51
|
Cordeiro TN, Sibille N, Germain P, Barthe P, Boulahtouf A, Allemand F, Bailly R, Vivat V, Ebel C, Barducci A, Bourguet W, le Maire A, Bernadó P. Interplay of Protein Disorder in Retinoic Acid Receptor Heterodimer and Its Corepressor Regulates Gene Expression. Structure 2019; 27:1270-1285.e6. [DOI: 10.1016/j.str.2019.05.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 03/30/2019] [Accepted: 05/04/2019] [Indexed: 11/30/2022]
|
52
|
Wang S, Moise AR. Recent insights on the role and regulation of retinoic acid signaling during epicardial development. Genesis 2019; 57:e23303. [PMID: 31066193 PMCID: PMC6682438 DOI: 10.1002/dvg.23303] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 12/18/2022]
Abstract
The vitamin A metabolite, retinoic acid, carries out essential and conserved roles in vertebrate heart development. Retinoic acid signals via retinoic acid receptors (RAR)/retinoid X receptors (RXRs) heterodimers to induce the expression of genes that control cell fate specification, proliferation, and differentiation. Alterations in retinoic acid levels are often associated with congenital heart defects. Therefore, embryonic levels of retinoic acid need to be carefully regulated through the activity of enzymes, binding proteins and transporters involved in vitamin A metabolism. Here, we review evidence of the complex mechanisms that control the fetal uptake and synthesis of retinoic acid from vitamin A precursors. Next, we highlight recent evidence of the role of retinoic acid in orchestrating myocardial compact zone growth and coronary vascular development.
Collapse
Affiliation(s)
- Suya Wang
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Alexander R. Moise
- Medical Sciences Division, Northern Ontario School of Medicine, Sudbury, ON P3E 2C6, Canada
- Departments of Chemistry and Biochemistry, and Biology and Biomolecular Sciences Program, Laurentian University, Sudbury, ON, P3E 2C6 Canada
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, 66045, USA
| |
Collapse
|
53
|
Shamilov R, Aneskievich BJ. Intrinsic Disorder in Nuclear Receptor Amino Termini: From Investigational Challenge to Therapeutic Opportunity. NUCLEAR RECEPTOR RESEARCH 2019. [DOI: 10.32527/2019/101417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Rambon Shamilov
- Graduate Program in Pharmacology & Toxicology, University of Connecticut, Storrs, CT 06269-3092, USA
| | - Brian J. Aneskievich
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269-3092, USA
| |
Collapse
|
54
|
Veras Ribeiro Filho H, Tambones IL, Mariano Gonçalves Dias M, Bernardi Videira N, Bruder M, Amorim Amato A, Migliorini Figueira AC. Modulation of nuclear receptor function: Targeting the protein-DNA interface. Mol Cell Endocrinol 2019; 484:1-14. [PMID: 30703486 DOI: 10.1016/j.mce.2019.01.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/25/2019] [Accepted: 01/25/2019] [Indexed: 02/02/2023]
Abstract
Nuclear receptors (NRs) are a superfamily of ligand-dependent transcription factors that modulate several biological processes. Traditionally, modulation of NRs has been focused on the development of ligands that recognize and bind to the ligand binding domain (LBD), resulting in activation or repression of transcription through the recruitment of coregulators. However, for more severe diseases, such as breast and prostate cancer, the conventional treatment addressing LBD modulation is not always successful, due to tumor resistance. To overcome these challenges and aiming to modulate NR activity by inhibiting the NR-DNA interaction, new studies focus on the development of molecules targeting alternative sites and domains on NRs. Here, we discuss two different approaches for this alternative NR modulation: one targeting the NR DNA binding domain (DBD); and the other targeting the DNA sites recognized by NRs. Our aim is to present the challenges and perspectives for developing specific inhibitors for each purpose, alongside with already reported examples.
