51
|
Eukaryote-conserved histone post-translational modification landscape in Giardia duodenalis revealed by mass spectrometry. Int J Parasitol 2020; 51:225-239. [PMID: 33275945 DOI: 10.1016/j.ijpara.2020.09.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/01/2020] [Accepted: 09/22/2020] [Indexed: 12/15/2022]
Abstract
Diarrheal disease caused by Giardia duodenalis is highly prevalent, causing over 200 million cases globally each year. The processes that drive parasite virulence, host immune evasion and transmission involve coordinated gene expression and have been linked to epigenetic regulation. Epigenetic regulatory systems are eukaryote-conserved, including in deep branching excavates such as Giardia, with several studies already implicating histone post-translational modifications in regulation of its pathogenesis and life cycle. However, further insights into Giardia chromatin dynamics have been hindered by a lack of site-specific knowledge of histone modifications. Using mass spectrometry, we have provided the first known molecular map of histone methylation, acetylation and phosphorylation modifications in Giardia core histones. We have identified over 50 previously unreported histone modifications including sites with established roles in epigenetic regulation, and co-occurring modifications indicative of post-translational modification crosstalk. These demonstrate conserved histone modifications in Giardia which are equivalent to many other eukaryotes, and suggest that similar epigenetic mechanisms are in place in this parasite. Further, we used sequence, domain and structural homology to annotate putative histone enzyme networks in Giardia, highlighting representative chromatin modifiers which appear sufficient for identified sites, particularly those from H3 and H4 variants. This study is to our knowledge the first and most comprehensive, complete and accurate view of Giardia histone post-translational modifications to date, and a substantial step towards understanding their associations in parasite development and virulence.
Collapse
|
52
|
Douse CH, Tchasovnikarova IA, Timms RT, Protasio AV, Seczynska M, Prigozhin DM, Albecka A, Wagstaff J, Williamson JC, Freund SMV, Lehner PJ, Modis Y. TASOR is a pseudo-PARP that directs HUSH complex assembly and epigenetic transposon control. Nat Commun 2020; 11:4940. [PMID: 33009411 PMCID: PMC7532188 DOI: 10.1038/s41467-020-18761-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 09/10/2020] [Indexed: 12/15/2022] Open
Abstract
The HUSH complex represses retroviruses, transposons and genes to maintain the integrity of vertebrate genomes. HUSH regulates deposition of the epigenetic mark H3K9me3, but how its three core subunits - TASOR, MPP8 and Periphilin - contribute to assembly and targeting of the complex remains unknown. Here, we define the biochemical basis of HUSH assembly and find that its modular architecture resembles the yeast RNA-induced transcriptional silencing complex. TASOR, the central HUSH subunit, associates with RNA processing components. TASOR is required for H3K9me3 deposition over LINE-1 repeats and repetitive exons in transcribed genes. In the context of previous studies, this suggests that an RNA intermediate is important for HUSH activity. We dissect the TASOR and MPP8 domains necessary for transgene repression. Structure-function analyses reveal TASOR bears a catalytically-inactive PARP domain necessary for targeted H3K9me3 deposition. We conclude that TASOR is a multifunctional pseudo-PARP that directs HUSH assembly and epigenetic regulation of repetitive genomic targets.
Collapse
Affiliation(s)
- Christopher H Douse
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Iva A Tchasovnikarova
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), University of Cambridge School of Clinical Medicine, Cambridge, CB2 0AW, UK
- The Gurdon Institute, Cambridge, UK
| | - Richard T Timms
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), University of Cambridge School of Clinical Medicine, Cambridge, CB2 0AW, UK
| | - Anna V Protasio
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), University of Cambridge School of Clinical Medicine, Cambridge, CB2 0AW, UK
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Marta Seczynska
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), University of Cambridge School of Clinical Medicine, Cambridge, CB2 0AW, UK
| | - Daniil M Prigozhin
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Anna Albecka
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), University of Cambridge School of Clinical Medicine, Cambridge, CB2 0AW, UK
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Jane Wagstaff
- Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK
| | - James C Williamson
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), University of Cambridge School of Clinical Medicine, Cambridge, CB2 0AW, UK
| | - Stefan M V Freund
- Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK
| | - Paul J Lehner
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), University of Cambridge School of Clinical Medicine, Cambridge, CB2 0AW, UK.
| | - Yorgo Modis
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK.
