51
|
Olea-Flores M, Zuñiga-Eulogio MD, Mendoza-Catalán MA, Rodríguez-Ruiz HA, Castañeda-Saucedo E, Ortuño-Pineda C, Padilla-Benavides T, Navarro-Tito N. Extracellular-Signal Regulated Kinase: A Central Molecule Driving Epithelial-Mesenchymal Transition in Cancer. Int J Mol Sci 2019; 20:E2885. [PMID: 31200510 PMCID: PMC6627365 DOI: 10.3390/ijms20122885] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/09/2019] [Accepted: 06/11/2019] [Indexed: 12/18/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a reversible cellular process, characterized by changes in gene expression and activation of proteins, favoring the trans-differentiation of the epithelial phenotype to a mesenchymal phenotype. This process increases cell migration and invasion of tumor cells, progression of the cell cycle, and resistance to apoptosis and chemotherapy, all of which support tumor progression. One of the signaling pathways involved in tumor progression is the MAPK pathway. Within this family, the ERK subfamily of proteins is known for its contributions to EMT. The ERK subfamily is divided into typical (ERK 1/2/5), and atypical (ERK 3/4/7/8) members. These kinases are overexpressed and hyperactive in various types of cancer. They regulate diverse cellular processes such as proliferation, migration, metastasis, resistance to chemotherapy, and EMT. In this context, in vitro and in vivo assays, as well as studies in human patients, have shown that ERK favors the expression, function, and subcellular relocalization of various proteins that regulate EMT, thus promoting tumor progression. In this review, we discuss the mechanistic roles of the ERK subfamily members in EMT and tumor progression in diverse biological systems.
Collapse
Affiliation(s)
- Monserrat Olea-Flores
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n Chilpancingo, Gro. 39090, Mexico.
| | - Miriam Daniela Zuñiga-Eulogio
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n Chilpancingo, Gro. 39090, Mexico.
| | - Miguel Angel Mendoza-Catalán
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n Chilpancingo, Gro. 39090, Mexico.
| | - Hugo Alberto Rodríguez-Ruiz
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n Chilpancingo, Gro. 39090, Mexico.
| | - Eduardo Castañeda-Saucedo
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n Chilpancingo, Gro. 39090, Mexico.
| | - Carlos Ortuño-Pineda
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n Chilpancingo, Gro. 39090, Mexico.
| | - Teresita Padilla-Benavides
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA.
| | - Napoleón Navarro-Tito
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n Chilpancingo, Gro. 39090, Mexico.
| |
Collapse
|
52
|
Exogenous Hydrogen Sulfide Regulates the Growth of Human Thyroid Carcinoma Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:6927298. [PMID: 31223424 PMCID: PMC6541980 DOI: 10.1155/2019/6927298] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 02/24/2019] [Accepted: 04/23/2019] [Indexed: 12/21/2022]
Abstract
Hydrogen sulfide (H2S) is involved in the development and progression of many types of cancer. However, the effect and mechanism of H2S on the growth of human thyroid carcinoma cells remain unknown. In the present study, we found that the proliferation, viability, migration, and invasion of human thyroid carcinoma cells were enhanced by 25–50 μM NaHS (an H2S donor) and inhibited by 200 μM NaHS. However, H2S showed no obvious effects on the proliferation, viability, and migration of human normal thyroid cells. Administration of 50 μM NaHS increased the expression levels of CBS, SQR, and TST, while 200 μM NaHS showed reverse effects in human thyroid carcinoma cells. After treatment with 25-50 μM NaHS, the ROS levels were decreased and the protein levels of p-PI3K, p-AKT, p-mTOR, H-RAS, p-RAF, p-MEK1/2, and p-ERK1/2 were increased, whereas 200 μM NaHS exerted opposite effects in human thyroid carcinoma cells. Furthermore, 1.4-2.8 mg/kg/day NaHS promoted the tumor growth and blood vessel formation in human thyroid carcinoma xenograft tumors, while 11.2 mg/kg/day NaHS inhibited the tumor growth and angiogenesis. In conclusion, our results demonstrate that exogenous H2S regulates the growth of human thyroid carcinoma cells through ROS/PI3K/Akt/mTOR and RAS/RAF/MEK/ERK signaling pathways. Novel H2S-releasing donors/drugs can be designed and applied for the treatment of thyroid cancer.