Collapse
Affiliation(s)
- Helder Veras Ribeiro Filho
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, 13083-970, Brazil; Graduate Program in Biosciences and Technology of Bioactive Products, Institute of Biology, State University of Campinas (Unicamp), Campinas, 13083-970, Brazil
| | - Izabella Luisa Tambones
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, 13083-970, Brazil; Graduate Program in Biosciences and Technology of Bioactive Products, Institute of Biology, State University of Campinas (Unicamp), Campinas, 13083-970, Brazil
| | - Marieli Mariano Gonçalves Dias
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, 13083-970, Brazil; Graduate Program in Molecular and Functional Biology, Institute of Biology, State University of Campinas (Unicamp), Campinas, SP, 13083-970, Brazil
| | - Natalia Bernardi Videira
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, 13083-970, Brazil
| | - Marjorie Bruder
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, 13083-970, Brazil
| | - Angélica Amorim Amato
- Laboratory of Molecular Pharmacology, Department of Pharmaceutical Science, University of Brasilia (UnB), Brasília, DF, 70910-900, Brazil
| | - Ana Carolina Migliorini Figueira
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, 13083-970, Brazil.
| |
Collapse
|
55
|
Broekema MF, Massink MPG, Donato C, de Ligt J, Schaarschmidt J, Borgman A, Schooneman MG, Melchers D, Gerding MN, Houtman R, Bonvin AMJJ, Majithia AR, Monajemi H, van Haaften GW, Soeters MR, Kalkhoven E. Natural helix 9 mutants of PPARγ differently affect its transcriptional activity. Mol Metab 2019; 20:115-127. [PMID: 30595551 PMCID: PMC6358588 DOI: 10.1016/j.molmet.2018.12.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/05/2018] [Accepted: 12/11/2018] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE The nuclear receptor PPARγ is the master regulator of adipocyte differentiation, distribution, and function. In addition, PPARγ induces terminal differentiation of several epithelial cell lineages, including colon epithelia. Loss-of-function mutations in PPARG result in familial partial lipodystrophy subtype 3 (FPDL3), a rare condition characterized by aberrant adipose tissue distribution and severe metabolic complications, including diabetes. Mutations in PPARG have also been reported in sporadic colorectal cancers, but the significance of these mutations is unclear. Studying these natural PPARG mutations provides valuable insights into structure-function relationships in the PPARγ protein. We functionally characterized a novel FPLD3-associated PPARγ L451P mutation in helix 9 of the ligand binding domain (LBD). Interestingly, substitution of the adjacent amino acid K450 was previously reported in a human colon carcinoma cell line. METHODS We performed a detailed side-by-side functional comparison of these two PPARγ mutants. RESULTS PPARγ L451P shows multiple intermolecular defects, including impaired cofactor binding and reduced RXRα heterodimerisation and subsequent DNA binding, but not in DBD-LBD interdomain communication. The K450Q mutant displays none of these functional defects. Other colon cancer-associated PPARγ mutants displayed diverse phenotypes, ranging from complete loss of activity to wildtype activity. CONCLUSIONS Amino acid changes in helix 9 can differently affect LBD integrity and function. In addition, FPLD3-associated PPARγ mutations consistently cause intra- and/or intermolecular defects; colon cancer-associated PPARγ mutations on the other hand may play a role in colon cancer onset and progression, but this is not due to their effects on the most well-studied functional characteristics of PPARγ.
