51
|
Patel TN, Roy S, Ravi R. Gastric cancer and related epigenetic alterations. Ecancermedicalscience 2017; 11:714. [PMID: 28144288 PMCID: PMC5243136 DOI: 10.3332/ecancer.2017.714] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Indexed: 12/12/2022] Open
Abstract
Gastric cancer, a malignant and highly proliferative condition, has significantly affected a large population around the globe and is known to be caused by various factors including genetic, epigenetic, and environmental influences. Though the global trend of these cancers is declining, an increase in its frequency is still a threat because of changing lifestyles and dietary habits. However, genetic and epigenetic alterations related to gastric cancers also have an equivalent contribution towards carcinogenic development. DNA methylation is one of the major forms of epigenetic modification which plays a significant role in gastric carcinogenesis. Methylation leads to inactivation of some of the most important genes like DNA repair genes, cell cycle regulators, apoptotic genes, transcriptional regulators, and signalling pathway regulators; which subsequently cause uncontrolled proliferation of cells. Mutations in these genes can be used as suitable prognostic markers for early diagnosis of the disease, since late diagnosis of gastric cancers has a huge negative impact on overall patient survival. In this review, we focus on the important epigenetic mutations that contribute to the development of gastric cancer and the molecular pathogenesis underlying each of them. Methylation, acetylation, and histone modifications play an integral role in the onset of genomic instability, one of the many contributory factors to gastric cancer. This article also covers the constraints of incomplete knowledge of epigenetic factors influencing gastric cancer, thus throwing light on our understanding of the disease.
Collapse
Affiliation(s)
- Trupti N Patel
- Department of Medical Biotechnology, VIT University, Vellore 632014, Tamil Nadu, India
| | - Soumyadipta Roy
- Department of Medical Biotechnology, VIT University, Vellore 632014, Tamil Nadu, India
| | - Revathi Ravi
- Department of Medical Biotechnology, VIT University, Vellore 632014, Tamil Nadu, India
| |
Collapse
|
52
|
Interplay between epigenetics and metabolism in oncogenesis: mechanisms and therapeutic approaches. Oncogene 2017; 36:3359-3374. [PMID: 28092669 PMCID: PMC5485177 DOI: 10.1038/onc.2016.485] [Citation(s) in RCA: 185] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/07/2016] [Accepted: 11/07/2016] [Indexed: 02/06/2023]
Abstract
Epigenetic and metabolic alterations in cancer cells are highly intertwined. Oncogene-driven metabolic rewiring modifies the epigenetic landscape via modulating the activities of DNA and histone modification enzymes at the metabolite level. Conversely, epigenetic mechanisms regulate the expression of metabolic genes, thereby altering the metabolome. Epigenetic-metabolomic interplay has a critical role in tumourigenesis by coordinately sustaining cell proliferation, metastasis and pluripotency. Understanding the link between epigenetics and metabolism could unravel novel molecular targets, whose intervention may lead to improvements in cancer treatment. In this review, we summarized the recent discoveries linking epigenetics and metabolism and their underlying roles in tumorigenesis; and highlighted the promising molecular targets, with an update on the development of small molecule or biologic inhibitors against these abnormalities in cancer.
Collapse
|
53
|
Lee SH, Manandhar S, Lee YM. Roles of RUNX in Hypoxia-Induced Responses and Angiogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 962:449-469. [PMID: 28299673 DOI: 10.1007/978-981-10-3233-2_27] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
During the past two decades, Runt domain transcription factors (RUNX1, 2, and 3) have been investigated in regard to their function, structural elements, genetic variants, and roles in normal development and pathological conditions. The Runt family proteins are evolutionarily conserved from Drosophila to mammals, emphasizing their physiological importance. A hypoxic microenvironment caused by insufficient blood supply is frequently observed in developing organs, growing tumors, and tissues that become ischemic due to impairment or blockage of blood vessels. During embryonic development and tumor growth, hypoxia triggers a stress response that overcomes low-oxygen conditions by increasing erythropoiesis and angiogenesis and triggering metabolic changes. This review briefly introduces hypoxic conditions and cellular responses, as well as angiogenesis and its related signaling pathways, and then describes our current knowledge on the functions and molecular mechanisms of Runx family proteins in hypoxic responses, especially in angiogenesis.
Collapse
Affiliation(s)
- Sun Hee Lee
- National Basic Research Laboratory of Vascular Homeostasis Regulation, BK21 Plus KNU Multi-Omics based Creative Drug Research Team, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu, 41566, South Korea
| | - Sarala Manandhar
- National Basic Research Laboratory of Vascular Homeostasis Regulation, BK21 Plus KNU Multi-Omics based Creative Drug Research Team, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu, 41566, South Korea
| | - You Mie Lee
- National Basic Research Laboratory of Vascular Homeostasis Regulation, BK21 Plus KNU Multi-Omics based Creative Drug Research Team, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu, 41566, South Korea.
| |
Collapse
|
54
|
Tie J, Zhang X, Fan D. Epigenetic roles in the malignant transformation of gastric mucosal cells. Cell Mol Life Sci 2016; 73:4599-4610. [PMID: 27464701 PMCID: PMC5097112 DOI: 10.1007/s00018-016-2308-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 06/10/2016] [Accepted: 07/08/2016] [Indexed: 12/14/2022]
Abstract
Gastric carcinogenesis occurs when gastric epithelial cells transition through the initial, immortal, premalignant, and malignant stages of transformation. Epigenetic regulations contribute to this multistep process. Due to the critical role of epigenetic modifications , these changes are highly likely to be of clinical use in the future as new biomarkers and therapeutic targets for the early detection and treatment of cancers. Here, we summarize the recent findings on how epigenetic modifications, including DNA methylation, histone modifications, and non-coding RNAs, regulate gastric carcinogenesis, and we discuss potential new strategies for the diagnosis and treatments of gastric cancer. The strategies may be helpful in the further understanding of epigenetic regulation in human diseases.
Collapse
Affiliation(s)
- Jun Tie
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, No. 127, West Chang-Le Road, Xi'an, Shaanxi, 710032, People's Republic of China
| | - Xiangyuan Zhang
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, No. 127, West Chang-Le Road, Xi'an, Shaanxi, 710032, People's Republic of China
| | - Daiming Fan
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, No. 127, West Chang-Le Road, Xi'an, Shaanxi, 710032, People's Republic of China.
| |
Collapse
|
55
|
Nakamura M, Nishikawa J, Saito M, Sakai K, Sasaki S, Hashimoto S, Okamoto T, Suehiro Y, Yamasaki T, Sakaida I. Decitabine inhibits tumor cell proliferation and up-regulates e-cadherin expression in Epstein-Barr virus-associated gastric cancer. J Med Virol 2016; 89:508-517. [PMID: 27430892 DOI: 10.1002/jmv.24634] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2016] [Indexed: 01/08/2023]
Abstract
The present study investigated the effect of a DNA demethylating agent, decitabine, against Epstein-Barr virus-associated gastric cancer (EBVaGC). Decitabine inhibited cell growth and induced G2/M arrest and apoptosis in EBVaGC cell lines. The expression of E-cadherin was up-regulated and cell motility was significantly inhibited in the cells treated with decitabine. The promoter regions of p73 and RUNX3 were demethylated, and their expression was up-regulated by decitabine. They enhanced the transcription of p21, which induced G2/M arrest and apoptosis through down-regulation of c-Myc. Decitabine also induced the expression of BZLF1 in SNU719. Induction of EBV lytic infection was an alternative way to cause apoptosis of the host cells. This study is the first report to reveal the effectiveness of a demethylating agent in inhibiting tumor cell proliferation and up-regulation of E-cadherin in EBVaGC. J. Med. Virol. 89:508-517, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Munetaka Nakamura
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Jun Nishikawa
- Department of Laboratory Science, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Mari Saito
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Kouhei Sakai
- Department of Oncology and Laboratory Medicine, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Sho Sasaki
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Shinichi Hashimoto
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Takeshi Okamoto
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Yutaka Suehiro
- Department of Oncology and Laboratory Medicine, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Takahiro Yamasaki
- Department of Oncology and Laboratory Medicine, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Isao Sakaida
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| |
Collapse
|
56
|
Moosavi A, Ardekani AM. Role of Epigenetics in Biology and Human Diseases. IRANIAN BIOMEDICAL JOURNAL 2016; 20:246-58. [PMID: 27377127 PMCID: PMC5075137 DOI: 10.22045/ibj.2016.01] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 02/22/2016] [Accepted: 03/08/2016] [Indexed: 12/11/2022]
Abstract
For a long time, scientists have tried to describe disorders just by genetic or environmental factors. However, the role of epigenetics in human diseases has been considered from a half of century ago. In the last decade, this subject has attracted many interests, especially in complicated disorders such as behavior plasticity, memory, cancer, autoimmune disease, and addiction as well as neurodegenerative and psychological disorders. This review first explains the history and classification of epigenetic modifications, and then the role of epigenetic in biology and connection between the epigenetics and environment are explained. Furthermore, the role of epigenetics in human diseases is considered by focusing on some diseases with some complicated features, and at the end, we have given the future perspective of this field. The present review article provides concepts with some examples to reveal a broad view of different aspects of epigenetics in biology and human diseases.
Collapse
Affiliation(s)
- Azam Moosavi
- Department of Biochemistry, School of Medicine, Alborz University of Medical Sciences, Alborz, Iran
| | | |
Collapse
|
57
|
Dehne N, Brüne B. Hypoxic inhibition of JMJD3 reduces H3K27me3 demethylation and induction of the STAT6 target gene CCL18. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:1490-1501. [PMID: 27737800 DOI: 10.1016/j.bbagrm.2016.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/23/2016] [Accepted: 10/07/2016] [Indexed: 01/12/2023]
Abstract
Hypoxia, by activating transcription factors induces transcription of some genes but it also reduces mRNA synthesis by mechanisms that are poorly defined. Activation of human macrophages with interleukin (IL)-4 showed that up-regulation of some IL-4 target genes was reduced when macrophages were incubated at 1% oxygen. Hypoxia impaired induction of chemokine (C-C motif) ligand 18 (CCL18), although IL-4-induced DNA binding of the transcription factor STAT6 remained intact. In contrast, induction of serine peptidase inhibitor, Kunitz type (SPINT)2, another IL-4/STAT6 target gene, was not affected by hypoxia. The repressive histone mark histone 3 lysine 27 trimethylation (H3K27me3), known to prevent chromatin remodelling and transcription, was removed from the SPINT2 but not the CCL18 gene locus under hypoxia or dimethyloxalylglycine-treatment. The H3K27me3 demethylase JMJD3 was required for CCL18 gene induction but dispensable for induction of SPINT2. Our data indicate that hypoxic inhibition of JMJD3 activity reduces demethylation of H3K27me3, nucleosome removal, and hence induction of the STAT6 target gene CCL18, while induction of other STAT6-inducible genes such as SPINT2 remained unaffected by JMJD3. In contrast to mouse MΦ in human cells JMJD3 is not recruited by transcription factors like IRF4, KL4, or PPARγ to convey specificity in gene induction.