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), University of Cambridge School of Clinical Medicine, Cambridge, CB2 0AW, UK.
| |
Collapse
|
53
|
Fukuda K, Shinkai Y. SETDB1-Mediated Silencing of Retroelements. Viruses 2020; 12:E596. [PMID: 32486217 PMCID: PMC7354471 DOI: 10.3390/v12060596] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/28/2020] [Accepted: 05/28/2020] [Indexed: 12/11/2022] Open
Abstract
SETDB1 (SET domain bifurcated histone lysine methyltransferase 1) is a protein lysine methyltransferase and methylates histone H3 at lysine 9 (H3K9). Among other H3K9 methyltransferases, SETDB1 and SETDB1-mediated H3K9 trimethylation (H3K9me3) play pivotal roles for silencing of endogenous and exogenous retroelements, thus contributing to genome stability against retroelement transposition. Furthermore, SETDB1 is highly upregulated in various tumor cells. In this article, we describe recent advances about how SETDB1 activity is regulated, how SETDB1 represses various types of retroelements such as L1 and class I, II, and III endogenous retroviruses (ERVs) in concert with other epigenetic factors such as KAP1 and the HUSH complex and how SETDB1-mediated H3K9 methylation can be maintained during replication.
Collapse
Affiliation(s)
- Kei Fukuda
- Cellular Memory Laboratory, RIKEN Cluster for Pioneering Research, RIKEN, Wako 351-0198, Japan
| | - Yoichi Shinkai
- Cellular Memory Laboratory, RIKEN Cluster for Pioneering Research, RIKEN, Wako 351-0198, Japan
| |
Collapse
|
54
|
Pham V, Pitti R, Tindell CA, Cheung TK, Masselot A, Stephan JP, Guler GD, Wilson C, Lill J, Arnott D, Classon M. Proteomic Analyses Identify a Novel Role for EZH2 in the Initiation of Cancer Cell Drug Tolerance. J Proteome Res 2020; 19:1533-1547. [DOI: 10.1021/acs.jproteome.9b00773] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
55
|
Design and Construction of a Focused DNA-Encoded Library for Multivalent Chromatin Reader Proteins. Molecules 2020; 25:molecules25040979. [PMID: 32098353 PMCID: PMC7070942 DOI: 10.3390/molecules25040979] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 02/11/2020] [Accepted: 02/19/2020] [Indexed: 12/11/2022] Open
Abstract
Chromatin structure and function, and consequently cellular phenotype, is regulated in part by a network of chromatin-modifying enzymes that place post-translational modifications (PTMs) on histone tails. These marks serve as recruitment sites for other chromatin regulatory complexes that ‘read’ these PTMs. High-quality chemical probes that can block reader functions of proteins involved in chromatin regulation are important tools to improve our understanding of pathways involved in chromatin dynamics. Insight into the intricate system of chromatin PTMs and their context within the epigenome is also therapeutically important as misregulation of this complex system is implicated in numerous human diseases. Using computational methods, along with structure-based knowledge, we have designed and constructed a focused DNA-Encoded Library (DEL) containing approximately 60,000 compounds targeting bi-valent methyl-lysine (Kme) reader domains. Additionally, we have constructed DNA-barcoded control compounds to allow optimization of selection conditions using a model Kme reader domain. We anticipate that this target-class focused approach will serve as a new method for rapid discovery of inhibitors for multivalent chromatin reader domains.
