51
|
Kato T, Yamada T, Nakamura H, Igarashi A, Anders RA, Sesaki H, Iijima M. The Loss of Nuclear PTEN Increases Tumorigenesis in a Preclinical Mouse Model for Hepatocellular Carcinoma. iScience 2020; 23:101548. [PMID: 33083717 PMCID: PMC7516300 DOI: 10.1016/j.isci.2020.101548] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/16/2020] [Accepted: 09/07/2020] [Indexed: 02/07/2023] Open
Abstract
The PTEN gene is highly mutated in many cancers, including hepatocellular carcinoma. The PTEN protein is located at different subcellular regions-PTEN at the plasma membrane suppresses PI3-kinase signaling in cell growth, whereas PTEN in the nucleus maintains genome integrity. Here, using nuclear PTEN-deficient mice, we analyzed the role of PTEN in the nucleus in hepatocellular carcinoma that is induced by carcinogen and oxidative stress-producing hepatotoxin. Upon oxidative stress, PTEN was accumulated in the nucleus of the liver, and this accumulation promoted repair of DNA damage in wild-type mice. In contrast, nuclear PTEN-deficient mice had increased DNA damage and accelerated hepatocellular carcinoma formation. Both basal and oxidative stress-induced localization of PTEN in the nucleus require ubiquitination of lysine 13 in PTEN. Taken together, these data suggest the critical role of nuclear PTEN in the protection from DNA damage and tumorigenesis in vivo.
Collapse
Affiliation(s)
- Takashi Kato
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tatsuya Yamada
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hideki Nakamura
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Atsushi Igarashi
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robert A. Anders
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hiromi Sesaki
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Miho Iijima
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Corresponding author
| |
Collapse
|
52
|
Xia Q, Ali S, Liu L, Li Y, Liu X, Zhang L, Dong L. Role of Ubiquitination in PTEN Cellular Homeostasis and Its Implications in GB Drug Resistance. Front Oncol 2020; 10:1569. [PMID: 32984016 PMCID: PMC7492558 DOI: 10.3389/fonc.2020.01569] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/21/2020] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma (GB) is the most common and aggressive brain malignancy, characterized by heterogeneity and drug resistance. PTEN, a crucial tumor suppressor, exhibits phosphatase-dependent (PI3K-AKT-mTOR pathway)/independent (nucleus stability) activities to maintain the homeostatic regulation of numerous physiological processes. Premature and absolute loss of PTEN activity usually tends to cellular senescence. However, monoallelic loss of PTEN is frequently observed at tumor inception, and absolute loss of PTEN activity also occurs at the late stage of gliomagenesis. Consequently, aberrant PTEN homeostasis, mainly regulated at the post-translational level, renders cells susceptible to tumorigenesis and drug resistance. Ubiquitination-mediated degradation or deregulated intracellular localization of PTEN hijacks cell growth rheostat control for neoplastic remodeling. Functional inactivation of PTEN mediated by the overexpression of ubiquitin ligases (E3s) renders GB cells adaptive to PTEN loss, which confers resistance to EGFR tyrosine kinase inhibitors and immunotherapies. In this review, we discuss how glioma cells develop oncogenic addiction to the E3s-PTEN axis, promoting their growth and proliferation. Antitumor strategies involving PTEN-targeting E3 ligase inhibitors can restore the tumor-suppressive environment. E3 inhibitors collectively reactivate PTEN and may represent next-generation treatment against deadly malignancies such as GB.
Collapse
Affiliation(s)
- Qin Xia
- School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Sakhawat Ali
- School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Liqun Liu
- School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Yang Li
- School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Xuefeng Liu
- School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Lingqiang Zhang
- State Key Laboratory of Proteomics, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing, China
| | - Lei Dong
- School of Life Sciences, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
53
|
Abstract
As a unique subpopulation of cancer cells, cancer stem cells (CSCs) acquire the resistance to conventional therapies and appear to be the prime cause of cancer recurrence. Like their normal counterparts, CSCs can renew themselves and generate differentiated progenies. Cancer stem cells are distinguished among heterogenous cancer cells by molecular markers and their capacity of efficiently forming new tumors composed of diverse and heterogenous cancer cells. Tumor heterogeneity can be inter- or intra-tumor, molecularly resulting from the accumulation of genetic and non-genetic alterations. Non-genetic alterations are mainly changes on epigenetic modifications of DNA and histone, and chromatin remodeling. As tumor-initiating cells and contributing to the tumor heterogeneity in the brain, glioblastoma stem cells (GSCs) attract extensive research interests. Epigenetic modifications confer on tumor cells including CSCs reversible and inheritable genomic changes and affect gene expression without alteration in DNA sequence. Here, we will review recent advances in histone demethylation, DNA methylation, RNA methylation and ubiquitination in glioblastomas and their impacts on tumorigenesis with a focus on CSCs.
Collapse
Affiliation(s)
- Kezhou Zhu
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Victoria Xie
- M.D. Program, Baylor College of Medicine, Houston, TX, United States
| | - Suyun Huang
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| |
Collapse
|
54
|
Zeng C, Xiong D, Zhang K, Yao J. Shank-associated RH domain interactor signaling in tumorigenesis. Oncol Lett 2020; 20:2579-2586. [PMID: 32782575 PMCID: PMC7400965 DOI: 10.3892/ol.2020.11850] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 05/18/2020] [Indexed: 12/13/2022] Open
Abstract
Shank-associated RH domain interactor (SHARPIN) is a component of the linear ubiquitin chain activation complex, which is essential for p53 signaling and inflammation. Previous studies have demonstrated that SHARPIN functions in tumor cell survival, growth, invasion and tumorigenesis. These functions include the regulation of p53 proteins via poly-ubiquitination, interaction with a type II protein arginine methyltransferase 5 in melanoma cells, modulating ras-associated protein-1 through p38 and c-Jun N-terminal kinases/c-Jun signaling, and mediating phosphoinositide 3-kinase/AKT signaling via phosphatase and tensin homologue deleted on chromosome 10. Hence, SHARPIN not only participates in the inflammatory response but also serves a critical role in tumor cells. The present review summarizes the biological functions of the absence or presence of SHARPIN with regard to activating the canonical NF-κB signaling pathway and the effects on p53 and other signaling pathways for the modulation of tumorigenesis. Therefore, this review provides insight into the underlying role and mechanisms of SHARPIN in tumorigenesis, as well as its potential application in cancer therapy.