Collapse
Affiliation(s)
- Nathalie Dehne
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany.
| | - Bernhard Brüne
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany
| |
Collapse
|
58
|
Lee SH, Jung YD, Choi YS, Lee YM. Targeting of RUNX3 by miR-130a and miR-495 cooperatively increases cell proliferation and tumor angiogenesis in gastric cancer cells. Oncotarget 2016; 6:33269-78. [PMID: 26375442 PMCID: PMC4741764 DOI: 10.18632/oncotarget.5037] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 08/25/2015] [Indexed: 12/31/2022] Open
Abstract
Mature microRNAs (miRNAs) are 21 to 23 nucleotide noncoding RNA molecules that can downregulate multiple gene expression by mRNA degradation or translational repression. miRNAs are considered to play important roles in cell proliferation, apoptosis, and differentiation during mammalian development. The Runt-related transcription factor 3 (RUNX3) expression and activity are frequently downregulated by various mechanisms in gastric cancer. We have reported that RUNX3 inactivation is crucial for early tumorigenesis. In this study, we investigated the role of miRNAs targeting RUNX3 in early tumorigenesis. miR-130a and miR-495 upregulated under hypoxic conditions that bind to the RUNX3 3′-untranslated region (3′-UTR) were identified in gastric cancer cells by using microarray analysis and bioinformatics programs. Combination of miR-130a and miR-495 inhibited RUNX3 expression at the protein level, but not at the mRNA level. miR-130a and miR-495 significantly inhibited the RUNX3–3′UTR-luciferase activity. Combination of miR-130a and miR-495 significantly decreased apoptosis determined by Annexin V-FITC/propidium iodide staining and flow cytometric analysis, and the expression of Bim in SNU484 gastric cancer cells. In addition, p21 and Bim, RUNX3 target genes, were completely downregulated by the combination of miR-130a and miR-495. Using matrigel plug assay, we found that antagomiRs specific for miR-130a and miR-495 significantly reduced angiogenesis in vivo. In conclusion, targeting miR-130a and miR-495 could be a potential therapeutics to recover RUNX3 expression under hypoxic conditions and in early tumorigenic progression.
Collapse
Affiliation(s)
- Sun Hee Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Daegu, 702-701, Republic of Korea
| | - Yuk Dong Jung
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Daegu, 702-701, Republic of Korea
| | - Young Sun Choi
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Daegu, 702-701, Republic of Korea
| | - You Mie Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Daegu, 702-701, Republic of Korea
| |
Collapse
|
59
|
Lin X, Huang Y, Zou Y, Chen X, Ma X. Depletion of G9a gene induces cell apoptosis in human gastric carcinoma. Oncol Rep 2016; 35:3041-9. [PMID: 27081761 DOI: 10.3892/or.2016.4692] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 01/12/2016] [Indexed: 11/06/2022] Open
Abstract
G9a is a mammalian histone methyltransferase that contributes to the epigenetic silencing of tumor suppressor genes. Evidence suggests that G9a is required to maintain the malignant phenotype, but little documentation show the role of G9a function in mediating tumor growth. We retrospectively analyzed the protein of G9a and monomethylated histone H3 lysine 9 (H3K9 me1), and dimethylated histone H3 lysine 9 (H3K9 me2) in 175 cases of gastric carcinoma by immunohistochemistry. RNAi-based inhibition of G9a in MGC803 cancer cell line was studied. G9a depletion was done by transient transfection using Lipofectamine 2000. Depletion efficiency of G9a was tested using real-time PCR and western blot analysis. Cell apoptosis and proliferation were detected by TUNEL assay and MTT, respectively. The proteins of H3K9 me1, me2, trimethylation of H3K9 (H3K9 me3), monomethylated histone H3 lysine 27 (H3K27 me1), dimethylated histone H3 lysine 27 (H3K27 me2) and histone acetylated H3, apoptotic proteins were studied by western blot analysis. G9a and H3K9 me2 expression was higher in gastric cancer cells compared to the control (p<0.05). Both G9a and H3K9 me2 were positively correlated with the degree of differentiation, depth of infiltration, lymphatic invasions and tumor-node-metastasis stage in gastric carcinoma, (p<0.05). RNAi-mediated knockdown of G9a induced cell apoptosis and inhibited cell proliferation. Depletion of G9a reduced the levels of H3K9 me1 and me2, H3K27 me1 and me2. Nonetheless, it did not activate acetylation of H3 and H3K9 me3. These data suggest that G9a is required in tumorigenesis, and correlated with prognosis. Furthermore, G9a plays a critical role in regulating epigenetics. Depletion of G9a inhibits cell growth and induces cells apoptosis in gastric cancer. It might be of therapeutic benefit in gastric cancers.
Collapse
Affiliation(s)
- Xiaolei Lin
- Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian 363000, P.R. China
| | - Yiqun Huang
- Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian 363000, P.R. China
| | - Yong Zou
- Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian 363000, P.R. China
| | - Xingsheng Chen
- United Hospital of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Xudong Ma
- Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian 363000, P.R. China
| |
Collapse
|
60
|
Chen F, Liu X, Bai J, Pei D, Zheng J. The emerging role of RUNX3 in cancer metastasis (Review). Oncol Rep 2015; 35:1227-36. [PMID: 26708741 DOI: 10.3892/or.2015.4515] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 10/11/2015] [Indexed: 11/06/2022] Open
Abstract
Metastasis remains the major driver of mortality in patients with cancer. The multistep metastatic process starts with the dissemination of tumor cells from a primary site and leading to secondary tumor development in an anatomically distant location. Although significant progress has been made in understanding the molecular characteristics of metastasis, many questions remain regarding the intracellular mechanisms governing transition through the various metastatic stages. The runt-related transcription factor 3 (RUNX3) is a downstream effector of the transforming growth factor-β (TGF-β) signaling pathway, and has critical roles in the regulation of cell death by apoptosis, and in angiogenesis, epithelial-to-mesenchymal transition (EMT), cell migration and invasion. RUNX3 functions as a bona fide initiator of carcinogenesis by linking the Wnt oncogenic and TGF-β tumor suppressive pathways. RUNX3 is frequently inactivated in human cancer cell lines and cancer samples by hemizygous deletion of the Runx3 gene, hypermethylation of the Runx3 promoter, or cytoplasmic sequestration of RUNX3 protein. Inactivation of RUNX3 makes it a putative tumor suppressor in human neoplasia. In the present review, we summarize the proposed roles of RUNX3 in metastasis and, when applicable, highlight the mechanism by which they function.
Collapse
Affiliation(s)
- Feifei Chen
- Cancer Institute, Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China
| | - Xin Liu
- Cancer Institute, Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China
| | - Jin Bai
- Cancer Institute, Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China
| | - Dongsheng Pei
- Cancer Institute, Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China
| | - Junnian Zheng
- Cancer Institute, Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China
| |
Collapse
|
61
|
Casciello F, Windloch K, Gannon F, Lee JS. Functional Role of G9a Histone Methyltransferase in Cancer. Front Immunol 2015; 6:487. [PMID: 26441991 PMCID: PMC4585248 DOI: 10.3389/fimmu.2015.00487] [Citation(s) in RCA: 182] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Accepted: 09/07/2015] [Indexed: 11/13/2022] Open
Abstract
Post-translational modifications of DNA and histones are epigenetic mechanisms, which affect the chromatin structure, ultimately leading to gene expression changes. A number of different epigenetic enzymes are actively involved in the addition or the removal of various covalent modifications, which include acetylation, methylation, phosphorylation, ubiquitination, and sumoylation. Deregulation of these processes is a hallmark of cancer. For instance, G9a, a histone methyltransferase responsible for histone H3 lysine 9 (H3K9) mono- and dimethylation, has been observed to be upregulated in different types of cancer and its overexpression has been associated with poor prognosis. Key roles played by these enzymes in various diseases have led to the hypothesis that these molecules represent valuable targets for future therapies. Several small molecule inhibitors have been developed to specifically block the epigenetic activity of these enzymes, representing promising therapeutic tools in the treatment of human malignancies, such as cancer. In this review, the role of one of these epigenetic enzymes, G9a, is discussed, focusing on its functional role in regulating gene expression as well as its implications in cancer initiation and progression. We also discuss important findings from recent studies using epigenetic inhibitors in cell systems in vitro as well as experimental tumor growth and metastasis assays in vivo.