Collapse
|
56
|
Price AJ, Manjegowda MC, Kain J, Anandh S, Bochkis IM. Hdac3, Setdb1, and Kap1 mark H3K9me3/H3K14ac bivalent regions in young and aged liver. Aging Cell 2020; 19:e13092. [PMID: 31858687 PMCID: PMC6996956 DOI: 10.1111/acel.13092] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 11/05/2019] [Accepted: 11/23/2019] [Indexed: 01/21/2023] Open
Abstract
Post‐translational modifications of histone tails play a crucial role in gene regulation. Here, we performed chromatin profiling by quantitative targeted mass spectrometry to assess all possible modifications of the core histones. We identified a bivalent combination, a dually marked H3K9me3/H3K14ac modification in the liver, that is significantly decreased in old hepatocytes. Subsequent sequential ChIP‐Seq identified dually marked single nucleosome regions, with reduced number of sites and decreased signal in old livers, confirming mass spectrometry results. We detected H3K9me3 and H3K14ac bulk ChIP‐Seq signal in reChIP nucleosome regions, suggesting a correlation between H3K9me3/H3K14ac bulk bivalent genomic regions and dually marked single nucleosomes. Histone H3K9 deacetylase Hdac3, as well as H3K9 methyltransferase Setdb1, found in complex Kap1, occupied both bulk and single nucleosome bivalent regions in both young and old livers, correlating to presence of H3K9me3. Expression of genes associated with bivalent regions in young liver, including those regulating cholesterol secretion and triglyceride synthesis, is upregulated in old liver once the bivalency is lost. Hence, H3K9me3/H3K14ac dually marked regions define a poised inactive state that is resolved with loss of one or both of the chromatin marks, which subsequently leads to change in gene expression.
Collapse
Affiliation(s)
- Andrew J. Price
- Department of Pharmacology University of Virginia Charlottesville VA USA
| | | | - Jessica Kain
- Department of Pharmacology University of Virginia Charlottesville VA USA
| | - Swetha Anandh
- Department of Pharmacology University of Virginia Charlottesville VA USA
| | - Irina M. Bochkis
- Department of Pharmacology University of Virginia Charlottesville VA USA
| |
Collapse
|
57
|
Cheng Y, He C, Wang M, Ma X, Mo F, Yang S, Han J, Wei X. Targeting epigenetic regulators for cancer therapy: mechanisms and advances in clinical trials. Signal Transduct Target Ther 2019; 4:62. [PMID: 31871779 PMCID: PMC6915746 DOI: 10.1038/s41392-019-0095-0] [Citation(s) in RCA: 679] [Impact Index Per Article: 113.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 10/16/2019] [Accepted: 10/24/2019] [Indexed: 02/05/2023] Open
Abstract
Epigenetic alternations concern heritable yet reversible changes in histone or DNA modifications that regulate gene activity beyond the underlying sequence. Epigenetic dysregulation is often linked to human disease, notably cancer. With the development of various drugs targeting epigenetic regulators, epigenetic-targeted therapy has been applied in the treatment of hematological malignancies and has exhibited viable therapeutic potential for solid tumors in preclinical and clinical trials. In this review, we summarize the aberrant functions of enzymes in DNA methylation, histone acetylation and histone methylation during tumor progression and highlight the development of inhibitors of or drugs targeted at epigenetic enzymes.
Collapse
Affiliation(s)
- Yuan Cheng
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Cai He
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Manni Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xuelei Ma
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Fei Mo
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Shengyong Yang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Junhong Han
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
58
|
Arrowsmith CH, Schapira M. Targeting non-bromodomain chromatin readers. Nat Struct Mol Biol 2019; 26:863-869. [DOI: 10.1038/s41594-019-0290-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 07/30/2019] [Indexed: 12/19/2022]
|
59
|
Osumi K, Sato K, Murano K, Siomi H, Siomi MC. Essential roles of Windei and nuclear monoubiquitination of Eggless/SETDB1 in transposon silencing. EMBO Rep 2019; 20:e48296. [PMID: 31576653 DOI: 10.15252/embr.201948296] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 09/02/2019] [Accepted: 09/11/2019] [Indexed: 11/09/2022] Open
Abstract
Eggless/SETDB1 (Egg), the only essential histone methyltransferase (HMT) in Drosophila, plays a role in gene repression, including piRNA-mediated transposon silencing in the ovaries. Previous studies suggested that Egg is post-translationally modified and showed that Windei (Wde) regulates Egg nuclear localization through protein-protein interaction. Monoubiquitination of mammalian SETDB1 is necessary for the HMT activity. Here, using cultured ovarian somatic cells, we show that Egg is monoubiquitinated and phosphorylated but that only monoubiquitination is required for piRNA-mediated transposon repression. Egg monoubiquitination occurs in the nucleus. Egg has its own nuclear localization signal, and the nuclear import of Egg is Wde-independent. Wde recruits Egg to the chromatin at target gene silencing loci, but their interaction is monoubiquitin-independent. The abundance of nuclear Egg is governed by that of nuclear Wde. These results illuminate essential roles of nuclear monoubiquitination of Egg and the role of Wde in piRNA-mediated transposon repression.