Collapse
Affiliation(s)
- Chong Zeng
- Medical Research Center, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde, Foshan, Guangdong 528308, P.R. China
| | - Dan Xiong
- Department of Hematology, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde, Foshan, Guangdong 528308, P.R. China
| | - Ketao Zhang
- Department of Hepatobiliary Surgery, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde, Foshan, Guangdong 528308, P.R. China
| | - Jie Yao
- Medical Research Center, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde, Foshan, Guangdong 528308, P.R. China
| |
Collapse
|
55
|
A co-formulation of interferons type I and II enhances temozolomide response in glioblastoma with unmethylated MGMT promoter status. Mol Biol Rep 2020; 47:5263-5271. [PMID: 32607953 DOI: 10.1007/s11033-020-05604-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 06/20/2020] [Indexed: 10/24/2022]
Abstract
Temozolomide (TMZ) is a chemotherapeutic used for the treatment of glioblastoma. The MGMT repair enzyme (O'-(6)-methyl guanine-DNA-methyltransferase) promoter methylation is a predictive biomarker to TMZ response; interferons (IFNs) type I can downregulate MGMT expression improving survival in patients with unmethylated MGMT promoter. HeberFERON is a co-formulation of IFNs type I and II with higher antiproliferative effect over glioblastoma cell lines than individual IFNs. We investigated the proliferative response of patient-derived glioblastoma cultures to HeberFERON and its combination with TMZ in relation to MGMT promoter methylation and the regulation of MGMT transcript after HeberFERON treatment. Eleven glioblastoma-derived cultures, molecularly classified according to TCGA and MGMT promoter methylation, were assayed for proliferation inhibition with HeberFERON at low doses (1-25 IU/mL) [alone or combined with TMZ] or at higher doses (50-200 IU/mL) using CellTiter-Glo Luminescent Cell Viability Assay (Promega). Eight cultures were further treated with 100 IU/mL of HeberFERON for 72 h, total RNA purified (Qiagen) and converted to cDNA (Superscript III kit, Invitrogen) as quantitative PCR templates. Changes of MGMT&P53 transcripts level were monitored. Response of cultures to HeberFERON is variable, dose-dependent and apparently independent from TCGA classification and MGMT methylation status, based on the eight Classical cultures data. When combining HeberFERON with TMZ there was an increase in cell death for cultures, 2/4 with methylated and 5/5 with unmethylated MGMT promoter. In two out five cultures with unmethylated MGMT status, we observed a decrease of MGMT gene levels and an increase in P53 encoding gene levels. HeberFERON and TMZ combination should be further assayed in glioblastoma, mainly for those with unmethylated MGMT promoter.
Collapse
|
56
|
Ho J, Cruise ES, Dowling RJO, Stambolic V. PTEN Nuclear Functions. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a036079. [PMID: 31712221 DOI: 10.1101/cshperspect.a036079] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
For years, clinical and basic researchers have been aware of the presence of PTEN in the nucleus in cell culture, animal models, and both healthy and diseased human tissues. Despite the early recognition of nuclear PTEN, the understanding of the mechanisms of its nuclear localization, function in the nucleus, and importance in biology and human disease has been lacking. Over the last decade, emerging concepts for the complex involvement of nuclear PTEN in a variety of processes, including genome maintenance and DNA repair, cell-cycle control, gene expression, and DNA replication, are illuminating what could prove to be the key path toward a full understanding of PTEN function in health and disease. Dysregulation of nuclear PTEN is now considered an important aspect of the etiology of many pathologic conditions, prompting reconsideration of the therapeutic approaches aimed at countering the consequences of PTEN deficiency. This new knowledge is fueling the development of innovative therapeutic modalities for a broad spectrum of human conditions, from cancer and metabolic diseases, to neurological disorders and autism.
Collapse
Affiliation(s)
- Jason Ho
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | - Edward S Cruise
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Ryan J O Dowling
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Vuk Stambolic
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| |
Collapse
|
57
|
A review of predictive, prognostic and diagnostic biomarkers for brain tumours: towards personalised and targeted cancer therapy. JOURNAL OF RADIOTHERAPY IN PRACTICE 2019. [DOI: 10.1017/s1460396919000955] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
AbstractBackground:Brain tumours are relatively rare disease but present a large medical challenge as there is currently no method for early detection of the tumour and are typically not diagnosed until patients have progressed to symptomatic stage which significantly decreases chances of survival and also minimises treatment efficacy. However, if brain cancers can be diagnosed at early stages and also if clinicians have the potential to prospectively identify patients likely to respond to specific treatments, then there is a very high potential to increase patients’ treatment efficacy and survival. In recent years, there have been several investigations to identify biomarkers for brain cancer risk assessment, early detection and diagnosis, the likelihood of identifying which group of patients will benefit from a particular treatment and monitoring patient response to treatment.Materials and methods:This paper reports on a review of 21 current clinical and emerging biomarkers used in risk assessment, screening for early detection and diagnosis, and monitoring the response of treatment of brain cancers.Conclusion:Understanding biomarkers, molecular mechanisms and signalling pathways can potentially lead to personalised and targeted treatment via therapeutic targeting of specific genetic aberrant pathways which play key roles in malignant brain tumour formation. The future holds promising for the use of biomarker analysis as a major factor for personalised and targeted brain cancer treatment, since biomarkers have the potential to measure early disease detection and diagnosis, the risk of disease development and progression, improved patient stratification for various treatment paradigms, provide accurate information of patient response to a specific treatment and inform clinicians about the likely outcome of a brain cancer diagnosis independent of the treatment received.