Collapse
Affiliation(s)
- Francesco Casciello
- Control of Gene Expression Laboratory, QIMR Berghofer Medical Research Institute , Herston, QLD , Australia ; School of Natural Sciences, Griffith University , Nathan, QLD , Australia
| | - Karolina Windloch
- Control of Gene Expression Laboratory, QIMR Berghofer Medical Research Institute , Herston, QLD , Australia
| | - Frank Gannon
- Control of Gene Expression Laboratory, QIMR Berghofer Medical Research Institute , Herston, QLD , Australia
| | - Jason S Lee
- Control of Gene Expression Laboratory, QIMR Berghofer Medical Research Institute , Herston, QLD , Australia ; Faculty of Health, School of Biomedical Sciences, Queensland University of Technology , Kelvin Grove, QLD , Australia ; School of Chemistry and Molecular Biosciences, University of Queensland , Brisbane, QLD , Australia
| |
Collapse
|
62
|
Ramachandran S, Ient J, Göttgens EL, Krieg AJ, Hammond EM. Epigenetic Therapy for Solid Tumors: Highlighting the Impact of Tumor Hypoxia. Genes (Basel) 2015; 6:935-56. [PMID: 26426056 PMCID: PMC4690023 DOI: 10.3390/genes6040935] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 09/18/2015] [Accepted: 09/22/2015] [Indexed: 12/14/2022] Open
Abstract
In the last few decades, epigenetics has emerged as an exciting new field in development and disease, with a more recent focus towards cancer. Epigenetics has classically referred to heritable patterns of gene expression, primarily mediated through DNA methylation patterns. More recently, it has come to include the reversible chemical modification of histones and DNA that dictate gene expression patterns. Both the epigenetic up-regulation of oncogenes and downregulation of tumor suppressors have been shown to drive tumor development. Current clinical trials for cancer therapy include pharmacological inhibition of DNA methylation and histone deacetylation, with the aim of reversing these cancer-promoting epigenetic changes. However, the DNA methyltransferase and histone deacetylase inhibitors have met with less than promising results in the treatment of solid tumors. Regions of hypoxia are a common occurrence in solid tumors. Tumor hypoxia is associated with increased aggressiveness and therapy resistance, and importantly, hypoxic tumor cells have a distinct epigenetic profile. In this review, we provide a summary of the recent clinical trials using epigenetic drugs in solid tumors, discuss the hypoxia-induced epigenetic changes and highlight the importance of testing the epigenetic drugs for efficacy against the most aggressive hypoxic fraction of the tumor in future preclinical testing.
Collapse
Affiliation(s)
- Shaliny Ramachandran
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, The University of Oxford, Oxford OX3 7DQ, UK.
| | - Jonathan Ient
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, The University of Oxford, Oxford OX3 7DQ, UK.
| | - Eva-Leonne Göttgens
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, The University of Oxford, Oxford OX3 7DQ, UK.
| | - Adam J Krieg
- Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | - Ester M Hammond
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, The University of Oxford, Oxford OX3 7DQ, UK.
| |
Collapse
|
63
|
Abstract
Oxygen is the basic molecule which supports life and it truly is "god's gift to life." Despite its immense importance, research on "oxygen biology" has never received the light of the day and has been limited to physiological and biochemical studies. It seems that in modern day biology, oxygen research is summarized in one word "hypoxia." Scientists have focused on hypoxia-induced transcriptomics and molecular-cellular alterations exclusively in disease models. Interestingly, the potential of oxygen to control the basic principles of biology like homeostatic maintenance, transcription, replication, and protein folding among many others, at the molecular level, has been completely ignored. Here, we present a perspective on the crucial role played by oxygen in regulation of basic biological phenomena. Our conclusion highlights the importance of establishing novel research areas like oxygen biology, as there is great potential in this field for basic science discoveries and clinical benefits to the society.
Collapse
|
64
|
Gomes NGM, Lefranc F, Kijjoa A, Kiss R. Can Some Marine-Derived Fungal Metabolites Become Actual Anticancer Agents? Mar Drugs 2015; 13:3950-91. [PMID: 26090846 PMCID: PMC4483665 DOI: 10.3390/md13063950] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 06/04/2015] [Accepted: 06/09/2015] [Indexed: 01/03/2023] Open
Abstract
Marine fungi are known to produce structurally unique secondary metabolites, and more than 1000 marine fungal-derived metabolites have already been reported. Despite the absence of marine fungal-derived metabolites in the current clinical pipeline, dozens of them have been classified as potential chemotherapy candidates because of their anticancer activity. Over the last decade, several comprehensive reviews have covered the potential anticancer activity of marine fungal-derived metabolites. However, these reviews consider the term "cytotoxicity" to be synonymous with "anticancer agent", which is not actually true. Indeed, a cytotoxic compound is by definition a poisonous compound. To become a potential anticancer agent, a cytotoxic compound must at least display (i) selectivity between normal and cancer cells (ii) activity against multidrug-resistant (MDR) cancer cells; and (iii) a preferentially non-apoptotic cell death mechanism, as it is now well known that a high proportion of cancer cells that resist chemotherapy are in fact apoptosis-resistant cancer cells against which pro-apoptotic drugs have more than limited efficacy. The present review thus focuses on the cytotoxic marine fungal-derived metabolites whose ability to kill cancer cells has been reported in the literature. Particular attention is paid to the compounds that kill cancer cells through non-apoptotic cell death mechanisms.
Collapse
Affiliation(s)
- Nelson G M Gomes
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Universidade do Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal.
| | - Florence Lefranc
- Service de Neurochirurgie, Hôpital Erasme, Université Libre de Bruxelles, 808 Route de Lennik, 1070 Brussels, Belgium.
| | - Anake Kijjoa
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Universidade do Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal.
| | - Robert Kiss
- Laboratoire de Cancérologie et de Toxicologie Expérimentale, Faculté de Pharmacie, Université Libre de Bruxelles, Campus de la Plaine, CP205/1, Boulevard du Triomphe, 1050 Brussels, Belgium.
| |
Collapse
|
65
|
The relevance of epigenetics to occlusive cerebral and peripheral arterial disease. Clin Sci (Lond) 2015; 128:537-58. [PMID: 25671777 DOI: 10.1042/cs20140491] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Athero-thrombosis of the arteries supplying the brain and lower limb are the main causes of stroke and limb loss. New therapies are needed to improve the outcomes of athero-thrombosis. Recent evidence suggests a role for epigenetic changes in the development and progression of ischaemic injury due to atherosclerotic occlusion of peripheral arteries. DNA hypermethylation have been associated with cardiovascular diseases. Histone post-translational modifications have also been implicated in atherosclerosis. Oxidized low-density lipoprotein regulated pro-inflammatory gene expression within endothelial cells is controlled by phosphorylation/acetylation of histone H3 and acetylation of histone H4 for example. There are a number of challenges in translating the growing evidence implicating epigenetics in atherosclerosis to improved therapies for patients. These include the small therapeutic window in conditions such as acute stroke and critical limb ischaemia, since interventions introduced in such patients need to act rapidly and be safe in elderly patients with many co-morbidities. Pre-clinical animal experiments have also reported conflicting effects of some novel epigenetic drugs, which suggest that further in-depth studies are required to better understand their efficacy in resolving ischaemic injury. Effective ways of dealing with these challenges are needed before epigenetic approaches to therapy can be introduced into practice.
Collapse
|
66
|
Yang JS, Lee C, Cho M, Kim H, Kim JH, Choi S, Oh SJ, Kang JS, Jeong JH, Kim HJ, Han G. Discovery of Orally Available Runt-Related Transcription Factor 3 (RUNX3) Modulators for Anticancer Chemotherapy by Epigenetic Activation and Protein Stabilization. J Med Chem 2015; 58:3512-21. [PMID: 25811792 DOI: 10.1021/acs.jmedchem.5b00062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Recently, we identified a novel strategy for anticancer chemotherapy by restoring runt-related transcription factor 3 (RUNX3) levels via lactam-based histone deacetylase (HDAC) inhibitors that stabilize RUNX3. Described here are the synthesis, biological evaluation, and pharmacokinetic evaluation of new synthetic small molecules based on pyridone-based HDAC inhibitors that specifically stabilize RUNX3 by acetylation and regulate its function. Many of the newly synthesized compounds showed favorable RUNX activities, HDAC inhibitory activities, and inhibitory activities on the growth of human cancer cell lines. Notably, one of these new derivatives, (E)-N-hydroxy-3-(2-oxo-1-(quinolin-2-ylmethyl)-1,2-dihydropyridin-3-yl)acrylamide (4l), significantly restored RUNX3 in a dose-dependent manner and showed high metabolic stability, a good pharmacokinetic profile with high oral bioavailability and long half-life, and strong antitumor activity. This study suggests that pyridone-based analogues modulate RUNX3 activity through epigenetic regulation as well as strong transcriptional and post-translational regulation of RUNX3 and could be potential clinical candidates as orally available RUNX3 modulators for the treatment of cancer.
Collapse
Affiliation(s)
- Jee Sun Yang
- †Translational Research Center for Protein Function Control, Department of Biotechnology, Yonsei University, Seodaemun-gu, Seoul 120-749, Republic of Korea
| | - Chulho Lee
- †Translational Research Center for Protein Function Control, Department of Biotechnology, Yonsei University, Seodaemun-gu, Seoul 120-749, Republic of Korea
| | - Misun Cho
- †Translational Research Center for Protein Function Control, Department of Biotechnology, Yonsei University, Seodaemun-gu, Seoul 120-749, Republic of Korea
| | - Hyuntae Kim
- ⊥Department of Biomedical Sciences (WCU Program), Yonsei University, Seodaemun-gu, Seoul 120-749, Republic of Korea
| | - Jae Hyun Kim
- ⊥Department of Biomedical Sciences (WCU Program), Yonsei University, Seodaemun-gu, Seoul 120-749, Republic of Korea
| | - Seonghwi Choi
- ⊥Department of Biomedical Sciences (WCU Program), Yonsei University, Seodaemun-gu, Seoul 120-749, Republic of Korea
| | - Soo Jin Oh
- ‡Bioevaluation Center, Korea Research Institute of Bioscience and Biotechnology, Ochang, Cheongwon, Chungbuk 363-883, Republic of Korea
| | - Jong Soon Kang
- ‡Bioevaluation Center, Korea Research Institute of Bioscience and Biotechnology, Ochang, Cheongwon, Chungbuk 363-883, Republic of Korea
| | - Jin-Hyun Jeong
- §College of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Yeonsu-gu, Incheon 406-840, Republic of Korea
| | - Hyun-Jung Kim
- ∥College of Pharmacy, Gachon University of Medicine and Science, Incheon 406-799, Republic of Korea
| | - Gyoonhee Han
- †Translational Research Center for Protein Function Control, Department of Biotechnology, Yonsei University, Seodaemun-gu, Seoul 120-749, Republic of Korea.,⊥Department of Biomedical Sciences (WCU Program), Yonsei University, Seodaemun-gu, Seoul 120-749, Republic of Korea
| |
Collapse
|
67
|
Abstract
RUNX proteins belong to a family of metazoan transcription factors that serve as master regulators of development. They are frequently deregulated in human cancers, indicating a prominent and, at times, paradoxical role in cancer pathogenesis. The contextual cues that direct RUNX function represent a fast-growing field in cancer research and could provide insights that are applicable to early cancer detection and treatment. This Review describes how RUNX proteins communicate with key signalling pathways during the multistep progression to malignancy; in particular, we highlight the emerging partnership of RUNX with p53 in cancer suppression.