Collapse
Affiliation(s)
- Ken Osumi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Kaoru Sato
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Kensaku Murano
- Department of Molecular Biology, Keio University School of Medicine, Tokyo, Japan
| | - Haruhiko Siomi
- Department of Molecular Biology, Keio University School of Medicine, Tokyo, Japan
| | - Mikiko C Siomi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
60
|
Blus BJ, Hashimoto H, Seo HS, Krolak A, Debler EW. Substrate Affinity and Specificity of the ScSth1p Bromodomain Are Fine-Tuned for Versatile Histone Recognition. Structure 2019; 27:1460-1468.e3. [PMID: 31327661 DOI: 10.1016/j.str.2019.06.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/09/2019] [Accepted: 06/21/2019] [Indexed: 11/29/2022]
Abstract
Bromodomains recognize a wide range of acetylated lysines in histones and other nuclear proteins. Substrate specificity is critical for their biological function and arises from unique acetyl-lysine binding sites formed by variable loop regions. Here, we analyzed substrate affinity and specificity of the yeast ScSth1p bromodomain, an essential component of the "Remodels the Structure of Chromatin" complex, and found that the wild-type bromodomain preferentially recognizes H3K14ac and H4K20ac peptides. Mutagenesis studies-guided by our crystal structure determined at 2.7-Å resolution-revealed loop residues Ser1276 and Trp1338 as key determinants for such interactions. Strikingly, point mutations of each of these residues substantially increased peptide binding affinity and selectivity, respectively. Our data demonstrate that the ScSth1p bromodomain is not optimized for binding to an individual acetylation mark, but fine-tuned for interactions with several such modifications, consistent with the versatile and multivalent nature of histone recognition by reader modules such as bromodomains.
Collapse
Affiliation(s)
- Bartlomiej J Blus
- Laboratory of Cell Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA.
| | - Hideharu Hashimoto
- Department of Biochemistry & Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Hyuk-Soo Seo
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Aleksandra Krolak
- Laboratory of Cell Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Erik W Debler
- Department of Biochemistry & Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
61
|
Monaghan L, Massett ME, Bunschoten RP, Hoose A, Pirvan PA, Liskamp RMJ, Jørgensen HG, Huang X. The Emerging Role of H3K9me3 as a Potential Therapeutic Target in Acute Myeloid Leukemia. Front Oncol 2019; 9:705. [PMID: 31428579 PMCID: PMC6687838 DOI: 10.3389/fonc.2019.00705] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 07/16/2019] [Indexed: 12/23/2022] Open
Abstract
Growing evidence has demonstrated that epigenetic dysregulation is a common pathological feature in human cancer cells. Global alterations in the epigenetic landscape are prevalent in malignant cells across different solid tumors including, prostate cancer, non-small-cell lung cancer, renal cell carcinoma, and in haemopoietic malignancy. In particular, DNA hypomethylation and histone hypoacetylation have been observed in acute myeloid leukemia (AML) patient blasts, with histone methylation being an emerging area of study. Histone 3 lysine 9 trimethylation (H3K9me3) is a post-translational modification known to be involved in the regulation of a broad range of biological processes, including the formation of transcriptionally silent heterochromatin. Following the observation of its aberrant methylation status in hematological malignancy and several other cancer phenotypes, recent studies have associated H3K9me3 levels with patient outcome and highlighted key molecular mechanisms linking H3K9me3 profile with AML etiology in a number of large-scale meta-analysis. Consequently, the development and application of small molecule inhibitors which target the histone methyltransferases or demethylase enzymes known to participate in the oncogenic regulation of H3K9me3 in AML represents an advancing area of ongoing study. Here, we provide a comprehensive review on how this particular epigenetic mark is regulated within cells and its emerging role as a potential therapeutic target in AML, along with an update on the current research into advancing the generation of more potent and selective inhibitors against known H3K9 methyltransferases and demethylases.