Collapse
|
58
|
Fernández-Acero T, Bertalmio E, Luna S, Mingo J, Bravo-Plaza I, Rodríguez-Escudero I, Molina M, Pulido R, Cid VJ. Expression of Human PTEN-L in a Yeast Heterologous Model Unveils Specific N-Terminal Motifs Controlling PTEN-L Subcellular Localization and Function. Cells 2019; 8:cells8121512. [PMID: 31779149 PMCID: PMC6952770 DOI: 10.3390/cells8121512] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/21/2019] [Accepted: 11/22/2019] [Indexed: 12/21/2022] Open
Abstract
The tumour suppressor PTEN is frequently downregulated, mutated or lost in several types of tumours and congenital disorders including PHTS (PTEN Hamartoma Tumour Syndrome) and ASD (Autism Spectrum Disorder). PTEN is a lipid phosphatase whose activity over the lipid messenger PIP3 counteracts the stimulation of the oncogenic phosphatidylinositol 3-kinase (PI3K) pathway. Recently, several extended versions of PTEN produced in the cell by alternative translation initiation have been described, among which, PTEN-L and PTEN-M represent the longest isoforms. We previously developed a humanized yeast model in which the expression of PI3K in Saccharomyces cerevisiae led to growth inhibition that could be suppressed by co-expression of PTEN. Here, we show that the expression of PTEN-L and PTEN-M in yeast results in robust counteracting of PI3K-dependent growth inhibition. N-terminally tagged GFP-PTEN-L was sharply localized at the yeast plasma membrane. Point mutations of a putative membrane-binding helix located at the PTEN-L extension or its deletion shifted localization to nuclear. Also, a shift from plasma membrane to nucleus was observed in mutants at basic amino acid clusters at the PIP2-binding motif, and at the Cα2 and CBR3 loops at the C2 domain. In contrast, C-terminally tagged PTEN-L-GFP displayed mitochondrial localization in yeast, which was shifted to plasma membrane by removing the first 22 PTEN-L residues. Our results suggest an important role of the N-terminal extension of alternative PTEN isoforms on their spatial and functional regulation.
Collapse
Affiliation(s)
- Teresa Fernández-Acero
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid (UCM) & Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS). Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain; (T.F.-A.); (E.B.); (I.B.-P.); (I.R.-E.); (M.M.)
| | - Eleonora Bertalmio
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid (UCM) & Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS). Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain; (T.F.-A.); (E.B.); (I.B.-P.); (I.R.-E.); (M.M.)
| | - Sandra Luna
- Instituto de Investigación Sanitaria Biocruces Bizkaia, 48903 Barakaldo, Spain; (S.L.); (J.M.)
| | - Janire Mingo
- Instituto de Investigación Sanitaria Biocruces Bizkaia, 48903 Barakaldo, Spain; (S.L.); (J.M.)
| | - Ignacio Bravo-Plaza
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid (UCM) & Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS). Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain; (T.F.-A.); (E.B.); (I.B.-P.); (I.R.-E.); (M.M.)
| | - Isabel Rodríguez-Escudero
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid (UCM) & Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS). Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain; (T.F.-A.); (E.B.); (I.B.-P.); (I.R.-E.); (M.M.)
| | - María Molina
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid (UCM) & Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS). Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain; (T.F.-A.); (E.B.); (I.B.-P.); (I.R.-E.); (M.M.)
| | - Rafael Pulido
- Instituto de Investigación Sanitaria Biocruces Bizkaia, 48903 Barakaldo, Spain; (S.L.); (J.M.)
- IKERBASQUE, Fundación Vasca para la Ciencia, 48011 Bilbao, Spain
- Correspondence: (R.P.); (V.J.C.)
| | - Víctor J. Cid
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid (UCM) & Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS). Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain; (T.F.-A.); (E.B.); (I.B.-P.); (I.R.-E.); (M.M.)
- Correspondence: (R.P.); (V.J.C.)
| |
Collapse
|
59
|
Multifaceted Regulation of PTEN Subcellular Distributions and Biological Functions. Cancers (Basel) 2019; 11:cancers11091247. [PMID: 31454965 PMCID: PMC6770588 DOI: 10.3390/cancers11091247] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/15/2019] [Accepted: 08/19/2019] [Indexed: 12/19/2022] Open
Abstract
Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a tumor suppressor gene frequently found to be inactivated in over 30% of human cancers. PTEN encodes a 54-kDa lipid phosphatase that serves as a gatekeeper of the phosphoinositide 3-kinase pathway involved in the promotion of multiple pro-tumorigenic phenotypes. Although the PTEN protein plays a pivotal role in carcinogenesis, cumulative evidence has implicated it as a key signaling molecule in several other diseases as well, such as diabetes, Alzheimer's disease, and autism spectrum disorders. This finding suggests that diverse cell types, especially differentiated cells, express PTEN. At the cellular level, PTEN is widely distributed in all subcellular compartments and organelles. Surprisingly, the cytoplasmic compartment, not the plasma membrane, is the predominant subcellular location of PTEN. More recently, the finding of a secreted 'long' isoform of PTEN and the presence of PTEN in the cell nucleus further revealed unexpected biological functions of this multifaceted molecule. At the regulatory level, PTEN activity, stability, and subcellular distribution are modulated by a fascinating array of post-translational modification events, including phosphorylation, ubiquitination, and sumoylation. Dysregulation of these regulatory mechanisms has been observed in various human diseases. In this review, we provide an up-to-date overview of the knowledge gained in the last decade on how different functional domains of PTEN regulate its biological functions, with special emphasis on its subcellular distribution. This review also highlights the findings of published studies that have reported how mutational alterations in specific PTEN domains can lead to pathogenesis in humans.