Collapse
Affiliation(s)
- Yoshiaki Ito
- 1] Cancer Science Institute of Singapore, National University of Singapore, Center for Translational Medicine, 14 Medical Drive #12-01, 117599, Singapore. [2]
| | - Suk-Chul Bae
- 1] Department of Biochemistry, School of Medicine, and Institute for Tumour Research, Chungbuk National University, Cheongju, 361763, South Korea. [2]
| | - Linda Shyue Huey Chuang
- 1] Cancer Science Institute of Singapore, National University of Singapore, Center for Translational Medicine, 14 Medical Drive #12-01, 117599, Singapore. [2]
| |
Collapse
|
68
|
Calcagno DQ, de Arruda Cardoso Smith M, Burbano RR. Cancer type-specific epigenetic changes: gastric cancer. Methods Mol Biol 2015; 1238:79-101. [PMID: 25421656 DOI: 10.1007/978-1-4939-1804-1_5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Gastric cancer (GC) remains a major cause of mortality despite declining rate in the world. Epigenetic alterations contribute significantly to the development and progression of gastric tumors. Epigenetic refers to the number of modifications of the chromatin structure that affect gene expression without altering the primary sequence of DNA, and these changes lead to transcriptional activation or silencing of the gene. Over the years, the study of epigenetic processes has increased, and novel therapeutic approaches have emerged. This chapter summarizes the main epigenomic mechanisms described recently involved in gastric carcinogenesis, focusing on the roles that aberrant DNA methylation, histone modifications (histone acetylation and methylation), and miRNAs (oncogenic and tumor suppressor function of miRNA) play in the onset and progression of gastric tumors. Clinical implications of these epigenetic alterations in GC are also discussed.
Collapse
Affiliation(s)
- Danielle Queiroz Calcagno
- Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Rua dos Mundurucus, 4487, Guamá, CEP 66073-000 Belém, PA, Brazil,
| | | | | |
Collapse
|
69
|
Na YJ, Shim KN, Joo YH, Kim SE, Jung HK, Jung SA, Cho MS. RUNX3Methylation, Loss of RUNX3 Expression and Clinicopathologic Findings according toHelicobacter pyloriCagA in Gastric Carcinoma. THE KOREAN JOURNAL OF GASTROENTEROLOGY 2015; 66:75-84. [DOI: 10.4166/kjg.2015.66.2.75] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yoon Ju Na
- Department of Internal Medicine, Ewha Womans University School of Medicine, Seoul, Korea
- Center for Health Promotion, Samsung Medical Center, Seoul, Korea
| | - Ki-Nam Shim
- Department of Internal Medicine, Ewha Womans University School of Medicine, Seoul, Korea
| | - Yang Hee Joo
- Department of Internal Medicine, Ewha Womans University School of Medicine, Seoul, Korea
| | - Seong-Eun Kim
- Department of Internal Medicine, Ewha Womans University School of Medicine, Seoul, Korea
| | - Hye-Kyung Jung
- Department of Internal Medicine, Ewha Womans University School of Medicine, Seoul, Korea
| | - Sung-Ae Jung
- Department of Internal Medicine, Ewha Womans University School of Medicine, Seoul, Korea
| | - Min Sun Cho
- Department of Pathology, Ewha Womans University School of Medicine, Seoul, Korea
| |
Collapse
|
70
|
Salton M, Voss TC, Misteli T. Identification by high-throughput imaging of the histone methyltransferase EHMT2 as an epigenetic regulator of VEGFA alternative splicing. Nucleic Acids Res 2014; 42:13662-73. [PMID: 25414343 PMCID: PMC4267647 DOI: 10.1093/nar/gku1226] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Recent evidence points to a role of chromatin in regulation of alternative pre-mRNA splicing (AS). In order to identify novel chromatin regulators of AS, we screened an RNAi library of chromatin proteins using a cell-based high-throughput in vivo assay. We identified a set of chromatin proteins that regulate AS. Using simultaneous genome-wide expression and AS analysis, we demonstrate distinct and non-overlapping functions of these chromatin modifiers on transcription and AS. Detailed mechanistic characterization of one dual function chromatin modifier, the H3K9 methyltransferase EHMT2 (G9a), identified VEGFA as a major chromatin-mediated AS target. Silencing of EHMT2, or its heterodimer partner EHMT1, affects AS by promoting exclusion of VEGFA exon 6a, but does not alter total VEGFA mRNA levels. The epigenetic regulatory mechanism of AS by EHMT2 involves an adaptor system consisting of the chromatin modulator HP1γ, which binds methylated H3K9 and recruits splicing regulator SRSF1. The epigenetic regulation of VEGFA is physiologically relevant since EHMT2 is transcriptionally induced in response to hypoxia and triggers concomitant changes in AS of VEGFA. These results characterize a novel epigenetic regulatory mechanism of AS and they demonstrate separate roles of epigenetic modifiers in transcription and alternative splicing.
Collapse
Affiliation(s)
- Maayan Salton
- National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Ty C Voss
- National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Tom Misteli
- National Cancer Institute, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
71
|
Shi J, Qu YP, Hou P. Pathogenetic mechanisms in gastric cancer. World J Gastroenterol 2014; 20:13804-13819. [PMID: 25320518 PMCID: PMC4194564 DOI: 10.3748/wjg.v20.i38.13804] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 01/15/2014] [Accepted: 05/29/2014] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer (GC) is a major public health issue as the fourth most common cancer and the second leading cause of cancer-related death. Recent advances have improved our understanding of its molecular pathogenesis, as best exemplified by elucidating the fundamental role of several major signaling pathways and related molecular derangements. Central to these mechanisms are the genetic and epigenetic alterations in these signaling pathways, such as gene mutations, copy number variants, aberrant gene methylation and histone modification, nucleosome positioning, and microRNAs. Some of these genetic/epigenetic alterations represent effective diagnostic and prognostic biomarkers and therapeutic targets for GC. This information has now opened unprecedented opportunities for better understanding of the molecular mechanisms of gastric carcinogenesis and the development of novel therapeutic strategies for this cancer. The pathogenetic mechanisms of GC are the focus of this review.
Collapse
|
72
|
Deb M, Kar S, Sengupta D, Shilpi A, Parbin S, Rath SK, Londhe VA, Patra SK. Chromatin dynamics: H3K4 methylation and H3 variant replacement during development and in cancer. Cell Mol Life Sci 2014; 71:3439-63. [PMID: 24676717 PMCID: PMC11113154 DOI: 10.1007/s00018-014-1605-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Revised: 02/11/2014] [Accepted: 03/06/2014] [Indexed: 12/11/2022]
Abstract
The dynamic nature of chromatin and its myriad modifications play a crucial role in gene regulation (expression and repression) during development, cellular survival, homeostasis, ageing, and apoptosis/death. Histone 3 lysine 4 methylation (H3K4 methylation) catalyzed by H3K4 specific histone methyltransferases is one of the more critical chromatin modifications that is generally associated with gene activation. Additionally, the deposition of H3 variant(s) in conjunction with H3K4 methylation generates an intricately reliable epigenetic regulatory circuit that guides transcriptional activity in normal development and homeostasis. Consequently, alterations in this epigenetic circuit may trigger disease development. The mechanistic relationship between H3 variant deposition and H3K4 methylation during normal development has remained foggy. However, recent investigations in the field of chromatin dynamics in various model organisms, tumors, cancer tissues, and cell lines cultured without and with therapeutic agents, as well as from model reconstituted chromatins reveal that there may be different subsets of chromatin assemblage with specific patterns of histone replacement executing similar functions. In this light, we attempt to explain the intricate control system that maintains chromatin structure and dynamics during normal development as well as during tumor development and cancer progression in this review. Our focus is to highlight the contribution of H3K4 methylation-histone variant crosstalk in regulating chromatin architecture and subsequently its function.
Collapse
Affiliation(s)
- Moonmoon Deb
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008 India
| | - Swayamsiddha Kar
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008 India
| | - Dipta Sengupta
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008 India
| | - Arunima Shilpi
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008 India
| | - Sabnam Parbin
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008 India
| | - Sandip K. Rath
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008 India
| | - Vedang A. Londhe
- Division of Neonatology and Developmental Biology, Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1752 USA
| | - Samir Kumar Patra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008 India
| |
Collapse
|
73
|
Baxter E, Windloch K, Gannon F, Lee JS. Epigenetic regulation in cancer progression. Cell Biosci 2014; 4:45. [PMID: 25949794 PMCID: PMC4422217 DOI: 10.1186/2045-3701-4-45] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 07/26/2014] [Indexed: 01/01/2023] Open
Abstract
Cancer is a disease arising from both genetic and epigenetic modifications of DNA that contribute to changes in gene expression in the cell. Genetic modifications include loss or amplification of DNA, loss of heterozygosity (LOH) as well as gene mutations. Epigenetic changes in cancer are generally thought to be brought about by alterations in DNA and histone modifications that lead to the silencing of tumour suppressor genes and the activation of oncogenic genes. Other consequences that result from epigenetic changes, such as inappropriate expression or repression of some genes in the wrong cellular context, can also result in the alteration of control and physiological systems such that a normal cell becomes tumorigenic. Excessive levels of the enzymes that act as epigenetic modifiers have been reported as markers of aggressive breast cancer and are associated with metastatic progression. It is likely that this is a common contributor to the recurrence and spread of the disease. The emphasis on genetic changes, for example in genome-wide association studies and increasingly in whole genome sequencing analyses of tumours, has resulted in the importance of epigenetic changes having less attention until recently. Epigenetic alterations at both the DNA and histone level are increasingly being recognised as playing a role in tumourigenesis. Recent studies have found that distinct subgroups of poor-prognosis tumours lack genetic alterations but are epigenetically deregulated, pointing to the important role that epigenetic modifications and/or their modifiers may play in cancer. In this review, we highlight the multitude of epigenetic changes that can occur and will discuss how deregulation of epigenetic modifiers contributes to cancer progression. We also discuss the off-target effects that epigenetic modifiers may have, notably the effects that histone modifiers have on non-histone proteins that can modulate protein expression and activity, as well as the role of hypoxia in epigenetic regulation.