Collapse
Affiliation(s)
- Laura Monaghan
- Haemato-Oncology/Systems Medicine Group, Paul O'Gorman Leukemia Research Center, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Matthew E. Massett
- Haemato-Oncology/Systems Medicine Group, Paul O'Gorman Leukemia Research Center, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | | | - Alex Hoose
- School of Chemistry, University of Glasgow, Glasgow, United Kingdom
| | | | | | - Heather G. Jørgensen
- Haemato-Oncology/Systems Medicine Group, Paul O'Gorman Leukemia Research Center, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Xu Huang
- Haemato-Oncology/Systems Medicine Group, Paul O'Gorman Leukemia Research Center, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
62
|
Hiragami-Hamada K, Nakayama JI. Do the charges matter?-balancing the charges of the chromodomain proteins on the nucleosome. J Biochem 2019; 165:455-458. [PMID: 30649341 PMCID: PMC6537122 DOI: 10.1093/jb/mvz004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 01/11/2019] [Indexed: 02/06/2023] Open
Abstract
The chromodomain (CD) is a member of the Royal family of conserved chromatin-binding motifs with methylated substrate binding ability, and is often found in ‘readers’ or ‘writers’ of repressive histone marks. The regions upstream or downstream of the CD are generally highly charged. Several previous studies suggested that these charged regions modulate the CD’s chromatin-binding activity. Considering the relatively weak interaction between the CD and a modified histone tail, it is puzzling how the highly charged CD-flanking regions are ‘balanced’ on the highly charged nucleosomes to mediate a modification-dependent interaction. Interestingly, the charge distributions along the CD and surrounding regions appear to be distinct among different types of readers and writers, indicating their functional relevance. Here, we describe and discuss the current understanding of the highly charged CD-flanking regions and the potential experimental concerns caused by the regions.
Collapse
Affiliation(s)
- Kyoko Hiragami-Hamada
- Division of Chromatin Regulation, National Institute for Basic Biology, Okazaki, Aichi, Japan.,Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, Japan
| | - Jun-Ichi Nakayama
- Division of Chromatin Regulation, National Institute for Basic Biology, Okazaki, Aichi, Japan.,Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, Japan
| |
Collapse
|
63
|
Mader P, Mendoza-Sanchez R, Iqbal A, Dong A, Dobrovetsky E, Corless VB, Liew SK, Houliston SR, De Freitas RF, Smil D, Sena CCD, Kennedy S, Diaz DB, Wu H, Dombrovski L, Allali-Hassani A, Min J, Schapira M, Vedadi M, Brown PJ, Santhakumar V, Yudin AK, Arrowsmith CH. Identification and characterization of the first fragment hits for SETDB1 Tudor domain. Bioorg Med Chem 2019; 27:3866-3878. [PMID: 31327677 DOI: 10.1016/j.bmc.2019.07.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/03/2019] [Accepted: 07/10/2019] [Indexed: 11/26/2022]
Abstract
SET domain bifurcated protein 1 (SETDB1) is a human histone-lysine methyltransferase which is amplified in human cancers and was shown to be crucial in the growth of non-small and small cell lung carcinoma. In addition to its catalytic domain, SETDB1 harbors a unique tandem tudor domain which recognizes histone sequences containing both methylated and acetylated lysines, and likely contributes to its localization on chromatin. Using X-ray crystallography and NMR spectroscopy fragment screening approaches, we have identified the first small molecule fragment hits that bind to histone peptide binding groove of the Tandem Tudor Domain (TTD) of SETDB1. Herein, we describe the binding modes of these fragments and analogues and the biophysical characterization of key compounds. These confirmed small molecule fragments will inform the development of potent antagonists of SETDB1 interaction with histones.
