAs. These findings underpin the interplay between covalent and noncovalent changes in the CTD structure that constitute the CTD code.
Collapse
Affiliation(s)
- Karel Kubicek
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, 62500, Czech Republic
| | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Egloff S. Role of Ser7 phosphorylation of the CTD during transcription of snRNA genes. RNA Biol 2012; 9:1033-8. [PMID: 22858677 DOI: 10.4161/rna.21166] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The largest subunit of RNA polymerase (pol) II, Rpb1, contains an unusual carboxyl-terminal domain (CTD) composed of consecutive repeats of the sequence Tyr-Ser-Pro-Thr-Ser-Pro-Ser (Y 1S 2P 3T 4S 5P 6S 7). During transcription, Ser2, Ser5 and Ser7 are subjected to dynamic phosphorylation and dephosphorylation by CTD kinases and phosphatases, creating a characteristic CTD phosphorylation pattern along genes. This CTD "code" allows the coupling of transcription with co-transcriptional RNA processing, through the timely recruitment of the appropriate factors at the right point of the transcription cycle. In mammals, phosphorylation of Ser7 (Ser7P) is detected on all pol II-transcribed genes, but is only essential for expression of a sub-class of genes encoding small nuclear (sn)RNAs. The molecular mechanisms by which Ser7P influences expression of these particular genes are becoming clearer. Here, I discuss our recent findings clarifying how Ser7P facilitates transcription of these genes and 3'end processing of the transcripts, through recruitment of the RPAP2 phosphatase and the snRNA gene-specific Integrator complex.
Collapse
Affiliation(s)
- Sylvain Egloff
- Université de Toulouse, UPS, Laboratoire de Biologie Moléculaire Eucaryote, Toulouse, France.
| |
Collapse
|
89
|
Qiu H, Hu C, Gaur NA, Hinnebusch AG. Pol II CTD kinases Bur1 and Kin28 promote Spt5 CTR-independent recruitment of Paf1 complex. EMBO J 2012; 31:3494-505. [PMID: 22796944 DOI: 10.1038/emboj.2012.188] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 06/20/2012] [Indexed: 11/09/2022] Open
Abstract
Paf1 complex (Paf1C) is a transcription elongation factor whose recruitment is stimulated by Spt5 and the CDKs Kin28 and Bur1, which phosphorylate the Pol II C-terminal domain (CTD) on Serines 2, 5, and 7. Bur1 promotes Paf1C recruitment by phosphorylating C-terminal repeats (CTRs) in Spt5, and we show that Kin28 enhances Spt5 phosphorylation by promoting Bur1 recruitment. It was unclear, however, whether CTD phosphorylation by Kin28 or Bur1 also stimulates Paf1C recruitment. We find that Paf1C and its Cdc73 subunit bind diphosphorylated CTD repeats (pCTD) and phosphorylated Spt5 CTRs (pCTRs) in vitro, and that cdc73 mutations eliminating both activities reduce Paf1C recruitment in vivo. Phosphomimetic (acidic) substitutions in the Spt5 CTR sustain high-level Paf1C recruitment in otherwise wild-type cells, but not following inactivation of Bur1 or Kin28. Furthermore, inactivating the pCTD/pCTR-interaction domain (PCID) in Cdc73 decreases Paf1C-dependent histone methylation in cells containing non-phosphorylatable Spt5 CTRs. These results identify an Spt5 pCTR-independent pathway of Paf1C recruitment requiring Kin28, Bur1, and the Cdc73 PCID. We propose that pCTD repeats and Spt5 pCTRs provide separate interaction surfaces that cooperate to ensure high-level Paf1C recruitment.
Collapse
Affiliation(s)
- Hongfang Qiu
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| | | | | | | |
Collapse
|
90
|
Multiple roles for the Ess1 prolyl isomerase in the RNA polymerase II transcription cycle. Mol Cell Biol 2012; 32:3594-607. [PMID: 22778132 DOI: 10.1128/mcb.00672-12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The Ess1 prolyl isomerase in Saccharomyces cerevisiae regulates RNA polymerase II (pol II) by isomerizing peptide bonds within the pol II carboxy-terminal domain (CTD) heptapeptide repeat (YSPTSPS). Ess1 preferentially targets the Ser5-Pro6 bond when Ser5 is phosphorylated. Conformational changes in the CTD induced by Ess1 control the recruitment of essential cofactors to the pol II complex and may facilitate the ordered transition between initiation, elongation, termination, and RNA processing. Here, we show that Ess1 associates with the phospho-Ser5 form of polymerase in vivo, is present along the entire length of coding genes, and is critical for regulating the phosphorylation of Ser7 within the CTD. In addition, Ess1 represses the initiation of cryptic unstable transcripts (CUTs) and is required for efficient termination of mRNA transcription. Analysis using strains lacking nonsense-mediated decay suggests that as many as half of all yeast genes depend on Ess1 for efficient termination. Finally, we show that Ess1 is required for trimethylation of histone H3 lysine 4 (H3K4). Thus, Ess1 has direct effects on RNA polymerase transcription by controlling cofactor binding via conformationally induced changes in the CTD and indirect effects by influencing chromatin modification.