Collapse
Affiliation(s)
- Eva Baxter
- QIMR Berghofer Medical Research Institute, Control of Gene Expression Laboratory, Herston Rd, 4006 Herston, QLD, Australia
| | - Karolina Windloch
- QIMR Berghofer Medical Research Institute, Control of Gene Expression Laboratory, Herston Rd, 4006 Herston, QLD, Australia
| | - Frank Gannon
- QIMR Berghofer Medical Research Institute, Control of Gene Expression Laboratory, Herston Rd, 4006 Herston, QLD, Australia
| | - Jason S Lee
- QIMR Berghofer Medical Research Institute, Control of Gene Expression Laboratory, Herston Rd, 4006 Herston, QLD, Australia
| |
Collapse
|
74
|
The hypoxia-inducible epigenetic regulators Jmjd1a and G9a provide a mechanistic link between angiogenesis and tumor growth. Mol Cell Biol 2014; 34:3702-20. [PMID: 25071150 DOI: 10.1128/mcb.00099-14] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Hypoxia promotes stem cell maintenance and tumor progression, but it remains unclear how it regulates long-term adaptation toward these processes. We reveal a striking downregulation of the hypoxia-inducible histone H3 lysine 9 (H3K9) demethylase JMJD1A as a hallmark of clinical human germ cell-derived tumors, such as seminomas, yolk sac tumors, and embryonal carcinomas. Jmjd1a was not essential for stem cell self-renewal but played a crucial role as a tumor suppressor in opposition to the hypoxia-regulated oncogenic H3K9 methyltransferase G9a. Importantly, loss of Jmjd1a resulted in increased tumor growth, whereas loss of G9a produced smaller tumors. Pharmacological inhibition of G9a also resulted in attenuation of tumor growth, offering a novel therapeutic strategy for germ cell-derived tumors. Finally, Jmjd1a and G9a drive mutually opposing expression of the antiangiogenic factor genes Robo4, Igfbp4, Notch4, and Tfpi accompanied by changes in H3K9 methylation status. Thus, we demonstrate a novel mechanistic link whereby hypoxia-regulated epigenetic changes are instrumental for the control of tumor growth through coordinated dysregulation of antiangiogenic gene expression.
Collapse
|
75
|
Salminen A, Kauppinen A, Hiltunen M, Kaarniranta K. Krebs cycle intermediates regulate DNA and histone methylation: epigenetic impact on the aging process. Ageing Res Rev 2014; 16:45-65. [PMID: 24910305 DOI: 10.1016/j.arr.2014.05.004] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 05/20/2014] [Accepted: 05/29/2014] [Indexed: 02/01/2023]
Abstract
Many aging theories have proposed that mitochondria and energy metabolism have a major role in the aging process. There are recent studies indicating that Krebs cycle intermediates can shape the epigenetic landscape of chromatin by regulating DNA and histone methylation. A growing evidence indicates that epigenetics plays an important role in the regulation of healthspan but also is involved in the aging process. 2-Oxoglutarate (α-ketoglutarate) is a key metabolite in the Krebs cycle but it is also an obligatory substrate for 2-oxoglutarate-dependent dioxygenases (2-OGDO). The 2-OGDO enzyme family includes the major enzymes of DNA and histone demethylation, i.e. Ten-Eleven Translocation (TETs) and Jumonji C domain containing (JmjC) demethylases. In addition, 2-OGDO members can regulate collagen synthesis and hypoxic responses in a non-epigenetical manner. Interestingly, succinate and fumarate, also Krebs cycle intermediates, are potent inhibitors of 2-OGDO enzymes, i.e. the balance of Krebs cycle reactions can affect the level of DNA and histone methylation and thus control gene expression. We will review the epigenetic mechanisms through which Krebs cycle intermediates control the DNA and histone methylation. We propose that age-related disturbances in the Krebs cycle function induce stochastic epigenetic changes in chromatin structures which in turn promote the aging process.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland; Department of Neurology, Kuopio University Hospital, P.O. Box 1777, FIN-70211 Kuopio, Finland.
| | - Anu Kauppinen
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland; Department of Ophthalmology, Kuopio University Hospital, P.O. Box 1777, FIN-70211 Kuopio, Finland
| | - Mikko Hiltunen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland; Department of Neurology, Kuopio University Hospital, P.O. Box 1777, FIN-70211 Kuopio, Finland
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland; Department of Ophthalmology, Kuopio University Hospital, P.O. Box 1777, FIN-70211 Kuopio, Finland
| |
Collapse
|
76
|
Chen TW, Li HP, Lee CC, Gan RC, Huang PJ, Wu TH, Lee CY, Chang YF, Tang P. ChIPseek, a web-based analysis tool for ChIP data. BMC Genomics 2014; 15:539. [PMID: 24974934 PMCID: PMC4092222 DOI: 10.1186/1471-2164-15-539] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 06/20/2014] [Indexed: 02/08/2023] Open
Abstract
Background Chromatin is a dynamic but highly regulated structure. DNA-binding proteins such as transcription factors, epigenetic and chromatin modifiers are responsible for regulating specific gene expression pattern and may result in different phenotypes. To reveal the identity of the proteins associated with the specific region on DNA, chromatin immunoprecipitation (ChIP) is the most widely used technique. ChIP assay followed by next generation sequencing (ChIP-seq) or microarray (ChIP-chip) is often used to study patterns of protein-binding profiles in different cell types and in cancer samples on a genome-wide scale. However, only a limited number of bioinformatics tools are available for ChIP datasets analysis. Results We present ChIPseek, a web-based tool for ChIP data analysis providing summary statistics in graphs and offering several commonly demanded analyses. ChIPseek can provide statistical summary of the dataset including histogram of peak length distribution, histogram of distances to the nearest transcription start site (TSS), and pie chart (or bar chart) of genomic locations for users to have a comprehensive view on the dataset for further analysis. For examining the potential functions of peaks, ChIPseek provides peak annotation, visualization of peak genomic location, motif identification, sequence extraction, and comparison between datasets. Beyond that, ChIPseek also offers users the flexibility to filter peaks and re-analyze the filtered subset of peaks. ChIPseek supports 20 different genome assemblies for 12 model organisms including human, mouse, rat, worm, fly, frog, zebrafish, chicken, yeast, fission yeast, Arabidopsis, and rice. We use demo datasets to demonstrate the usage and intuitive user interface of ChIPseek. Conclusions ChIPseek provides a user-friendly interface for biologists to analyze large-scale ChIP data without requiring any programing skills. All the results and figures produced by ChIPseek can be downloaded for further analysis. The analysis tools built into ChIPseek, especially the ones for selecting and examine a subset of peaks from ChIP data, provides invaluable helps for exploring the high through-put data from either ChIP-seq or ChIP-chip. ChIPseek is freely available at http://chipseek.cgu.edu.tw.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Petrus Tang
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
77
|
Chi H, Takemoto Y, Nsiama TK, Kato T, Nishino N, Ito A, Yoshida M. Design and synthesis of peptide-MCA substrates for a novel assay of histone methyltransferases and their inhibitors. Bioorg Med Chem 2014; 22:1268-75. [PMID: 24486204 DOI: 10.1016/j.bmc.2014.01.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 01/05/2014] [Accepted: 01/06/2014] [Indexed: 01/11/2023]
Abstract
Histone methyltransferases (HMTs) play an important role in controlling gene expression through site-specific methylation of lysines in core and linker histones within chromatin. As the typical HMTs, G9a and Set7/9 have been intensively studied that G9a is specific to the methylation at H3K9 and H3K27 and represses transcription, while Set7/9 methylates at H3K4. In this report we prepared various peptide-MCAs (4-methylcoumaryl-7-amides) related to histone tail and protein-substrates such as p53 and estrogen receptor-α. The fluorogenic substrates are applied for the assay of HMTs and an inhibitor, for example. The most sensitive and specific MCA-substrates to G9a and Set7/9 are discovered. The peptide-MCAs corresponding to the methylation sequences are promising for screening of HMT inhibitors.
Collapse
Affiliation(s)
- Hongfang Chi
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Wakamatsu, Kitakyushu 808-0196, Japan
| | - Yasushi Takemoto
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, Saitama 351-0198, Japan
| | - Tienabe K Nsiama
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Wakamatsu, Kitakyushu 808-0196, Japan
| | - Tamaki Kato
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Wakamatsu, Kitakyushu 808-0196, Japan.
| | - Norikazu Nishino
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Wakamatsu, Kitakyushu 808-0196, Japan
| | - Akihiro Ito
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, Saitama 351-0198, Japan
| | - Minoru Yoshida
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, Saitama 351-0198, Japan
| |
Collapse
|
78
|
Lee YM, Lee SH, Lee KB, Nguyen MP, Lee MY, Park GH, Kwon MJ. Silencing of reversion-inducing cysteine-rich protein with Kazal motifs stimulates hyperplastic phenotypes through activation of epidermal growth factor receptor and hypoxia-inducible factor-2α. PLoS One 2013; 8:e84520. [PMID: 24376819 PMCID: PMC3869844 DOI: 10.1371/journal.pone.0084520] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 11/14/2013] [Indexed: 01/16/2023] Open
Abstract
Reversion-inducing cysteine-rich protein with Kazal motifs (RECK, a tumor suppressor) is down-regulated by the oncogenic signals and hypoxia, but the biological function of RECK in early tumorigenic hyperplastic phenotypes is largely unknown. Knockdown of RECK by small interfering RNA (siRECK) or hypoxia significantly promoted cell proliferation in various normal epithelial cells. Hypoxia as well as knockdown of RECK by siRNA increased the cell cycle progression, the levels of cyclin D1 and c-Myc, and the phosphorylation of Rb protein (p-pRb), but decreased the expression of p21cip1, p27kip1, and p16ink4A. HIF-2α was upregulated by knockdown of RECK, indicating HIF-2α is a downstream target of RECK. As knockdown of RECK induced the activation of epidermal growth factor receptor (EGFR) and treatment of an EGFR kinase inhibitor, gefitinib, suppressed HIF-2α expression induced by the silencing of RECK, we can suggest that the RECK silenicng-EGFR-HIF-2α axis might be a key molecular mechanism to induce hyperplastic phenotype of epithelial cells. It was also found that shRNA of RECK induced larger and more numerous colonies than control cells in an anchorage-independent colony formation assay. Using a xenograft assay, epithelial cells with stably transfected with shRNA of RECK formed a solid mass earlier and larger than those with control cells in nude mice. In conclusion, the suppression of RECK may promote the development of early tumorigenic hyperplastic characteristics in hypoxic stress.