Collapse
|
53
|
Li Z, Wong KY, Calin GA, Chng WJ, Chan GCF, Chim CS. Epigenetic silencing of miR-340-5p in multiple myeloma: mechanisms and prognostic impact. Clin Epigenetics 2019; 11:71. [PMID: 31064412 PMCID: PMC6505104 DOI: 10.1186/s13148-019-0669-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 04/25/2019] [Indexed: 12/31/2022] Open
Abstract
Background miR-340-5p, localized to 5q35, is a tumor suppressor miRNA implicated in multiple cancers. As a CpG island is present at the putative promoter region of its host gene, RNF130, we hypothesized that the intronic miR-340-5p is a tumor suppressor miRNA epigenetically silenced by promoter DNA methylation of its host gene in multiple myeloma. Results By pyrosequencing-confirmed methylation-specific PCR, RNF130/miR-340 was methylated in 8/15 (53.3%) myeloma cell lines but not normal plasma cells. Methylation correlated inversely with the expression of both miR-340-5p and RNF130. In completely methylated WL-2 and RPMI-8226R cells, 5-AzadC treatment led to demethylation and re-expression of miR-340-5p. In primary samples, RNF130/miR-340 methylation was detected in 4 (22.2%) monoclonal gammopathy of undetermined significance, 15 (23.8%) diagnostic myeloma, and 7 (23.3%) relapsed myeloma. RNF130/miR-340 methylation at diagnosis was associated with inferior overall survival (median 27 vs. 68 months; P = 3.944E−5). In WL-2 cells, overexpression of miR-340-5p resulted in reduced cellular proliferation [MTS, P = 0.002; verified in KMS-12-PE (P = 0.002) and RPMI-8226R (P = 2.623E−05) cells], increased cell death (trypan blue, P = 0.005), and enhanced apoptosis by annexin V-PI staining. Moreover, by qRT-PCR, overexpression of miR-340-5p led to repression of both known targets (CCND1 and NRAS) and bioinformatically predicted targets in MAPK signaling (MEKK1, MEKK2, and MEKKK3) and apoptosis (MDM4 and XIAP), hence downregulation of phospho-ERK1/2 and XIAP by Western blot. Furthermore, by qRT-PCR, in CD138-sorted primary samples (n = 37), miR-340-5p and XIAP were inversely correlated (P = 0.002). By luciferase assay, XIAP was confirmed as a direct target of miR-340-5p via targeting of the distal but not proximal seed region binding site. Conclusions Collectively, tumor-specific methylation-mediated silencing of miR-340-5p is likely an early event in myelomagenesis with adverse survival impact, via targeting multiple oncogenes in MAPK signaling and apoptosis, thereby a tumor suppressive miRNA in myeloma. Electronic supplementary material The online version of this article (10.1186/s13148-019-0669-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhenhai Li
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong
| | - Kwan Yeung Wong
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong
| | - George A Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wee-Joo Chng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.,Department of Haematology-Oncology, National University Cancer Institute, Singapore, Singapore.,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Godfrey Chi-Fung Chan
- Department of Pediatrics and Adolescent Medicine, Queen Mary Hospital, The University of Hong Kong, Pokfulam, Hong Kong
| | - Chor Sang Chim
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong.
| |
Collapse
|
54
|
Kint N, Vlayen S, Delforge M. The treatment of multiple myeloma in an era of precision medicine. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2019. [DOI: 10.1080/23808993.2019.1606672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Nicolas Kint
- Department of Internal Medicine, Hematology, University Hospitals Leuven, Leuven, Belgium
- Stem Cell Institute Leuven, KU Leuven, Leuven, Belgium
| | - Sophie Vlayen
- Department of Internal Medicine, Hematology, University Hospitals Leuven, Leuven, Belgium
- Stem Cell Institute Leuven, KU Leuven, Leuven, Belgium
| | - Michel Delforge
- Department of Internal Medicine, Hematology, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
55
|
Abstract
Multiple myeloma is diagnosed in over 100,000 patients each year worldwide, has an increasing incidence and prevalence in many regions, and follows a relapsing course, making it a significant and growing healthcare challenge. Recent basic, translational, and clinical studies have expanded our therapeutic armamentarium, which now consists of alkylating agents, corticosteroids, deacetylase inhibitors, immunomodulatory agents, monoclonal antibodies, and proteasome inhibitors. New drugs in these categories, and additional agents, including both small and large molecules, as well as cellular therapies, are under development that promise to further expand our capabilities and bring us closer to the cure of this plasma cell dyscrasia.