Collapse
|
60
|
Mester JL, Ghosh R, Pesaran T, Huether R, Karam R, Hruska KS, Costa HA, Lachlan K, Ngeow J, Barnholtz-Sloan J, Sesock K, Hernandez F, Zhang L, Milko L, Plon SE, Hegde M, Eng C. Gene-specific criteria for PTEN variant curation: Recommendations from the ClinGen PTEN Expert Panel. Hum Mutat 2019; 39:1581-1592. [PMID: 30311380 PMCID: PMC6329583 DOI: 10.1002/humu.23636] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/27/2018] [Accepted: 08/28/2018] [Indexed: 01/07/2023]
Abstract
The ClinGen PTEN Expert Panel was organized by the ClinGen Hereditary Cancer Clinical Domain Working Group to assemble clinicians, researchers, and molecular diagnosticians with PTEN expertise to develop specifications to the 2015 ACMG/AMP Sequence Variant Interpretation Guidelines for PTEN variant interpretation. We describe finalized PTEN-specific variant classification criteria and outcomes from pilot testing of 42 variants with benign/likely benign (BEN/LBEN), pathogenic/likely pathogenic (PATH/LPATH), uncertain significance (VUS), and conflicting (CONF) ClinVar assertions. Utilizing these rules, classifications concordant with ClinVar assertions were achieved for 14/15 (93.3%) BEN/LBEN and 16/16 (100%) PATH/LPATH ClinVar consensus variants for an overall concordance of 96.8% (30/31). The variant where agreement was not reached was a synonymous variant near a splice donor with noncanonical sequence for which in silico models cannot predict the native site. Applying these rules to six VUS and five CONF variants, adding shared internal laboratory data enabled one VUS to be classified as LBEN and two CONF variants to be as classified as PATH and LPATH. This study highlights the benefit of gene-specific criteria and the value of sharing internal laboratory data for variant interpretation. Our PTEN-specific criteria and expertly reviewed assertions should prove helpful for laboratories and others curating PTEN variants.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Helio A Costa
- Stanford University School of Medicine, Stanford, California
| | - Katherine Lachlan
- Wessex Clinical Genetics Service, University Hospitals Southampton, Southampton, UK.,Human Genetics and Genomic Medicine, Faculty of Medicine, University of Southampton, Southampton, UK
| | | | - Jill Barnholtz-Sloan
- Case Comprehensive Cancer Center, Cleveland, Ohio.,Case Western Reserve University School of Medicine, Cleveland, Ohio
| | | | | | - Liying Zhang
- Memorial Sloan Kettering Cancer Center, New York, New York
| | - Laura Milko
- University of North Carolina, Chapel Hill, North Carolina
| | | | - Madhuri Hegde
- Emory University, Atlanta, Georgia.,PerkinElmer Genetics, Pittsburgh, Pennsylvania
| | - Charis Eng
- Case Comprehensive Cancer Center, Cleveland, Ohio.,Case Western Reserve University School of Medicine, Cleveland, Ohio.,Cleveland Clinic Genomic Medicine Institute, Cleveland, Ohio
| |
Collapse
|
61
|
Bazzichetto C, Conciatori F, Pallocca M, Falcone I, Fanciulli M, Cognetti F, Milella M, Ciuffreda L. PTEN as a Prognostic/Predictive Biomarker in Cancer: An Unfulfilled Promise? Cancers (Basel) 2019; 11:cancers11040435. [PMID: 30925702 PMCID: PMC6520939 DOI: 10.3390/cancers11040435] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/22/2019] [Accepted: 03/25/2019] [Indexed: 12/22/2022] Open
Abstract
Identifying putative biomarkers of clinical outcomes in cancer is crucial for successful enrichment, and for the selection of patients who are the most likely to benefit from a specific therapeutic approach. Indeed, current research in personalized cancer therapy focuses on the possibility of identifying biomarkers that predict prognosis, sensitivity or resistance to therapies. Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a tumor suppressor gene that regulates several crucial cell functions such as proliferation, survival, genomic stability and cell motility through both enzymatic and non-enzymatic activities and phosphatidylinositol 3-kinase (PI3K)-dependent and -independent mechanisms. Despite its undisputed role as a tumor suppressor, assessment of PTEN status in sporadic human tumors has yet to provide clinically robust prognostic, predictive or therapeutic information. This is possibly due to the exceptionally complex regulation of PTEN function, which involves genetic, transcriptional, post-transcriptional and post-translational events. This review shows a brief summary of the regulation and function of PTEN and discusses its controversial aspects as a prognostic/predictive biomarker.
Collapse
Affiliation(s)
- Chiara Bazzichetto
- Medical Oncology 1, IRCCS - Regina Elena National Cancer Institute, Rome 00144, Italy.
- Department of Molecular Medicine, University of Rome, La Sapienza, Rome 00185, Italy.
| | - Fabiana Conciatori
- Medical Oncology 1, IRCCS - Regina Elena National Cancer Institute, Rome 00144, Italy.
| | - Matteo Pallocca
- SAFU, Department of Research, Advanced Diagnostics, and Technological Innovation, IRCCS - Regina Elena National Cancer Institute, Rome 00144, Italy.
| | - Italia Falcone
- Medical Oncology 1, IRCCS - Regina Elena National Cancer Institute, Rome 00144, Italy.
| | - Maurizio Fanciulli
- SAFU, Department of Research, Advanced Diagnostics, and Technological Innovation, IRCCS - Regina Elena National Cancer Institute, Rome 00144, Italy.
| | - Francesco Cognetti
- Medical Oncology 1, IRCCS - Regina Elena National Cancer Institute, Rome 00144, Italy.
| | - Michele Milella
- Section of Oncology, Department of Medicine, University of Verona School of Medicine and Verona University Hospital Trust, Verona 37126, Italy.
| | - Ludovica Ciuffreda
- Medical Oncology 1, IRCCS - Regina Elena National Cancer Institute, Rome 00144, Italy.