Collapse
Affiliation(s)
- You Mie Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu, Republic of Korea
- School of Life Sciences and Biotechnology, Kyungpook National University, Daegu, Republic of Korea
- * E-mail:
| | - Sun-Hee Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu, Republic of Korea
- School of Life Sciences and Biotechnology, Kyungpook National University, Daegu, Republic of Korea
| | - Kheun Byeol Lee
- School of Life Sciences and Biotechnology, Kyungpook National University, Daegu, Republic of Korea
| | - Minh Phuong Nguyen
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu, Republic of Korea
- School of Life Sciences and Biotechnology, Kyungpook National University, Daegu, Republic of Korea
| | - Min-Young Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu, Republic of Korea
| | - Gyu Hwan Park
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu, Republic of Korea
| | - Mi Jeong Kwon
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
79
|
Cho M, Choi E, Kim JH, Kim H, Kim HM, Lee JI, Hwang KC, Kim HJ, Han G. Lactam-Based HDAC Inhibitors for Anticancer Chemotherapy: Restoration of RUNX3 by Posttranslational Modification and Epigenetic Control. ChemMedChem 2013; 9:649-56. [DOI: 10.1002/cmdc.201300393] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Indexed: 01/20/2023]
|
80
|
Guan X, Zhong X, Men W, Gong S, Zhang L, Han Y. Analysis of EHMT1 expression and its correlations with clinical significance in esophageal squamous cell cancer. Mol Clin Oncol 2013; 2:76-80. [PMID: 24649311 DOI: 10.3892/mco.2013.207] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 08/28/2013] [Indexed: 01/25/2023] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a highly aggressive malignancy, requiring effective biomarkers for prognosis and therapeutic responsiveness. Histone H3K9 methyltransferases (EHMT1 and EHMT2) are global genome organizers, which are crucial for maintaining the balance state of cells in a tissue-specific manner. It was previously suggested that EHMT1 expression is a predictor of prognosis in several malignant tumors; however, the prognostic significance of EHMT1 expression in ESCC has not been determined. A cohort of 50 ESCC cases and 46 paired normal esophageal tissue samples were evaluated to assess the levels of EHMT1 expression by immunohistochemistry and reverse transcription-polymerase chain reaction. The SPSS software package was used for statistical data analysis. A significantly upregulated EHMT1 expression was observed in squamous preinvasive lesions and ESCC compared to the matched normal esophageal epithelia (52.0 vs. 21.7%, respectively). The expression of EHMT1 was correlated with tumor grade (G), depth of invasion (T) and lymph node metastasis (N) in ESCC. EHMT1 overexpression was found to be associated with poor cancer-specific survival in squamous cell carcinomas (χ2=3.922, P=0.048). The expression of EHMT1 was identified as an independent prognostic factor for overall survival in ESCC patients. In conclusion, EHMT1 expression is upregulated in ESCC and early preinvasive esophageal squamous lesions and the overexpression of EHMT1 is associated with poor prognosis in ESCC. Therefore, the expression of EHMT1 may be an effective prognostic biomarker for ESCC.
Collapse
Affiliation(s)
- Xiaojiao Guan
- Department of Pathology, Basic Science College, China Medical University, Shenyang, Liaoning, P.R. China
| | - Xinwen Zhong
- Departments of Thoracic Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, P.R. China
| | - Wanfu Men
- Departments of Thoracic Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, P.R. China
| | - Shulei Gong
- Departments of Thoracic Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, P.R. China
| | - Lin Zhang
- Departments of Thoracic Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, P.R. China
| | - Yuchen Han
- Department of Pathology, Basic Science College, China Medical University, Shenyang, Liaoning, P.R. China ; ; Pathology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, P.R. China
| |
Collapse
|
81
|
Choi JY, Lee S, Hwang S, Jo SA, Kim M, Kim YJ, Pang MG, Jo I. Histone H3 lysine 27 and 9 hypermethylation within the Bad promoter region mediates 5-Aza-2'-deoxycytidine-induced Leydig cell apoptosis: implications of 5-Aza-2'-deoxycytidine toxicity to male reproduction. Apoptosis 2013; 18:99-109. [PMID: 23065098 DOI: 10.1007/s10495-012-0768-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
5-Aza-2'-deoxycitidine (5-Aza), an anticancer agent, results in substantial toxicity to male reproduction, causing a decline in sperm quality associated with reduced testosterone. Here, we report that 5-Aza increased the apoptotic protein Bad epigenetically in the testosterone-producing mouse TM3 Leydig cell line. 5-Aza decreased cell viability in a dose- and time-dependent manner with concomitant increase in Bad protein. This increase is accompanied by increased cleavages of both poly ADP ribose polymerase and caspase-3. Flow cytometric analysis further supported 5-Aza-derived apoptosis in TM3 cells. Bisulfite sequencing analysis failed to identify putative methylcytosine site(s) in CpG islands of the Bad promoter. A chromatin immunoprecipitation assay revealed decreased levels of trimethylation at lysine 27 of histone H3 (H3K27-3me) and H3K9-3me in the Bad promoter region in response to 5-Aza treatment. Knock-down by siRNA of enhancer of zeste homologue 2 (EZH2), a histone methyltransferase responsible for H3K27-3me, or demethylation of H3K9-3me by BIX-01294 showed significantly increased levels in Bad expression and consequent Leydig cell apoptosis. In conclusion, our results demonstrate for the first time that Bad expression is regulated at least by EZH2-mediated H3K27-3me or G9a-like protein/euchromatic histone methyltransferase 1 (GLP/Eu-HMTase1)-mediated H3K9-3me in mouse TM3 Leydig cells, which may be implicated in 5-Aza-derived toxicity to male reproduction.
Collapse
Affiliation(s)
- Ji-Young Choi
- Department of Molecular Medicine, Ewha Womans University Medical School, 911-1, Mok-6-dong, Yangchun-gu, Seoul, 158-710, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
82
|
Herz HM, Garruss A, Shilatifard A. SET for life: biochemical activities and biological functions of SET domain-containing proteins. Trends Biochem Sci 2013; 38:621-39. [PMID: 24148750 DOI: 10.1016/j.tibs.2013.09.004] [Citation(s) in RCA: 225] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Revised: 09/06/2013] [Accepted: 09/12/2013] [Indexed: 01/23/2023]
Affiliation(s)
- Hans-Martin Herz
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | | | | |
Collapse
|
83
|
Kang KA, Piao MJ, Kim KC, Zheng J, Yao CW, Cha JW, Kim HS, Kim DH, Bae SC, Hyun JW. Compound K, a metabolite of ginseng saponin, inhibits colorectal cancer cell growth and induces apoptosis through inhibition of histone deacetylase activity. Int J Oncol 2013; 43:1907-14. [PMID: 24100442 DOI: 10.3892/ijo.2013.2129] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 09/13/2013] [Indexed: 11/06/2022] Open
Abstract
In this study, we investigated the molecular mechanisms underlying the anti-proliferative effects of Compound K, with specific reference to histone modification. Exposure of HT-29 human colon cancer cells to Compound K resulted in time-dependent inhibition of histone deacetylase (HDAC) activity, mRNA and protein expression. Compound K treatment induced unmethylation of the RUNX3 promoter region such as TSA treatment and an accumulation of acetylated histones H3 and H4 within the total cellular chromatin, resulting in an enhanced ability of these histones to bind to the promoter sequences of the tumor suppressor gene Runt-related transcription factor 3 (RUNX3). Treatment of cells with Compound K increased the mRNA and protein expression of RUNX3, as well as p21, a downstream target of RUNX3. These alterations were consistent with cell cycle arrest at the G0/G1 phases and induction of apoptosis. Our results provide new insights into the mechanisms of Compound K action in human colorectal cancer cells and suggest that HDAC inhibition presents a novel approach to prevent or treat colorectal cancer.
Collapse
Affiliation(s)
- Kyoung Ah Kang
- School of Medicine and Institute for Nuclear Science and Technology, Jeju National University, Jeju 690-756, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Abstract
Gastric carcinogenesis is a complex and multifactorial process, in which infection with Helicobacter pylori plays a major role. Additionally, environmental factors as well as genetic susceptibility factors are significant players in gastric cancer (GC) etiology. Gastric cancer development results from the accumulation of multiple genetic and epigenetic changes during the lifetime of the cancer patient that will activate oncogenic and/or inactivate tumor-suppressor pathways. Numerous studies published last year provided new insights into the molecular phenotypes of GC, which will be the main focus of this review. This article also reviews the recent findings on GC tumor-suppressor genes, including putative novel genes. The understanding of the basic mechanisms that underlie gastric carcinogenesis will be of utmost importance for developing strategies of screening, early detection, and treatment of the disease, as most GC patients present with late-stage disease and have poor overall survival.