Collapse
Affiliation(s)
- Chutima Kunacheewa
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
- Division of Hematology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Robert Z. Orlowski
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
56
|
Wong KY, Yao Q, Yuan LQ, Li Z, Ma ESK, Chim CS. Frequent functional activation of RAS signalling not explained by RAS/RAF mutations in relapsed/refractory multiple myeloma. Sci Rep 2018; 8:13522. [PMID: 30201956 PMCID: PMC6131153 DOI: 10.1038/s41598-018-31820-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 08/22/2018] [Indexed: 12/12/2022] Open
Abstract
RAS mutations are frequent in relapsed/refractory multiple myeloma (RRMM) but functional study in primary samples is scanty. Herein, in primary myeloma plasma cells of 17 suspected RRMM, functional activation of RAS signalling was studied by Western blot of phosphorylated ERK1/2 (phospho-ERK1/2). Moreover, activating mutations in KRAS, NRAS, BRAF, and ALK were studied by PCR and bidirectional direct sequencing. Furthermore, methylation of negative RAS signalling regulator genes, RASSF1A and RASD1, were analyzed by methylation-specific PCR. As evidenced by phospho-ERK1/2 over-expression, functional RAS activation was detected in 12 (75.0%) RRMM. Of patients with functional RAS activation, sequencing data showed only seven (58.3%) patients with one each had NRAS Q61H, NRAS Q61K, KRAS G12D, KRAS G12V, KRAS G13D, KRAS Q61P, or BRAF V600E mutation, whereas five (41.7%) patients had no RAS/RAF mutation. Conversely, patients without functional RAS activation had no RAS/RAF mutation. Moreover, none of the patients with functional RAS activation had ALK mutations, or methylation of RASSF1A and RASD1. Collectively, functional activation of RAS signalling was present in majority of RRMM but only about half (58.3%) accountable by RAS/RAF mutations. If verified in larger studies, clinical investigations of MEK inhibitors are warranted regardless of RAS/RAF mutations.
Collapse
Affiliation(s)
- Kwan Yeung Wong
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong
| | - Qiumei Yao
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong
| | - Ling-Qing Yuan
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhenhai Li
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong
| | - Edmond Shiu Kwan Ma
- Department of Pathology, Hong Kong Sanatorium & Hospital, Happy Valley, Hong Kong
| | - Chor Sang Chim
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong.
| |
Collapse
|
57
|
Towards Molecular Profiling in Multiple Myeloma: A Literature Review and Early Indications of Its Efficacy for Informing Treatment Strategies. Int J Mol Sci 2018; 19:ijms19072087. [PMID: 30021955 PMCID: PMC6073692 DOI: 10.3390/ijms19072087] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/10/2018] [Accepted: 07/14/2018] [Indexed: 12/26/2022] Open
Abstract
Multiple myeloma (MM), the second most common hematologic malignancy, is characterized by the clonal expansion of plasma cells. Despite dramatic improvements in patients′ survival over the past decade due to advances in therapy exploiting novel molecular targets (immunomodulatory drugs, proteasome inhibitors and monoclonal antibodies), the treatment of relapsed and refractory disease remains challenging. Recent studies confirmed complex, dynamic, and heterogeneous genomic alterations without unifying gene mutations in MM patients. In the current review, we survey recent therapeutic strategies, as well as molecular profiling data on MM, with emphasis on relapsed and refractory cases. A critical appraisal of novel findings and of their potential therapeutic implications will be discussed in detail, along with the author’s own experiences/views.