Collapse
Affiliation(s)
- Pavel Mader
- Structural Genomics Consortium, University of Toronto, Toronto, Canada
| | | | - Aman Iqbal
- Structural Genomics Consortium, University of Toronto, Toronto, Canada
| | - Aiping Dong
- Structural Genomics Consortium, University of Toronto, Toronto, Canada
| | - Elena Dobrovetsky
- Structural Genomics Consortium, University of Toronto, Toronto, Canada
| | | | - Sean K Liew
- Department of Chemistry, University of Toronto, Toronto, Canada
| | - Scott R Houliston
- Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | | | - David Smil
- Structural Genomics Consortium, University of Toronto, Toronto, Canada
| | - Carlo C Dela Sena
- Structural Genomics Consortium, University of Toronto, Toronto, Canada
| | - Steven Kennedy
- Structural Genomics Consortium, University of Toronto, Toronto, Canada
| | - Diego B Diaz
- Department of Chemistry, University of Toronto, Toronto, Canada
| | - Hong Wu
- Structural Genomics Consortium, University of Toronto, Toronto, Canada
| | | | | | - Jinrong Min
- Structural Genomics Consortium, University of Toronto, Toronto, Canada
| | - Matthieu Schapira
- Structural Genomics Consortium, University of Toronto, Toronto, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
| | - Masoud Vedadi
- Structural Genomics Consortium, University of Toronto, Toronto, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
| | - Peter J Brown
- Structural Genomics Consortium, University of Toronto, Toronto, Canada
| | | | - Andrei K Yudin
- Department of Chemistry, University of Toronto, Toronto, Canada.
| | - Cheryl H Arrowsmith
- Structural Genomics Consortium, University of Toronto, Toronto, Canada; Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto, Toronto, Canada.
| |
Collapse
|
64
|
Emerging roles of H3K9me3, SETDB1 and SETDB2 in therapy-induced cellular reprogramming. Clin Epigenetics 2019; 11:43. [PMID: 30850015 PMCID: PMC6408861 DOI: 10.1186/s13148-019-0644-y] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 02/28/2019] [Indexed: 12/21/2022] Open
Abstract
Background A multitude of recent studies has observed common epigenetic changes develop in tumour cells of multiple lineages following exposure to stresses such as hypoxia, chemotherapeutics, immunotherapy or targeted therapies. A significant increase in the transcriptionally repressive mark trimethylated H3K9 (H3K9me3) is becoming associated with treatment-resistant phenotypes suggesting upstream mechanisms may be a good target for therapy. We have reported that the increase in H3K9me3 is derived from the methyltransferases SETDB1 and SETDB2 following treatment in melanoma, lung, breast and colorectal cancer cell lines, as well as melanoma patient data. Other groups have observed a number of characteristics such as epigenetic remodelling, increased interferon signalling, cell cycle inhibition and apoptotic resistance that have also been reported by us suggesting these independent studies are investigating similar or identical phenomena. Main body Firstly, this review introduces reports of therapy-induced reprogramming in cancer populations with highly similar slow-cycling phenotypes that suggest a role for both IFN signalling and epigenetic remodelling in the acquisition of drug tolerance. We then describe plausible connections between the type 1 IFN pathway, slow-cycling phenotypes and these epigenetic mechanisms before reviewing recent evidence on the roles of SETDB1 and SETDB2, alongside their product H3K9me3, in treatment-induced reprogramming and promotion of drug resistance. The potential mechanisms for the activation of SETDB1 and SETDB2 and how they might arise in treatment is also discussed mechanistically, with a focus on their putative induction by inflammatory signalling. Moreover, we theorise their timely role in attenuating inflammation after their activation in order to promote a more resilient phenotype through homeostatic coordination of H3K9me3. We also examine the relatively uncharacterized functions of SETDB2 with some comparison to the more well-known qualities of SETDB1. Finally, an emerging overall mechanism for the epigenetic maintenance of this transient phenotype is outlined by summarising the collective literature herein. Conclusion A number of converging phenotypes outline a stress-responsive mechanism for SETDB1 and SETDB2 activation and subsequent increased survival, providing novel insights into epigenetic biology. A clearer understanding of how SETDB1/2-mediated transcriptional reprogramming can subvert treatment responses will be invaluable in improving length and efficacy of modern therapies.