Collapse
|
91
|
Fcp1 dephosphorylation of the RNA polymerase II C-terminal domain is required for efficient transcription of heat shock genes. Mol Cell Biol 2012; 32:3428-37. [PMID: 22733996 DOI: 10.1128/mcb.00247-12] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fcp1 dephosphorylates the C-terminal domain of the largest subunit of RNA polymerase II (Pol II) to recycle it into a form that can initiate a new round of transcription. Previously, we identified Drosophila Fcp1 as an important factor in optimal Hsp70 mRNA accumulation after heat shock. Here, we examine the role of Fcp1 in transcription of heat shock genes in vivo. We demonstrate that Fcp1 localizes to active sites of transcription including the induced Hsp70 gene. The reduced Hsp70 mRNA accumulation seen by RNA interference (RNAi) depletion of Fcp1 in S2 cells is a result of a loss of Pol II in the coding region of highly transcribed heat shock-induced genes: Hsp70, Hsp26, and Hsp83. Moreover, Fcp1 depletion dramatically increases phosphorylation of the non-chromatin-bound Pol II. Reexpression of either wild-type or catalytically dead versions of Fcp1 demonstrates that both the reduced Pol II levels on heat shock genes and the increased levels of phosphorylated free Pol II are dependent on the catalytic activity of Fcp1. Our results indicate that Fcp1 is required to maintain the pool of initiation-competent unphosphorylated Pol II, and this function is particularly important for the highly transcribed heat shock genes.
Collapse
|
92
|
Ni Z, Olsen JB, Guo X, Zhong G, Ruan ED, Marcon E, Young P, Guo H, Li J, Moffat J, Emili A, Greenblatt JF. Control of the RNA polymerase II phosphorylation state in promoter regions by CTD interaction domain-containing proteins RPRD1A and RPRD1B. Transcription 2012; 2:237-42. [PMID: 22231121 DOI: 10.4161/trns.2.5.17803] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
RNA polymerase II (RNAP II) C-terminal domain (CTD) phosphorylation is important for various transcription-related processes. Here, we identify by affinity purification and mass spectrometry three previously uncharacterized human CTD-interaction domain (CID)-containing proteins, RPRD1A, RPRD1B and RPRD2, which co-purify with RNAP II and three other RNAP II-associated proteins, RPAP2, GRINL1A and RECQL5, but not with the Mediator complex. RPRD1A and RPRD1B can accompany RNAP II from promoter regions to 3'-untranslated regions during transcription in vivo, predominantly interact with phosphorylated RNAP II, and can reduce CTD S5- and S7-phosphorylated RNAP II at target gene promoters. Thus, the RPRD proteins are likely to have multiple important roles in transcription.
Collapse
Affiliation(s)
- Zuyao Ni
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Polycomb associates genome-wide with a specific RNA polymerase II variant, and regulates metabolic genes in ESCs. Cell Stem Cell 2012; 10:157-70. [PMID: 22305566 PMCID: PMC3682187 DOI: 10.1016/j.stem.2011.12.017] [Citation(s) in RCA: 226] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2011] [Revised: 11/09/2011] [Accepted: 12/22/2011] [Indexed: 11/25/2022]
Abstract
Polycomb repressor complexes (PRCs) are important chromatin modifiers fundamentally implicated in pluripotency and cancer. Polycomb silencing in embryonic stem cells (ESCs) can be accompanied by active chromatin and primed RNA polymerase II (RNAPII), but the relationship between PRCs and RNAPII remains unclear genome-wide. We mapped PRC repression markers and four RNAPII states in ESCs using ChIP-seq, and found that PRC targets exhibit a range of RNAPII variants. First, developmental PRC targets are bound by unproductive RNAPII (S5p+S7p−S2p−) genome-wide. Sequential ChIP, Ring1B depletion, and genome-wide correlations show that PRCs and RNAPII-S5p physically bind to the same chromatin and functionally synergize. Second, we identify a cohort of genes marked by PRC and elongating RNAPII (S5p+S7p+S2p+); they produce mRNA and protein, and their expression increases upon PRC1 knockdown. We show that this group of PRC targets switches between active and PRC-repressed states within the ESC population, and that many have roles in metabolism.