Collapse
Affiliation(s)
- Ceu Figueiredo
- IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal; Department of Pathology and Oncology, Faculty of Medicine of the University of Porto, Porto, Portugal
| | | | | |
Collapse
|
85
|
Watson M, Chow S, Barsyte D, Arrowsmith C, Shankey TV, Minden M, Hedley D. The study of epigenetic mechanisms based on the analysis of histone modification patterns by flow cytoametry. Cytometry A 2013; 85:78-87. [DOI: 10.1002/cyto.a.22344] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 07/03/2013] [Accepted: 07/14/2013] [Indexed: 01/13/2023]
Affiliation(s)
- Maria Watson
- Ontario Cancer Institute/Princess Margaret Hospital; Toronto ON M5G 2M9 Canada
| | - Sue Chow
- Ontario Cancer Institute/Princess Margaret Hospital; Toronto ON M5G 2M9 Canada
| | - Dalia Barsyte
- Ontario Cancer Institute/Princess Margaret Hospital; Toronto ON M5G 2M9 Canada
| | - Cheryl Arrowsmith
- Ontario Cancer Institute/Princess Margaret Hospital; Toronto ON M5G 2M9 Canada
| | | | - Mark Minden
- Ontario Cancer Institute/Princess Margaret Hospital; Toronto ON M5G 2M9 Canada
- Division of Medical Oncology and Hematology; Princess Margaret Hospital; Toronto ON M5G 2M9 Canada
| | - David Hedley
- Ontario Cancer Institute/Princess Margaret Hospital; Toronto ON M5G 2M9 Canada
- Division of Medical Oncology and Hematology; Princess Margaret Hospital; Toronto ON M5G 2M9 Canada
| |
Collapse
|
86
|
Avci CB, Dodurga Y, Susluer SY, Sıgva ZOD, Yucebas M, Caglar HO, Akalin T, Dalbasti T, Oktar N, Gunduz C. Promoter hypermethylation-mediated down-regulation of RUNX3 gene in human brain tumors. Ir J Med Sci 2013; 183:259-64. [PMID: 23934435 DOI: 10.1007/s11845-013-1001-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Accepted: 08/02/2013] [Indexed: 01/12/2023]
Abstract
BACKGROUND The Runx family proteins, including RUNX3, are tissue-restricted transcription factors and play role in neuronal development and tumorigenesis. RUNX3 has an important role in glioblastoma (GBM) tumorigenesis because of its promoter hypermethylation. AIM We aimed to evaluate the methylation-mediated expression regulation of RUNX3 gene in brain tumors. PATIENTS AND METHODS Cases of meningiomas WHO grade III (3), anaplastic astrocytomas (3), diffuse astrocytoma (3), and GBM (12) were recruited into this study. Real-time quantitative PCR was performed for analyses of DNA promoter methylation and analyses of methylation-mediated expression status of RUNX3 gene was performed by real-time quantitative RT-PCR. RESULTS There was no significant difference between methylated and unmethylated quantitative ratio of RUNX3 gene promoter region and also no significant difference in relative ratio of RUNX3 gene expression in brain tumor groups. Methylated and unmethylated ratio in anaplastic astrocytoma, diffuse astrocytoma, GBM, meningioma (WHO grade III) and in all groups were; 1.44, 1.09, 1.51, 1.52 and 1.43, respectively. One allele was found methylated necessarily. No methylation was detected in one case of GBM group and one case of anaplastic astrocytoma group. There was no unmethylated promoter in one of the GBM cases. There were significant differences between relative ratio of RUNX3 gene expression and methylated/unmethylated ratio rates for all cases (p = 0.001) and GBM groups (p = 0.041). CONCLUSION This study overemphasized the RUNX3 gene importance in brain tumors, due to the existence of at least one methylated allele.
Collapse
Affiliation(s)
- C B Avci
- Department of Medical Biology, Ege University Medical Faculty, Bornova, 35100, Izmir, Turkey,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Tsai YP, Wu KJ. Epigenetic regulation of hypoxia-responsive gene expression: focusing on chromatin and DNA modifications. Int J Cancer 2013; 134:249-56. [PMID: 23564219 DOI: 10.1002/ijc.28190] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 03/28/2013] [Indexed: 12/20/2022]
Abstract
Mammalian cells constantly encounter hypoxia, which is a stress condition occurring during development and physiological processes. To adapt to this inevitable condition, cells develop various mechanisms to cope with this stress and survive. In addition to the activation/stabilization of transcriptional regulators (hypoxia-inducible factors), other epigenetic mechanisms of gene regulation are used. These mechanisms are mediated by various players including transcriptional coregulators, chromatin-modifying complexes, histone modification enzymes and changes in DNA methylation status. Recent progress in all the fields mentioned above has greatly improved the knowledge of how gene regulation contributes to the hypoxic response. This review should shed light on the molecular epigenetic mechanisms of hypoxia-induced gene regulation and help understand the processes adapted by cells to cope with hypoxia.
Collapse
Affiliation(s)
- Ya-Ping Tsai
- Institute of Biochemistry & Molecular Biology, National Yang-Ming University, Taipei, Taiwan
| | | |
Collapse
|
88
|
Novel Therapeutic Strategy With Hypoxia-Inducible Factors via Reversible Epigenetic Regulation Mechanisms in Progressive Tubulointerstitial Fibrosis. Semin Nephrol 2013; 33:375-82. [DOI: 10.1016/j.semnephrol.2013.05.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
89
|
Kim JT, Li J, Jang ER, Gulhati P, Rychahou PG, Napier DL, Wang C, Weiss HL, Lee EY, Anthony L, Townsend CM, Liu C, Evers B. Deregulation of Wnt/β-catenin signaling through genetic or epigenetic alterations in human neuroendocrine tumors. Carcinogenesis 2013; 34:953-61. [PMID: 23354304 PMCID: PMC3643417 DOI: 10.1093/carcin/bgt018] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 12/19/2012] [Accepted: 01/12/2013] [Indexed: 12/18/2022] Open
Abstract
Carcinoid tumors are rare neuroendocrine tumors (NETs) that are increasing in incidence. Mutation and altered expression of Wnt/β-catenin signaling components have been described in many tumors but have not been well-studied in NETs. Here, we observed accumulation of β-catenin in the cytoplasm and/or nucleus in 25% of clinical NET tissues. By mutational analysis, the mutations of β-catenin (I35S) and APC (E1317Q, T1493T) were identified in NET cells and the tissues. Expression of representative Wnt inhibitors was absent or markedly decreased in BON, a human pancreatic carcinoid cell line; treatment with 5-aza-2'-deoxycytidine (5-aza-CdR) increased expression levels of the Wnt inhibitors. Methylation analyses demonstrated that CpG islands of SFRP-1 and Axin-2 were methylated, whereas the promoters of DKK-1, DKK-3 and WIF-1 were unmethylated in four NET cells. Aberrant methylation of SFRP-1 was particularly observed in most of clinical NET tissues. In addition, the repression of these unmethylated genes was associated with histone H3 lysine 9 dimethylation (H3K9me2) in BON cells. Together, 5-aza-CdR treatment inhibited cell proliferation and decreased the protein levels of H3K9me2 and G9a. Moreover, a novel G9a inhibitor, UNC0638, suppressed BON cell proliferation through inhibition of Wnt/β-catenin pathway. Overexpression of the inhibitory genes, particularly SFRP-1 and WIF-1 in BON cells, resulted in suppression of anchorage-independent growth and inhibition of tumor growth in mice. Our findings suggest that aberrant Wnt/β-catenin signaling, through either mutations or epigenetic silencing of Wnt antagonists, contributes to the pathogenesis and growth of NETs and have important clinical implications for the prognosis and treatment of NETs.
Collapse
Affiliation(s)
- Ji Tae Kim
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA
- Department of Surgery, University of Kentucky, Lexington, KY, USA
| | - Jing Li
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA
- Department of Surgery, University of Kentucky, Lexington, KY, USA
| | - Eun Ryoung Jang
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| | - Pat Gulhati
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA
- Department of Surgery, University of Kentucky, Lexington, KY, USA
- MD/PhD Program, University of Texas Medical Branch, Galveston, TX, USA
| | - Piotr G. Rychahou
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA
- Department of Surgery, University of Kentucky, Lexington, KY, USA
| | - Dana L. Napier
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA
- Department of Pathology, University of Kentucky, Lexington, KY, USA
| | - Chi Wang
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Heidi L. Weiss
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Eun Y. Lee
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA
- Department of Pathology, University of Kentucky, Lexington, KY, USA
| | - Lowell Anthony
- Department of Internal Medicine, University of Kentucky, Lexington, KY, USA and
| | | | - Chunming Liu
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| | - B.Mark Evers
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA
- Department of Surgery, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
90
|
Chimge NO, Frenkel B. The RUNX family in breast cancer: relationships with estrogen signaling. Oncogene 2013; 32:2121-30. [PMID: 23045283 PMCID: PMC5770236 DOI: 10.1038/onc.2012.328] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 06/20/2012] [Accepted: 06/20/2012] [Indexed: 12/22/2022]
Abstract
The three RUNX family members are lineage specific master regulators, which also have important, context-dependent roles in carcinogenesis as either tumor suppressors or oncogenes. Here we review evidence for such roles in breast cancer (BCa). RUNX1, the predominant RUNX family member in breast epithelial cells, has a tumor suppressor role reflected by many somatic mutations found in primary tumor biopsies. The classical tumor suppressor gene RUNX3 does not consist of such a mutation hot spot, but it too seems to inhibit BCa; it is often inactivated in human BCa tumors and its haploinsufficiency in mice leads to spontaneous BCa development. The tumor suppressor activities of RUNX1 and RUNX3 are mediated in part by antagonism of estrogen signaling, a feature recently attributed to RUNX2 as well. Paradoxically, however RUNX2, a master osteoblast regulator, has been implicated in various aspects of metastasis in general and bone metastasis in particular. Reciprocating the anti-estrogenic tumor suppressor activity of RUNX proteins, inhibition of RUNX2 by estrogens may help explain their context-dependent anti-metastatic roles. Such roles are reserved to non-osseous metastasis, because ERα is associated with increased, not decreased skeletal dissemination of BCa cells. Finally, based on diverse expression patterns in BCa subtypes, the successful use of future RUNX-based therapies will most likely require careful patient selection.