Collapse
Affiliation(s)
- Marjoleine F Broekema
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Department of Molecular Cancer Research, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Maarten P G Massink
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Cinzia Donato
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Department of Molecular Cancer Research, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Joep de Ligt
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Joerg Schaarschmidt
- Bijvoet Center for Biomolecular Research, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Anouska Borgman
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Department of Molecular Cancer Research, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Marieke G Schooneman
- Department of Internal Medicine, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Diana Melchers
- PamGene International B. V., 's-Hertogenbosch, the Netherlands
| | | | - René Houtman
- PamGene International B. V., 's-Hertogenbosch, the Netherlands
| | - Alexandre M J J Bonvin
- Bijvoet Center for Biomolecular Research, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Amit R Majithia
- Division of Endocrinology, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Houshang Monajemi
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, Amsterdam, the Netherlands; Rijnstate Hospital, Arnhem, the Netherlands
| | - Gijs W van Haaften
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Maarten R Soeters
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Eric Kalkhoven
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Department of Molecular Cancer Research, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
56
|
Fuentes-Prior P, Rojas A, Hagler AT, Estébanez-Perpiñá E. Diversity of Quaternary Structures Regulates Nuclear Receptor Activities. Trends Biochem Sci 2018; 44:2-6. [PMID: 30293659 DOI: 10.1016/j.tibs.2018.09.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/31/2018] [Accepted: 09/11/2018] [Indexed: 10/28/2022]
Abstract
Nuclear receptors (NRs) form homo- and/or heterodimers as central scaffolds of multiprotein complexes, which activate or repress gene transcription to regulate development, homeostasis, and metabolism. Recent studies on NR quaternary structure reveal novel mechanisms of receptor dimerization, the existence of tetrameric chromatin-bound NRs, and previously unanticipated protein-protein/protein-DNA interactions.
Collapse
Affiliation(s)
- Pablo Fuentes-Prior
- Molecular Bases of Disease, Biomedical Research Institute Sant Pau (IIB Sant Pau), 08025 Barcelona, Spain; Equally contributing authors.
| | - Ana Rojas
- Computational Biology and Bioinformatics, Andalusian Center for Developmental Biology (CABD-CSIC), 41013 Seville, Spain
| | - Arnold T Hagler
- Department of Chemistry, University of Massachusetts, Amherst, MA, USA
| | - Eva Estébanez-Perpiñá
- Department of Biochemistry and Molecular Biomedicine, Institute of Biomedicine (IBUB), University of Barcelona (UB), 08028 Barcelona, Spain; Equally contributing authors.
| |
Collapse
|
57
|
Multidomain architecture of estrogen receptor reveals interfacial cross-talk between its DNA-binding and ligand-binding domains. Nat Commun 2018; 9:3520. [PMID: 30166540 PMCID: PMC6117352 DOI: 10.1038/s41467-018-06034-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 08/08/2018] [Indexed: 12/22/2022] Open
Abstract
Human estrogen receptor alpha (hERα) is a hormone-responsive nuclear receptor (NR) involved in cell growth and survival that contains both a DNA-binding domain (DBD) and a ligand-binding domain (LBD). Functionally relevant inter-domain interactions between the DBD and LBD have been observed in several other NRs, but for hERα, the detailed structural architecture of the complex is unknown. By utilizing integrated complementary techniques of small-angle X-ray scattering, hydroxyl radical protein footprinting and computational modeling, here we report an asymmetric L-shaped “boot” structure of the multidomain hERα and identify the specific sites on each domain at the domain interface involved in DBD–LBD interactions. We demonstrate the functional role of the proposed DBD–LBD domain interface through site-specific mutagenesis altering the hERα interfacial structure and allosteric signaling. The L-shaped structure of hERα is a distinctive DBD–LBD organization of NR complexes and more importantly, reveals a signaling mechanism mediated by inter-domain crosstalk that regulates this receptor’s allosteric function. The human estrogen receptor alpha (hERα) is a hormone-responsive transcription factor. Here the authors combine small-angle X-ray scattering, hydroxyl radical protein footprinting and computational modeling and show that multidomain hERα adopts an L-shaped boot-like architecture revealing a cross-talk between its DNA-binding domain and Ligand-binding domain.