Collapse
|
94
|
Montes M, Becerra S, Sánchez-Álvarez M, Suñé C. Functional coupling of transcription and splicing. Gene 2012; 501:104-17. [DOI: 10.1016/j.gene.2012.04.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 04/02/2012] [Accepted: 04/05/2012] [Indexed: 01/13/2023]
|
95
|
Egloff S, Dienstbier M, Murphy S. Updating the RNA polymerase CTD code: adding gene-specific layers. Trends Genet 2012; 28:333-41. [PMID: 22622228 DOI: 10.1016/j.tig.2012.03.007] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 03/14/2012] [Accepted: 03/14/2012] [Indexed: 10/28/2022]
Abstract
The carboxyl-terminal domain (CTD) of RNA polymerase (pol) II comprises multiple tandem repeats with the consensus sequence Tyr(1)-Ser(2)-Pro(3)-Thr(4)-Ser(5)-Pro(6)-Ser(7) that can be extensively and reversibly modified in vivo. CTD modifications orchestrate the interplay between transcription and processing of mRNA. Although phosphorylation of Ser2 (Ser2P) and Ser5 (Ser5P) residues has been described as being essential for the expression of most pol II-transcribed genes, recent findings highlight gene-specific effects of newly discovered CTD modifications. Here, we incorporate these latest findings in an updated review of the currently known elements that contribute to the CTD code and how it is recognized by proteins involved in transcription and RNA maturation. As modification of the CTD has a major impact on gene expression, a better understanding of the CTD code is integral to the understanding of how gene expression is regulated.
Collapse
Affiliation(s)
- Sylvain Egloff
- Université de Toulouse, UPS, Laboratoire de Biologie Moléculaire Eucaryote, F-31000 Toulouse, France
| | | | | |
Collapse
|
96
|
Serine-7 but not serine-5 phosphorylation primes RNA polymerase II CTD for P-TEFb recognition. Nat Commun 2012; 3:842. [PMID: 22588304 DOI: 10.1038/ncomms1846] [Citation(s) in RCA: 149] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Accepted: 04/13/2012] [Indexed: 12/11/2022] Open
Abstract
Phosphorylation of RNA polymerase II carboxy-terminal domain (CTD) in hepta-repeats YSPTSPS regulates eukaryotic transcription. Whereas Ser5 is phosphorylated in the initiation phase, Ser2 phosphorylation marks the elongation state. Here we show that the positive transcription elongation factor P-TEFb is a Ser5 CTD kinase that is unable to create Ser2/Ser5 double phosphorylations, while it exhibits fourfold higher activity on a CTD substrate pre-phosphorylated at Ser7 compared with the consensus hepta-repeat or the YSPTSPK variant. Mass spectrometry reveals an equal number of phosphorylations to the number of hepta-repeats provided, yet the mechanism of phosphorylation is distributive despite the repetitive nature of the substrate. Inhibition of P-TEFb activity is mediated by two regions in Hexim1 that act synergistically on Cdk9 and Cyclin T1. HIV-1 Tat/TAR abrogates Hexim1 inhibition to stimulate transcription of viral genes but does not change the substrate specificity. Together, these results provide insight into the multifaceted pattern of CTD phosphorylation.
Collapse
|
97
|
Abstract
The largest subunit of RNA polymerase II, Rpb1, contains an unusual C-terminal domain (CTD) composed of numerous repeats of the YSPTSPS consensus sequence. This sequence is the target of post-translational modifications such as phosphorylation, glycosylation, methylation and transitions between stereoisomeric states, resulting in a vast combinatorial potential referred to as the CTD code. In order to gain insight into the biological significance of this code, several studies recently reported the genome-wide distribution of some of these modified polymerases and associated factors in either fission yeast (Schizosaccharomyces pombe) or budding yeast (Saccharomyces cerevisiae). The resulting occupancy maps reveal that a general RNA polymerase II transcription complex exists and undergoes uniform transitions from initiation to elongation to termination. Nevertheless, CTD phosphorylation dynamics result in a gene-specific effect on mRNA expression. In this review, we focus on the gene-specific requirement of CTD phosphorylation and discuss in more detail the case of serine 2 phosphorylation (S2P) within the CTD, a modification that is dispensable for general transcription in fission yeast but strongly affects transcription reprogramming and cell differentiation in response to environmental cues. The recent discovery of Cdk12 as a genuine CTD S2 kinase and its requirement for gene-specific expression are discussed in the wider context of metazoa.