- SAFU, Department of Research, Advanced Diagnostics, and Technological Innovation, IRCCS - Regina Elena National Cancer Institute, Rome 00144, Italy.
| |
Collapse
|
62
|
Verma S, Shukla S, Pandey M, MacLennan GT, Gupta S. Differentially Expressed Genes and Molecular Pathways in an Autochthonous Mouse Prostate Cancer Model. Front Genet 2019; 10:235. [PMID: 30972102 PMCID: PMC6445055 DOI: 10.3389/fgene.2019.00235] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 03/04/2019] [Indexed: 12/17/2022] Open
Abstract
Prostate cancer remains a major public health problem and the second leading cause of cancer-related deaths in men in the United States. The present study aims to understand the molecular pathway(s) of prostate cancer which is essential for early detection and treatment. Dorsolateral prostate from 20 week transgenic adenocarcinoma of the mouse prostate (TRAMP) mice, which spontaneously develops prostate cancer and recapitulates human disease and age-matched non-transgenic littermates were utilized for microarray analysis. Mouse genome network and pathway analyses were mapped to the human genome using the Ingenuity Pathway Analysis (IPA) database for annotation, visualization, and integrated discovery. In total, 136 differentially expressed genes, including 32 downregulated genes and 104 upregulated genes were identified in the dorsolateral prostate of TRAMP, compared to non-transgenic mice. A subset of differentially expressed genes were validated by qRT-PCR. Alignment with human genome database identified 18 different classes of proteins, among these, 36% were connected to the nucleic acid binding, including ribosomal proteins, which play important role in protein synthesis-the most enriched pathway in the development of prostate cancer. Furthermore, the results suggest deregulation of signaling molecules (9%) and enzyme modulators (8%) affect various pathways. An imbalance in other protein classes, including transporter proteins (7%), hydrolases (6%), oxidoreductases, and cytoskeleton proteins (5%), contribute to cancer progression. Our study evaluated the underlying pathways and its connection to human prostate cancer, which may further help assess the risk of disease development and progression and identify potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Shiv Verma
- Department of Urology, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Sanjeev Shukla
- Department of Urology, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
- The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - Mitali Pandey
- Department of Urology, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Vancouver Prostate Center, Vancouver, BC, Canada
| | - Gregory T MacLennan
- Department of Urology, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Department of Pathology, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - Sanjay Gupta
- Department of Urology, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
- The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
- Department of Nutrition, Case Western Reserve University, Cleveland, OH, United States
- Department of Urology, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, United States
- Division of General Medical Sciences, Case Comprehensive Cancer Center, Cleveland, OH, United States
| |
Collapse
|
63
|
Wang H, Ma Z, Liu X, Zhang C, Hu Y, Ding L, Qi P, Wang J, Lu S, Li Y. MiR-183-5p is required for non-small cell lung cancer progression by repressing PTEN. Biomed Pharmacother 2019; 111:1103-1111. [PMID: 30841423 DOI: 10.1016/j.biopha.2018.12.115] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 12/11/2018] [Accepted: 12/29/2018] [Indexed: 12/14/2022] Open
Abstract
Lung cancer is the leading cause in all cancer deaths. A low survival rate and high recurrence rate of lung cancer make the endeavor to identify new, more effective therapies a primary goal. MicroRNAs (miRNAs) are regarded as regulators of tumorigenesis and it is known that miR-183-5p is significantly upregulated in non-small cell lung cancer (NSCLC), suggesting it has an oncogenic function in lung cancer. In this study, we found that miR-183-5p could promote lung carcinogenesis by directly targeting phosphatase tensin (PTEN). Further experiments indicated that miR-183-5p could suppress p53 and activate AKT signaling through phosphorylation. Moreover, our data indicated that miR-183-5p promoted tumor metastasis and tumor growth in vivo. Collectively, these results showed that miR-183-5p is required for NSCLC development through the suppressing PTEN, and might be a promising target in the diagnosis and treatment of lung cancer in the future.
Collapse
Affiliation(s)
- Huimin Wang
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Zhongliang Ma
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Xiaomin Liu
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Caiyan Zhang
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Yanping Hu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Lei Ding
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Pengfei Qi
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Ju Wang
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai 200444, China; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Shengdi Lu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Xuhui District, Shanghai 200233, China.
| | - Yanli Li
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
64
|
Álvarez-Garcia V, Tawil Y, Wise HM, Leslie NR. Mechanisms of PTEN loss in cancer: It's all about diversity. Semin Cancer Biol 2019; 59:66-79. [PMID: 30738865 DOI: 10.1016/j.semcancer.2019.02.001] [Citation(s) in RCA: 266] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/22/2019] [Accepted: 02/05/2019] [Indexed: 01/04/2023]
Abstract
PTEN is a phosphatase which metabolises PIP3, the lipid product of PI 3-Kinase, directly opposing the activation of the oncogenic PI3K/AKT/mTOR signalling network. Accordingly, loss of function of the PTEN tumour suppressor is one of the most common events observed in many types of cancer. Although the mechanisms by which PTEN function is disrupted are diverse, the most frequently observed events are deletion of a single gene copy of PTEN and gene silencing, usually observed in tumours with little or no PTEN protein detectable by immunohistochemistry. Accordingly, with the exceptions of glioblastoma and endometrial cancer, mutations of the PTEN coding sequence are uncommon (<10%) in most types of cancer. Here we review the data relating to PTEN loss in seven common tumour types and discuss mechanisms of PTEN regulation, some of which appear to contribute to reduced PTEN protein levels in cancers.
Collapse
Affiliation(s)
- Virginia Álvarez-Garcia
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - Yasmine Tawil
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - Helen M Wise
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - Nicholas R Leslie
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh, EH14 4AS, UK.