Collapse
|
58
|
Integrating Thyroid Hormone Signaling in Hypothalamic Control of Metabolism: Crosstalk Between Nuclear Receptors. Int J Mol Sci 2018; 19:ijms19072017. [PMID: 29997323 PMCID: PMC6073315 DOI: 10.3390/ijms19072017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 07/06/2018] [Accepted: 07/06/2018] [Indexed: 12/18/2022] Open
Abstract
The obesity epidemic is well recognized as a significant global health issue. A better understanding of the energy homeostasis mechanisms could help to identify promising anti-obesity therapeutic strategies. It is well established that the hypothalamus plays a pivotal role governing energy balance. The hypothalamus consists of tightly interconnected and specialized neurons that permit the sensing and integration of several peripheral inputs, including metabolic and hormonal signals for an appropriate physiological response. Current evidence shows that thyroid hormones (THs) constitute one of the key endocrine factors governing the regulation and the integration of metabolic homeostasis at the hypothalamic level. THs modulate numerous genes involved in the central control of metabolism, as TRH (Thyrotropin-Releasing Hormone) and MC4R (Melanocortin 4 Receptor). THs act through their interaction with thyroid hormone receptors (TRs). Interestingly, TH signaling, especially regarding metabolic regulations, involves TRs crosstalk with other metabolically linked nuclear receptors (NRs) including PPAR (Peroxisome proliferator-activated receptor) and LXR (Liver X receptor). In this review, we will summarize current knowledge on the important role of THs integration of metabolic pathways in the central regulation of metabolism. Particularly, we will shed light on the crosstalk between TRs and other NRs in controlling energy homeostasis. This could be an important track for the development of attractive therapeutic compounds.
Collapse
|
59
|
Broekema MF, Hollman DAA, Koppen A, van den Ham HJ, Melchers D, Pijnenburg D, Ruijtenbeek R, van Mil SWC, Houtman R, Kalkhoven E. Profiling of 3696 Nuclear Receptor-Coregulator Interactions: A Resource for Biological and Clinical Discovery. Endocrinology 2018; 159:2397-2407. [PMID: 29718163 DOI: 10.1210/en.2018-00149] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 04/24/2018] [Indexed: 12/13/2022]
Abstract
Nuclear receptors (NRs) are ligand-inducible transcription factors that play critical roles in metazoan development, reproduction, and physiology and therefore are implicated in a broad range of pathologies. The transcriptional activity of NRs critically depends on their interaction(s) with transcriptional coregulator proteins, including coactivators and corepressors. Short leucine-rich peptide motifs in these proteins (LxxLL in coactivators and LxxxIxxxL in corepressors) are essential and sufficient for NR binding. With 350 different coregulator proteins identified to date and with many coregulators containing multiple interaction motifs, an enormous combinatorial potential is present for selective NR-mediated gene regulation. However, NR-coregulator interactions have often been determined experimentally on a one-to-one basis across diverse experimental conditions. In addition, NR-coregulator interactions are difficult to predict because the molecular determinants that govern specificity are not well established. Therefore, many biologically and clinically relevant NR-coregulator interactions may remain to be discovered. Here, we present a comprehensive overview of 3696 NR-coregulator interactions by systematically characterizing the binding of 24 nuclear receptors with 154 coregulator peptides. We identified unique ligand-dependent NR-coregulator interaction profiles for each NR, confirming many well-established NR-coregulator interactions. Hierarchical clustering based on the NR-coregulator interaction profiles largely recapitulates the classification of NR subfamilies based on the primary amino acid sequences of the ligand-binding domains, indicating that amino acid sequence is an important, although not the only, molecular determinant in directing and fine-tuning NR-coregulator interactions. This NR-coregulator peptide interactome provides an open data resource for future biological and clinical discovery as well as NR-based drug design.
Collapse
Affiliation(s)
- Marjoleine F Broekema
- Molecular Cancer Research and Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, CG Utrecht, Netherlands
| | - Danielle A A Hollman
- Molecular Cancer Research and Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, CG Utrecht, Netherlands
| | - Arjen Koppen
- Molecular Cancer Research and Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, CG Utrecht, Netherlands
| | | | - Diana Melchers
- PamGene International B. V., BJ 's-Hertogenbosch, Netherlands
| | - Dirk Pijnenburg
- PamGene International B. V., BJ 's-Hertogenbosch, Netherlands
| | - Rob Ruijtenbeek
- PamGene International B. V., BJ 's-Hertogenbosch, Netherlands
| | - Saskia W C van Mil
- Molecular Cancer Research and Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, CG Utrecht, Netherlands
| | - René Houtman
- PamGene International B. V., BJ 's-Hertogenbosch, Netherlands
| | - Eric Kalkhoven
- Molecular Cancer Research and Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, CG Utrecht, Netherlands
| |
Collapse
|