Collapse
Affiliation(s)
- N-O Chimge
- Department of Biochemistry and Molecular Biology, Institute for Genetic Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - B Frenkel
- Departments of Orthopaedic Surgery and Biochemistry and Molecular Biology, Institute for Genetic Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
91
|
RUNX3 inhibits hypoxia-inducible factor-1α protein stability by interacting with prolyl hydroxylases in gastric cancer cells. Oncogene 2013; 33:1458-67. [DOI: 10.1038/onc.2013.76] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 01/29/2013] [Accepted: 02/01/2013] [Indexed: 12/12/2022]
|
92
|
Calcagno DQ, Gigek CO, Chen ES, Burbano RR, Smith MDAC. DNA and histone methylation in gastric carcinogenesis. World J Gastroenterol 2013; 19:1182-92. [PMID: 23482412 PMCID: PMC3587474 DOI: 10.3748/wjg.v19.i8.1182] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 06/13/2012] [Accepted: 06/28/2012] [Indexed: 02/06/2023] Open
Abstract
Epigenetic alterations contribute significantly to the development and progression of gastric cancer, one of the leading causes of cancer death worldwide. Epigenetics refers to the number of modifications of the chromatin structure that affect gene expression without altering the primary sequence of DNA, and these changes lead to transcriptional activation or silencing of the gene. Over the years, the study of epigenetic processes has increased, and novel therapeutic approaches that target DNA methylation and histone modifications have emerged. A greater understanding of epigenetics and the therapeutic potential of manipulating these processes is necessary for gastric cancer treatment. Here, we review recent research on the effects of aberrant DNA and histone methylation on the onset and progression of gastric tumors and the development of compounds that target enzymes that regulate the epigenome.
Collapse
|
93
|
Hu MD, Xu JC, Fan Y, Xie QC, Li Q, Zhou CX, Mao M, Yang Y. Hypoxia-inducible factor 1 promoter-induced JAB1 overexpression enhances chemotherapeutic sensitivity of lung cancer cell line A549 in an anoxic environment. Asian Pac J Cancer Prev 2013; 13:2115-20. [PMID: 22901179 DOI: 10.7314/apjcp.2012.13.5.2115] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The presence of lung cancer cells in anoxic zones is a key cause od chemotherapeutic resistance. Thus, it is necessary to enhance the sensitivity of such lung cancer cells. However, loss of efficient gene therapeutic targeting and inefficient objective gene expression in the anoxic zone in lung cancer are dilemmas. In the present study, a eukaryotic expression plasmid pUC57-HRE-JAB1 driven by a hypoxia response elements promoter was constructed and introduced into lung cancer cell line A549. The cells were then exposed to a chemotherapeutic drug cis-diamminedichloroplatinum (C-DDP). qRT-PCR and western blotting were used to determine the mRNA and protein level and flow cytometry to examine the cell cycle and apoptosis of A549 transfected pUC57-HRE-JAB1. The results showed that JAB1 gene in the A549 was overexpressed after the transfection, cell proliferation being arrested in G1 phase and the apoptosis ratio significantly increased. Importantly, introduction of pUC57-HRE-JAB1 significantly increased the chemotherapeutic sensitivity of A549 in an anoxic environment. In conclusion, JAB1 overexpression might provide a novel strategy to overcome chemotherapeutic resistance in lung cancer.
Collapse
Affiliation(s)
- Ming-Dong Hu
- Institute of Respiration, Department of Tumors, the Second Affiliated Hospital, the Third Military Medical University, Chongqing, China.
| | | | | | | | | | | | | | | |
Collapse
|
94
|
Chuang LSH, Ito K, Ito Y. RUNX family: Regulation and diversification of roles through interacting proteins. Int J Cancer 2012. [PMID: 23180629 DOI: 10.1002/ijc.27964] [Citation(s) in RCA: 151] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The Runt-related transcription factors (RUNX) belong to an ancient family of metazoan genes involved in developmental processes. Through multiple protein-interacting partners, RUNX proteins have been implicated in diverse signaling pathways and cellular processes. The frequent inactivation of RUNX genes in cancer indicates crucial roles for RUNX in tumor suppression. This review discusses the abilities of RUNX proteins, in particular RUNX3, to integrate oncogenic signals or environmental cues and to initiate appropriate tumor suppressive responses.
Collapse
|
95
|
Purcell DJ, Khalid O, Ou CY, Little GH, Frenkel B, Baniwal SK, Stallcup MR. Recruitment of coregulator G9a by Runx2 for selective enhancement or suppression of transcription. J Cell Biochem 2012; 113:2406-14. [PMID: 22389001 DOI: 10.1002/jcb.24114] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Runx2, best known for its role in regulating osteoblast-specific gene expression, also plays an increasingly recognized role in prostate and breast cancer metastasis. Using the C4-2B/Rx2(dox) prostate cancer cell line that conditionally expressed Runx2 in response to doxycycline treatment, we identified and characterized G9a, a histone methyltransferase, as a novel regulator for Runx2 activity. G9a function was locus-dependent. Whereas depletion of G9a reduced expression of many Runx2 target genes, including MMP9, CSF2, SDF1, and CST7, expression of others, such as MMP13 and PIP, was enhanced. Physical association between G9a and Runx2 was indicated by co-immunoprecipitation, GST-pulldown, immunofluorescence, and fluorescence recovery after photobleaching (FRAP) assays. Since G9a makes repressive histone methylation marks and is primarily known as a corepressor, we further investigated the mechanism by which G9a functioned as a positive regulator for Runx2 target genes. Transient reporter assays indicated that the histone methyltransferase activity of G9a was not required for transcriptional activation by Runx2. Chromatin immunoprecipitation assays for Runx2 and G9a showed that G9a was recruited to endogenous Runx2 binding sites. We conclude that a subset of cancer-related Runx2 target genes require recruitment of G9a for their expression, but do not depend on its histone methyltransferase activity.
Collapse
Affiliation(s)
- Daniel J Purcell
- Department of Biochemistry and Molecular Biology, University of Southern California, Keck School of Medicine, Los Angeles, California 90089-9176, USA
| | | | | | | | | | | | | |
Collapse
|
96
|
Abstract
Emerging evidence indicates that RUNX3 is a tumor suppressor in breast cancer. RUNX3 is frequently inactivated in human breast cancer cell lines and cancer samples by hemizygous deletion of the Runx3 gene, hypermethylation of the Runx3 promoter, or cytoplasmic sequestration of RUNX3 protein. Inactivation of RUNX3 is associated with the initiation and progression of breast cancer. Female Runx3(+/-) mice spontaneously develop ductal carcinoma, and overexpression of RUNX3 inhibits the proliferation, tumorigenic potential, and invasiveness of breast cancer cells. This review is intended to summarize these findings and discuss the tumor suppressor function of RUNX3 in breast cancer.
Collapse
Affiliation(s)
- Lin-Feng Chen
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| |
Collapse
|
97
|
Burrill DR, Inniss MC, Boyle PM, Silver PA. Synthetic memory circuits for tracking human cell fate. Genes Dev 2012; 26:1486-97. [PMID: 22751502 DOI: 10.1101/gad.189035.112] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A variety of biological phenomena, from disease progression to stem cell differentiation, are typified by a prolonged cellular response to a transient environmental cue. While biologically relevant, heterogeneity in these long-term responses is difficult to assess at the population level, necessitating the development of biological tools to track cell fate within subpopulations. Here we present a novel synthetic biology approach for identifying and tracking mammalian cell subpopulations. We constructed three genomically integrated circuits that use bistable autoregulatory transcriptional feedback to retain memory of exposure to brief stimuli. These "memory devices" are used to isolate and track the progeny of cells that responded differentially to doxycycline, hypoxia, or DNA-damaging agents. Following hypoxic or ultraviolet radiation exposure, strongly responding cells activate the memory device and exhibit changes in gene expression, growth rates, and viability for multiple generations after the initial stimulus. Taken together, these results indicate that a heritable memory of hypoxia and DNA damage exists in subpopulations that differ in long-term cell behavior.
Collapse
Affiliation(s)
- Devin R Burrill
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
98
|
Wu CY, Tsai YP, Wu MZ, Teng SC, Wu KJ. Epigenetic reprogramming and post-transcriptional regulation during the epithelial-mesenchymal transition. Trends Genet 2012; 28:454-63. [PMID: 22717049 DOI: 10.1016/j.tig.2012.05.005] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 05/18/2012] [Accepted: 05/18/2012] [Indexed: 01/08/2023]
Abstract
The epithelial-mesenchymal transition (EMT) is a developmental process that is important for organ development, metastasis, cancer stemness, and organ fibrosis. The EMT process is regulated by different signaling pathways as well as by various epigenetic and post-transcriptional mechanisms. Here, we review recent progress describing the role of different chromatin modifiers in various signaling events leading to EMT, including hypoxia, transforming growth factor (TGF)-β, Notch, and Wnt. We also discuss post-transcriptional mechanisms, such as RNA alternative splicing and the effects of miRNAs in EMT regulation. Furthermore, we highlight on-going and future work aimed at a detailed understanding of the epigenetic and post-transcriptional mechanisms that regulate EMT. This work will shed new light on the cellular and tumorigenic processes affected by EMT misregulation.
Collapse
Affiliation(s)
- Chung-Yin Wu
- Department of Occupational Medicine, Far Eastern Memorial Hospital, New Taipei City, 220, Taiwan
| | | | | | | | | |
Collapse
|
99
|
Rodríguez-Jiménez FJ, Moreno-Manzano V. Modulation of hypoxia-inducible factors (HIF) from an integrative pharmacological perspective. Cell Mol Life Sci 2012; 69:519-34. [PMID: 21984597 PMCID: PMC11115032 DOI: 10.1007/s00018-011-0813-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 08/17/2011] [Accepted: 09/01/2011] [Indexed: 12/11/2022]
Abstract
Oxygen homeostasis determines the activity and expression of a multitude of cellular proteins and the interplay of pathways that affect crucial cellular processes for development, physiology, and pathophysiology. Hypoxia-inducible factors (HIFs) are transcription factors that respond to changes in available oxygen in the cellular environment and drives cellular adaptation to such conditions. Selective gene expression under hypoxic conditions is the result of an exquisite regulation of HIF, from the pre-transcriptional stage of the HIF gene to the final transcriptional activity of HIF protein. We provide a dissected analysis of HIF modulation with special focus on hypoxic conditions and HIF pharmacological interventions that can guide the application of any future HIF-mediated therapy.
Collapse
|
100
|
Epigenetic changes induced by oxidative stress in colorectal cancer cells: methylation of tumor suppressor RUNX3. Tumour Biol 2012; 33:403-12. [DOI: 10.1007/s13277-012-0322-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 01/04/2012] [Indexed: 01/18/2023] Open
|