Collapse
|
58
|
|
59
|
van Nieuwenhuijzen N, Spaan I, Raymakers R, Peperzak V. From MGUS to Multiple Myeloma, a Paradigm for Clonal Evolution of Premalignant Cells. Cancer Res 2018; 78:2449-2456. [PMID: 29703720 DOI: 10.1158/0008-5472.can-17-3115] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 01/16/2018] [Accepted: 03/16/2018] [Indexed: 11/16/2022]
Abstract
Multiple myeloma (MM) is a treatable, but incurable, malignancy of plasma cells (PC) in the bone marrow (BM). It represents the final stage in a continuum of PC dyscrasias and is consistently preceded by a premalignant phase termed monoclonal gammopathy of undetermined significance (MGUS). The existence of this well-defined premalignant phase provides the opportunity to study clonal evolution of a premalignant condition into overt cancer. Unraveling the mechanisms of malignant transformation of PC could enable early identification of MGUS patients at high risk of progression and may point to novel therapeutic targets, thereby possibly delaying or preventing malignant transformation. The MGUS-to-MM progression requires multiple genomic events and the establishment of a permissive BM microenvironment, although it is generally not clear if the various microenvironmental events are causes or consequences of disease progression. Advances in gene-sequencing techniques and the use of serial paired analyses have allowed for a more specific identification of driver lesions. The challenge in cancer biology is to identify and target those lesions that confer selective advantage and thereby drive evolution of a premalignant clone. Here, we review recent advances in the understanding of malignant transformation of MGUS to MM. Cancer Res; 78(10); 2449-56. ©2018 AACR.
Collapse
Affiliation(s)
- Niels van Nieuwenhuijzen
- Laboratory of Translational Immunology, University Medical Center, Utrecht, the Netherlands.,Department of Hematology, University Medical Center, Utrecht, the Netherlands
| | - Ingrid Spaan
- Laboratory of Translational Immunology, University Medical Center, Utrecht, the Netherlands
| | - Reinier Raymakers
- Department of Hematology, University Medical Center, Utrecht, the Netherlands
| | - Victor Peperzak
- Laboratory of Translational Immunology, University Medical Center, Utrecht, the Netherlands.
| |
Collapse
|
60
|
Kumar SK, Rajkumar SV. The multiple myelomas — current concepts in cytogenetic classification and therapy. Nat Rev Clin Oncol 2018; 15:409-421. [DOI: 10.1038/s41571-018-0018-y] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
61
|
Wallington-Beddoe CT, Sobieraj-Teague M, Kuss BJ, Pitson SM. Resistance to proteasome inhibitors and other targeted therapies in myeloma. Br J Haematol 2018; 182:11-28. [PMID: 29676460 DOI: 10.1111/bjh.15210] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The number of novel therapies for the treatment of myeloma is rapidly increasing, as are the clinical trials evaluating them in combination with other novel and established therapies. Proteasome inhibitors, immunomodulatory agents and monoclonal antibodies are the most well known and studied classes of novel agents targeting myeloma, with histone deacetylase inhibitors, nuclear export inhibitors and several other approaches also being actively investigated. However, in parallel with the development and clinical use of these novel myeloma therapies is the emergence of novel mechanisms of resistance, many of which remain elusive, particularly for more recently developed agents. Whilst resistance mechanisms have been best studied for proteasome inhibitors, particularly bortezomib, class effects do not universally apply to all class members, and within-class differences in efficacy, toxicity and resistance mechanisms have been observed. Although immunomodulatory agents share the common cellular target cereblon and thus resistance patterns relate to cereblon expression, the unique cell surface antigens to which monoclonal antibodies are directed means these agents frequently exhibit unique within-class differences in clinical efficacy and resistance patterns. This review describes the major classes of novel therapies for myeloma, highlights the major clinical trials within each class and discusses known resistance mechanisms.