| |
Collapse
|
65
|
Valentín-Guillama G, López S, Kucheryavykh YV, Chorna NE, Pérez J, Ortiz-Rivera J, Inyushin M, Makarov V, Valentín-Acevedo A, Quinones-Hinojosa A, Boukli N, Kucheryavykh LY. HIV-1 Envelope Protein gp120 Promotes Proliferation and the Activation of Glycolysis in Glioma Cell. Cancers (Basel) 2018; 10:cancers10090301. [PMID: 30200472 PMCID: PMC6162763 DOI: 10.3390/cancers10090301] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 08/28/2018] [Accepted: 08/30/2018] [Indexed: 12/14/2022] Open
Abstract
Patients infected with human immunodeficiency virus (HIV) are more prone to developing cancers, including glioblastomas (GBMs). The median survival for HIV positive GBM patients is significantly shorter than for those who are uninfected, despite the fact that they receive the same treatments. The nature of the GBM–HIV association remains poorly understood. In this study, we analyzed the effect of the HIV envelope glycoprotein gp120 on GBM cell proliferation. Specifically, we performed cell cycle, western blot, protein synthesis and metabolomics analysis as well as ATP production and oxygen consumption assays to evaluate proliferation and metabolic pathways in primary human glioma cell line, U87, A172 cells and in the HIVgp120tg/GL261 mouse model. Glioma cells treated with gp120 (100 ng/mL for 7–10 days) showed higher proliferation rates and upregulation in the expression of enolase 2, hexokinase and glyceraldehyde-3-phosphate dehydrogenase when compared to untreated cells. Furthermore, we detected an increase in the activity of pyruvate kinase and a higher glycolytic index in gp120 treated cells. Gp120 treated GBM cells also showed heightened lipid and protein synthesis. Overall, we demonstrate that in glioma cells, the HIV envelope glycoprotein promotes proliferation and activation of glycolysis resulting in increased protein and lipid synthesis.
Collapse
Affiliation(s)
- Gabriel Valentín-Guillama
- Department of Biochemistry, Universidad Central del Caribe, School of Medicine, Ave. Laurel, Santa Juanita, Bayamon, PR 00956, USA.
| | - Sheila López
- Biomedical Proteomics Facility, Department of Microbiology and Immunology, Universidad Central del Caribe, School of Medicine, Ave. Laurel, Santa Juanita, Bayamon, PR 00956, USA.
| | - Yuriy V Kucheryavykh
- Department of Biochemistry, Universidad Central del Caribe, School of Medicine, Ave. Laurel, Santa Juanita, Bayamon, PR 00956, USA.
| | - Nataliya E Chorna
- Department of Biochemistry, University of Puerto Rico, School of Medicine, San Juan, PR 00936, USA.
| | - Jose Pérez
- Department of Biochemistry, Universidad Central del Caribe, School of Medicine, Ave. Laurel, Santa Juanita, Bayamon, PR 00956, USA.
| | - Jescelica Ortiz-Rivera
- Department of Biochemistry, Universidad Central del Caribe, School of Medicine, Ave. Laurel, Santa Juanita, Bayamon, PR 00956, USA.
| | - Michael Inyushin
- Department of Physiology, Universidad Central del Caribe, School of Medicine, Ave. Laurel, Santa Juanita, Bayamon, PR 00956, USA, .
| | - Vladimir Makarov
- Department of Physics, University of Puerto Rico, Río Piedras Campus, San Juan, PR 00931, USA.
| | - Aníbal Valentín-Acevedo
- Department of Microbiology and Immunology, Universidad Central del Caribe, School of Medicine, Ave. Laurel, Santa Juanita, Bayamon, PR 00956, USA.
| | - Alfredo Quinones-Hinojosa
- Department of Neurologic Surgery, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL 32224, USA.
| | - Nawal Boukli
- Biomedical Proteomics Facility, Department of Microbiology and Immunology, Universidad Central del Caribe, School of Medicine, Ave. Laurel, Santa Juanita, Bayamon, PR 00956, USA.
| | - Lilia Y Kucheryavykh
- Department of Biochemistry, Universidad Central del Caribe, School of Medicine, Ave. Laurel, Santa Juanita, Bayamon, PR 00956, USA.
| |
Collapse
|
66
|
Igarashi A, Itoh K, Yamada T, Adachi Y, Kato T, Murata D, Sesaki H, Iijima M. Nuclear PTEN deficiency causes microcephaly with decreased neuronal soma size and increased seizure susceptibility. J Biol Chem 2018; 293:9292-9300. [PMID: 29735527 DOI: 10.1074/jbc.ra118.002356] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/20/2018] [Indexed: 12/25/2022] Open
Abstract
Defects in phosphatase and tensin homolog (PTEN) are associated with neurological disorders and tumors. PTEN functions at two primary intracellular locations: the plasma membrane and the nucleus. At the membrane, PTEN functions as a phosphatidylinositol (3,4,5)-trisphosphate phosphatase and suppresses PI 3-kinase signaling that drives cell growth and tumorigenesis. However, the in vivo function of nuclear PTEN is unclear. Here, using CRISPR/Cas9, we generated a mouse model in which PTEN levels in the nucleus are decreased. Nuclear PTEN-deficient mice were born with microcephaly and maintained a small brain during adulthood. The size of neuronal soma was significantly smaller in the cerebellum, cerebral cortex, and hippocampus. Also, these mice were prone to seizure. No changes in PI 3-kinase signaling were observed. By contrast, the size of other organs was unaffected. Therefore, nuclear PTEN is essential for the health of the brain by promoting the growth of neuronal soma size during development.
Collapse
Affiliation(s)
- Atsushi Igarashi
- From the Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Kie Itoh
- From the Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Tatsuya Yamada
- From the Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Yoshihiro Adachi
- From the Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Takashi Kato
- From the Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Daisuke Murata
- From the Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Hiromi Sesaki
- From the Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Miho Iijima
- From the Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| |
Collapse
|
67
|
Mighell TL, Evans-Dutson S, O'Roak BJ. A Saturation Mutagenesis Approach to Understanding PTEN Lipid Phosphatase Activity and Genotype-Phenotype Relationships. Am J Hum Genet 2018; 102:943-955. [PMID: 29706350 PMCID: PMC5986715 DOI: 10.1016/j.ajhg.2018.03.018] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 03/16/2018] [Indexed: 12/19/2022] Open
Abstract
Phosphatase and tensin homolog (PTEN) is a tumor suppressor frequently mutated in diverse cancers. Germline PTEN mutations are also associated with a range of clinical outcomes, including PTEN hamartoma tumor syndrome (PHTS) and autism spectrum disorder (ASD). To empower new insights into PTEN function and clinically relevant genotype-phenotype relationships, we systematically evaluated the effect of PTEN mutations on lipid phosphatase activity in vivo. Using a massively parallel approach that leverages an artificial humanized yeast model, we derived high-confidence estimates of functional impact for 7,244 single amino acid PTEN variants (86% of possible). We identified 2,273 mutations with reduced cellular lipid phosphatase activity, which includes 1,789 missense mutations. These data recapitulated known functional findings but also uncovered new insights into PTEN protein structure, biochemistry, and mutation tolerance. Several residues in the catalytic pocket showed surprising mutational tolerance. We identified that the solvent exposure of wild-type residues is a critical determinant of mutational tolerance. Further, we created a comprehensive functional map by leveraging correlations between amino acid substitutions to impute functional scores for all variants, including those not present in the assay. Variant functional scores can reliably discriminate likely pathogenic from benign alleles. Further, 32% of ClinVar unclassified missense variants are phosphatase deficient in our assay, supporting their reclassification. ASD-associated mutations generally had less severe fitness scores relative to PHTS-associated mutations (p = 7.16 × 10-5) and a higher fraction of hypomorphic mutations, arguing for continued genotype-phenotype studies in larger clinical datasets that can further leverage these rich functional data.