Collapse
|
65
|
Solution structure of TbTFIIS2-2 PWWP domain from Trypanosoma brucei and its binding to H4K17me3 and H3K32me3. Biochem J 2019; 476:421-431. [PMID: 30626613 DOI: 10.1042/bcj20180870] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/01/2019] [Accepted: 01/08/2019] [Indexed: 11/17/2022]
Abstract
Posttranslational modifications (PTMs) of core histones, such as histone methylation, play critical roles in a variety of biological processes including transcription regulation, chromatin condensation and DNA repair. In T. brucei, no domain recognizing methylated histone has been identified so far. TbTFIIS2-2, as a potential transcription elongation factors in T. brucei, contains a PWWP domain in the N-terminus which shares low sequence similarity compared with other PWWP domains and is absent from other TFIIS factors. In the present study, the solution structure of TbTFIIS2-2 PWWP domain was determined by NMR spectroscopy. TbTFIIS2-2 PWWP domain adopts a global fold containing a five-strand β-barrel and two C-terminal α-helices similar to other PWWP domains. Moreover, through systematic screening, we revealed that TbTFIIS2-2 PWWP domain is able to bind H4K17me3 and H3K32me3. Meanwhile, we identified the critical residues responsible for the binding ability of TbTFIIS2-2 PWWP domain. The conserved cage formed by the aromatic amino acids in TbTFIIS2-2 PWWP domain is essential for its binding to methylated histones.
Collapse
|
66
|
Application of modified histone peptide arrays in chromatin research. Arch Biochem Biophys 2019; 661:31-38. [DOI: 10.1016/j.abb.2018.10.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 10/26/2018] [Accepted: 10/29/2018] [Indexed: 01/15/2023]
|
67
|
Jeltsch A, Broche J, Bashtrykov P. Molecular Processes Connecting DNA Methylation Patterns with DNA Methyltransferases and Histone Modifications in Mammalian Genomes. Genes (Basel) 2018; 9:genes9110566. [PMID: 30469440 PMCID: PMC6266221 DOI: 10.3390/genes9110566] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 11/13/2018] [Accepted: 11/16/2018] [Indexed: 12/20/2022] Open
Abstract
DNA methylation is an essential part of the epigenome chromatin modification network, which also comprises several covalent histone protein post-translational modifications. All these modifications are highly interconnected, because the writers and erasers of one mark, DNA methyltransferases (DNMTs) and ten eleven translocation enzymes (TETs) in the case of DNA methylation, are directly or indirectly targeted and regulated by other marks. Here, we have collected information about the genomic distribution and variability of DNA methylation in human and mouse DNA in different genomic elements. After summarizing the impact of DNA methylation on genome evolution including CpG depletion, we describe the connection of DNA methylation with several important histone post-translational modifications, including methylation of H3K4, H3K9, H3K27, and H3K36, but also with nucleosome remodeling. Moreover, we present the mechanistic features of mammalian DNA methyltransferases and their associated factors that mediate the crosstalk between DNA methylation and chromatin modifications. Finally, we describe recent advances regarding the methylation of non-CpG sites, methylation of adenine residues in human cells and methylation of mitochondrial DNA. At several places, we highlight controversial findings or open questions demanding future experimental work.
Collapse
Affiliation(s)
- Albert Jeltsch
- Institute of Biochemistry and Technical Biochemistry, Department of Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany.
| | - Julian Broche
- Institute of Biochemistry and Technical Biochemistry, Department of Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany.
| | - Pavel Bashtrykov
- Institute of Biochemistry and Technical Biochemistry, Department of Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany.
| |
Collapse
|