Collapse
Affiliation(s)
- Craig T Wallington-Beddoe
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia.,College of Medicine and Public Health, Flinders University, Bedford Park, South Australia.,School of Medicine, University of Adelaide, Adelaide, Australia
| | - Magdalena Sobieraj-Teague
- College of Medicine and Public Health, Flinders University, Bedford Park, South Australia.,SA Pathology, Adelaide, Australia
| | - Bryone J Kuss
- College of Medicine and Public Health, Flinders University, Bedford Park, South Australia.,SA Pathology, Adelaide, Australia
| | - Stuart M Pitson
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia.,School of Medicine, University of Adelaide, Adelaide, Australia
| |
Collapse
|
62
|
Hosgood HD, Gunter MJ, Murphy N, Rohan TE, Strickler HD. The Relation of Obesity-Related Hormonal and Cytokine Levels With Multiple Myeloma and Non-Hodgkin Lymphoma. Front Oncol 2018; 8:103. [PMID: 29713614 PMCID: PMC5911620 DOI: 10.3389/fonc.2018.00103] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 03/23/2018] [Indexed: 12/19/2022] Open
Abstract
This article presents the first detailed overview of the mechanisms that may underlie the relation of obesity with B-cell non-Hodgkin lymphomas (NHLs) and multiple myeloma (MM). Epidemiologic studies, including meta-analyses of prospective cohorts, have reported that the risks of NHL and MM are significantly increased in obese, relative to normal weight, women and men. Accumulating experimental and clinical evidence suggests that inflammatory cytokines, hyperinsulinemia, and sex hormones could play a role in the association of obesity with B-cell NHL and MM carcinogenesis. There is, however, a paucity of data published from appropriate large prospective cohort studies, and studies concurrently measuring these correlated factors, to formally determine the likely biologic factors driving the relationship of obesity with NHL and MM. Additional strengths and weaknesses of the current literature, as well as study design issues that need to be considered in conducting these studies, such as the exclusion of type 2 diabetics or postmenopausal women using hormone therapy, are discussed.
Collapse
Affiliation(s)
- H Dean Hosgood
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Marc J Gunter
- Section of Nutrition and Metabolism, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Neil Murphy
- Section of Nutrition and Metabolism, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Thomas E Rohan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Howard D Strickler
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
63
|
Accardi F, Marchica V, Mancini C, Maredi E, Racano C, Notarfranchi L, Martorana D, Storti P, Martella E, Palma BD, Craviotto L, Filippo MD, Percesepe A, Aversa F, Giuliani N. Neurofibromatosis type I and multiple myeloma coexistence: A possible link? Hematol Rep 2018; 10:7457. [PMID: 29721253 PMCID: PMC5907645 DOI: 10.4081/hr.2018.7457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 02/28/2018] [Indexed: 11/22/2022] Open
Abstract
The association between Neurofibromatosis type I (NF1) and multiple myeloma (MM), a plasma cell, dyscrasia is very rare. Here we put to the attention of the scientific community two new cases. The first one is a patient with active MM whereas the second with smoldering MM. Both patients present typical features of NF1 but skeletal alterations were present only in the second case including dysplasia, marked scoliosis and osteoporosis. MM osteolytic lesions were absent in both patients. In addition to the clinical diagnosis of NF1, a molecular testing for NF1 gene mutations has been performed finding that patient one was heterozygous for the c.6855C>A (Tyr2285Ter) mutation, while patient two was heterozygous for the c.7838dupC (Lys2614GlufsTer20) mutation. The two mutations were diagnosed both in genomic DNA from peripheral blood and from MM cells. The potential link between NF1 mutation and the increased risk of MM is discussed in the report.
Collapse
Affiliation(s)
- Fabrizio Accardi
- Department of Medicine and Surgery, University of Parma.,Hematology Unit, Parma University Hospital
| | | | | | - Elena Maredi
- Pediatric Orthopedics, Rizzoli Orthopedic Institute, Bologna
| | | | - Laura Notarfranchi
- Department of Medicine and Surgery, University of Parma.,Hematology Unit, Parma University Hospital
| | | | - Paola Storti
- Department of Medicine and Surgery, University of Parma
| | | | - Benedetta Dalla Palma
- Department of Medicine and Surgery, University of Parma.,Hematology Unit, Parma University Hospital
| | - Luisa Craviotto
- Department of Medicine and Surgery, University of Parma.,Hematology Unit, Parma University Hospital
| | | | | | - Franco Aversa
- Department of Medicine and Surgery, University of Parma.,Hematology Unit, Parma University Hospital
| | - Nicola Giuliani
- Department of Medicine and Surgery, University of Parma.,Hematology Unit, Parma University Hospital
| |
Collapse
|