Collapse
Affiliation(s)
- Taylor L Mighell
- Neuroscience Graduate Program, Oregon Health & Science University, Portland, OR 97239, USA; Department of Molecular & Medical Genetics, Oregon Health & Science University, Portland, OR 97239, USA
| | - Sara Evans-Dutson
- Department of Molecular & Medical Genetics, Oregon Health & Science University, Portland, OR 97239, USA
| | - Brian J O'Roak
- Department of Molecular & Medical Genetics, Oregon Health & Science University, Portland, OR 97239, USA.
| |
Collapse
|
68
|
Que WC, Qiu HQ, Cheng Y, Liu MB, Wu CY. PTEN in kidney cancer: A review and meta-analysis. Clin Chim Acta 2018; 480:92-98. [DOI: 10.1016/j.cca.2018.01.031] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 01/17/2018] [Accepted: 01/19/2018] [Indexed: 01/11/2023]
|
69
|
Haddadi N, Lin Y, Travis G, Simpson AM, McGowan EM, Nassif NT. PTEN/PTENP1: 'Regulating the regulator of RTK-dependent PI3K/Akt signalling', new targets for cancer therapy. Mol Cancer 2018; 17:37. [PMID: 29455665 PMCID: PMC5817727 DOI: 10.1186/s12943-018-0803-3] [Citation(s) in RCA: 218] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 02/01/2018] [Indexed: 12/14/2022] Open
Abstract
Regulation of the PI-3 kinase (PI3K)/Akt signalling pathway is essential for maintaining the integrity of fundamental cellular processes, cell growth, survival, death and metabolism, and dysregulation of this pathway is implicated in the development and progression of cancers. Receptor tyrosine kinases (RTKs) are major upstream regulators of PI3K/Akt signalling. The phosphatase and tensin homologue (PTEN), a well characterised tumour suppressor, is a prime antagonist of PI3K and therefore a negative regulator of this pathway. Loss or inactivation of PTEN, which occurs in many tumour types, leads to overactivation of RTK/PI3K/Akt signalling driving tumourigenesis. Cellular PTEN levels are tightly regulated by a number of transcriptional, post-transcriptional and post-translational regulatory mechanisms. Of particular interest, transcription of the PTEN pseudogene, PTENP1, produces sense and antisense transcripts that exhibit post-transcriptional and transcriptional modulation of PTEN expression respectively. These additional levels of regulatory complexity governing PTEN expression add to the overall intricacies of the regulation of RTK/PI-3 K/Akt signalling. This review will discuss the regulation of oncogenic PI3K signalling by PTEN (the regulator) with a focus on the modulatory effects of the sense and antisense transcripts of PTENP1 on PTEN expression, and will further explore the potential for new therapeutic opportunities in cancer treatment.
Collapse
Affiliation(s)
- Nahal Haddadi
- School of Life Sciences, Faculty of Science, University of Technology Sydney, 15 Broadway, Ultimo, Sydney, NSW 2007 Australia
| | - Yiguang Lin
- School of Life Sciences, Faculty of Science, University of Technology Sydney, 15 Broadway, Ultimo, Sydney, NSW 2007 Australia
| | - Glena Travis
- School of Life Sciences, Faculty of Science, University of Technology Sydney, 15 Broadway, Ultimo, Sydney, NSW 2007 Australia
| | - Ann M. Simpson
- School of Life Sciences, Faculty of Science, University of Technology Sydney, 15 Broadway, Ultimo, Sydney, NSW 2007 Australia
| | - Eileen M. McGowan
- School of Life Sciences, Faculty of Science, University of Technology Sydney, 15 Broadway, Ultimo, Sydney, NSW 2007 Australia
- Central Laboratory, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080 China
| | - Najah T. Nassif
- School of Life Sciences, Faculty of Science, University of Technology Sydney, 15 Broadway, Ultimo, Sydney, NSW 2007 Australia
| |
Collapse
|
70
|
Targeting PTEN in Colorectal Cancers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1110:55-73. [DOI: 10.1007/978-3-030-02771-1_5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
71
|
Song DD, Zhang Q, Li JH, Hao RM, Ma Y, Wang PY, Xie SY. Single nucleotide polymorphisms rs701848 and rs2735343 in PTEN increases cancer risks in an Asian population. Oncotarget 2017; 8:96290-96300. [PMID: 29221206 PMCID: PMC5707100 DOI: 10.18632/oncotarget.22019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 09/22/2017] [Indexed: 01/19/2023] Open
Abstract
We performed this meta-analysis to analyze the cancer risk to individuals carrying the rs701848 and rs2735343 single nucleotide polymorphisms (SNPs) in the phosphatase and tensin homolog (PTEN) gene. We searched the PubMed, EMBASE, Cochrane library and the national knowledge infrastructure of China (CNKI) databases and identified 18 eligible case-control studies with 5458 cases and 6003 controls for rs701848 as well as 5490 cases and 6209 controls for rs2735343. Our analyses demonstrated that cancer risk was associated with rs701848 in the recessive model (CC vs. CT+TT, OR=1.169, 95% CI: 1.061-1.288) and with rs2735343 in the dominant model (GC+CC vs. GG, OR=0.758, 95% CI: 0.590-0.972). Subgroup analysis showed that in Asian subjects, carrying the C allele of rs701848 or GG genotype of rs2735343 was associated with increased cancer risk. Moreover, Asian subjects carrying the TC/CC genotype or C allele of rs701848 were associated with increased risk of esophageal squamous cell cancer. This meta-analysis indicates that the PTEN rs701848 (CC) and rs2735343 (GG) polymorphisms are associated with increased cancer risk in Asian subjects.