Collapse
Affiliation(s)
- Julie Drogat
- Namur Research College-NARC, Rue de Bruxelles 61, 5000 Namur, Belgium
| | | |
Collapse
|
98
|
Threonine-4 of mammalian RNA polymerase II CTD is targeted by Polo-like kinase 3 and required for transcriptional elongation. EMBO J 2012; 31:2784-97. [PMID: 22549466 DOI: 10.1038/emboj.2012.123] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 04/12/2012] [Indexed: 12/31/2022] Open
Abstract
Eukaryotic RNA polymerase II (Pol II) has evolved an array of heptad repeats with the consensus sequence Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7 at the carboxy-terminal domain (CTD) of the large subunit (Rpb1). Differential phosphorylation of Ser2, Ser5, and Ser7 in the 5' and 3' regions of genes coordinates the binding of transcription and RNA processing factors to the initiating and elongating polymerase complexes. Here, we report phosphorylation of Thr4 by Polo-like kinase 3 in mammalian cells. ChIPseq analyses indicate an increase of Thr4-P levels in the 3' region of genes occurring subsequently to an increase of Ser2-P levels. A Thr4/Ala mutant of Pol II displays a lethal phenotype. This mutant reveals a global defect in RNA elongation, while initiation is largely unaffected. Since Thr4 replacement mutants are viable in yeast we conclude that this amino acid has evolved an essential function(s) in the CTD of Pol II for gene transcription in mammalian cells.
Collapse
|
99
|
Separate domains of fission yeast Cdk9 (P-TEFb) are required for capping enzyme recruitment and primed (Ser7-phosphorylated) Rpb1 carboxyl-terminal domain substrate recognition. Mol Cell Biol 2012; 32:2372-83. [PMID: 22508988 DOI: 10.1128/mcb.06657-11] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In fission yeast, discrete steps in mRNA maturation and synthesis depend on a complex containing the 5'-cap methyltransferase Pcm1 and Cdk9, which phosphorylates the RNA polymerase II (Pol II) carboxyl-terminal domain (CTD) and the processivity factor Spt5 to promote transcript elongation. Here we show that a Cdk9 carboxyl-terminal extension, distinct from the catalytic domain, mediates binding to both Pcm1 and the Pol II CTD. Removal of this segment diminishes Cdk9/Pcm1 chromatin recruitment and Spt5 phosphorylation in vivo and leads to slow growth and hypersensitivity to cold temperature, nutrient limitation, and the IMP dehydrogenase inhibitor mycophenolic acid (MPA). These phenotypes, and the Spt5 phosphorylation defect, are suppressed by Pcm1 overproduction, suggesting that normal transcript elongation and gene expression depend on physical linkage between Cdk9 and Pcm1. The extension is dispensable, however, for recognition of CTD substrates "primed" by Mcs6 (Cdk7). On defined peptide substrates in vitro, Cdk9 prefers CTD repeats phosphorylated at Ser7 over unmodified repeats. In vivo, Ser7 phosphorylation depends on Mcs6 activity, suggesting a conserved mechanism, independent of chromatin recruitment, to order transcriptional CDK functions. Therefore, fission yeast Cdk9 comprises a catalytic domain sufficient for primed substrate recognition and a multivalent recruitment module that couples transcription with capping.
Collapse
|
100
|
Bataille AR, Jeronimo C, Jacques PÉ, Laramée L, Fortin MÈ, Forest A, Bergeron M, Hanes SD, Robert F. A universal RNA polymerase II CTD cycle is orchestrated by complex interplays between kinase, phosphatase, and isomerase enzymes along genes. Mol Cell 2012; 45:158-70. [PMID: 22284676 DOI: 10.1016/j.molcel.2011.11.024] [Citation(s) in RCA: 177] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 08/18/2011] [Accepted: 11/04/2011] [Indexed: 11/17/2022]
Abstract
Transcription by RNA polymerase II (RNAPII) is coupled to mRNA processing and chromatin modifications via the C-terminal domain (CTD) of its largest subunit, consisting of multiple repeats of the heptapeptide YSPTSPS. Pioneering studies showed that CTD serines are differentially phosphorylated along genes in a prescribed pattern during the transcription cycle. Genome-wide analyses challenged this idea, suggesting that this cycle is not uniform among different genes. Moreover, the respective role of enzymes responsible for CTD modifications remains controversial. Here, we systematically profiled the location of the RNAPII phosphoisoforms in wild-type cells and mutants for most CTD modifying enzymes. Together with results of in vitro assays, these data reveal a complex interplay between the modifying enzymes, and provide evidence that the CTD cycle is uniform across genes. We also identify Ssu72 as the Ser7 phosphatase and show that proline isomerization is a key regulator of CTD dephosphorylation at the end of genes.
Collapse
Affiliation(s)
- Alain R Bataille
- Institut de recherches cliniques de Montréal, Montréal, QC H2W 1R7, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|