Collapse
Affiliation(s)
- Dan-Dan Song
- Key Laboratory of Tumor Molecular Biology in Binzhou Medical University, Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, ShanDong 264003, P.R.China
| | - Qian Zhang
- Key Laboratory of Tumor Molecular Biology in Binzhou Medical University, Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, ShanDong 264003, P.R.China
| | - Jing-Hua Li
- Key Laboratory of Tumor Molecular Biology in Binzhou Medical University, Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, ShanDong 264003, P.R.China
- Department of Epidemiology, Binzhou Medical University, Yantai, ShanDong 264003, P.R.China
| | - Rui-Min Hao
- Key Laboratory of Tumor Molecular Biology in Binzhou Medical University, Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, ShanDong 264003, P.R.China
| | - Ying Ma
- Key Laboratory of Tumor Molecular Biology in Binzhou Medical University, Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, ShanDong 264003, P.R.China
| | - Ping-Yu Wang
- Key Laboratory of Tumor Molecular Biology in Binzhou Medical University, Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, ShanDong 264003, P.R.China
- Department of Epidemiology, Binzhou Medical University, Yantai, ShanDong 264003, P.R.China
| | - Shu-Yang Xie
- Key Laboratory of Tumor Molecular Biology in Binzhou Medical University, Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, ShanDong 264003, P.R.China
| |
Collapse
|
72
|
Yao S, Zhong L, Chen M, Zhao Y, Li L, Liu L, Xu T, Xiao C, Gan L, Shan Z, Liu B. Epigallocatechin-3-gallate promotes all-trans retinoic acid-induced maturation of acute promyelocytic leukemia cells via PTEN. Int J Oncol 2017; 51:899-906. [PMID: 28766684 DOI: 10.3892/ijo.2017.4086] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 07/25/2017] [Indexed: 11/06/2022] Open
Abstract
Acute promyelocytic leukemia (APL) is a distinctive subtype of acute myeloid leukemia (AML) in which the hybrid protein promyelocytic leukemia protein/retinoic acid receptor α (PML/RARα) acts as a transcriptional repressor impairing the expression of genes that are critical to myeloid cell mutation. We aimed at explaining the molecular mechanism of green tea polyphenol epigallocatechin-3-gallate (EGCG) enhancement of ATRA-induced APL cell line differentiation. Tumor suppressor phosphatase and tensin homolog (PTEN) was found downregulated in NB4 cells and rescued by proteases inhibitor MG132. A significant increase of PTEN levels was found in NB4, HL-60 and THP-1 cells upon ATRA combined with EGCG treatment, paralleled by increased myeloid differentiation marker CD11b. EGCG in synergy with ATRA promote degradation of PML/RARα and restores PML expression, and increase the level of nuclear PTEN. Pretreatment of PTEN inhibitor SF1670 enhances the PI3K signaling pathway and represses NB4 cell differentiation. Moreover, the induction of PTEN attenuated the Akt phosphorylation levels, pretreatment of PI3K inhibitor LY294002 in NB4 cells, significantly augmented the cell differentiation and increased the expression of PTEN. These results therefore indicate that EGCG targets PML/RARα oncoprotein for degradation and potentiates differentiation of promyelocytic leukemia cells in combination with ATRA via PTEN.
Collapse
Affiliation(s)
- Shifei Yao
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing 402160, P.R. China
| | - Liang Zhong
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Min Chen
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing 402160, P.R. China
| | - Yi Zhao
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing 402160, P.R. China
| | - Lianwen Li
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing 402160, P.R. China
| | - Lu Liu
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Ting Xu
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing 402160, P.R. China
| | - Chunlan Xiao
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing 402160, P.R. China
| | - Liugen Gan
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing 402160, P.R. China
| | - Zhiling Shan
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Beizhong Liu
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing 402160, P.R. China
| |
Collapse
|
73
|
NKCC1 Regulates Migration Ability of Glioblastoma Cells by Modulation of Actin Dynamics and Interacting with Cofilin. EBioMedicine 2017; 21:94-103. [PMID: 28679472 PMCID: PMC5514434 DOI: 10.1016/j.ebiom.2017.06.020] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 05/22/2017] [Accepted: 06/19/2017] [Indexed: 01/21/2023] Open
Abstract
Glioblastoma (GBM) is the most aggressive primary brain tumor in adults. The mechanisms that confer GBM cells their invasive behavior are poorly understood. The electroneutral Na+-K+-2Cl- co-transporter 1 (NKCC1) is an important cell volume regulator that participates in cell migration. We have shown that inhibition of NKCC1 in GBM cells leads to decreased cell migration, in vitro and in vivo. We now report on the role of NKCC1 on cytoskeletal dynamics. We show that GBM cells display a significant decrease in F-actin content upon NKCC1 knockdown (NKCC1-KD). To determine the potential actin-regulatory mechanisms affected by NKCC1 inhibition, we studied NKCC1 protein interactions. We found that NKCC1 interacts with the actin-regulating protein Cofilin-1 and can regulate its membrane localization. Finally, we analyzed whether NKCC1 could regulate the activity of the small Rho-GTPases RhoA and Rac1. We observed that the active forms of RhoA and Rac1 were decreased in NKCC1-KD cells. In summary, we report that NKCC1 regulates GBM cell migration by modulating the cytoskeleton through multiple targets including F-actin regulation through Cofilin-1 and RhoGTPase activity. Due to its essential role in cell migration NKCC1 may serve as a specific therapeutic target to decrease cell invasion in patients with primary brain cancer.
Collapse
|