51
|
Matern J, Fernández Z, Bäumer N, Fernández G. Expanding the Scope of Metastable Species in Hydrogen Bonding-Directed Supramolecular Polymerization. Angew Chem Int Ed Engl 2022; 61:e202203783. [PMID: 35362184 PMCID: PMC9321731 DOI: 10.1002/anie.202203783] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Indexed: 12/23/2022]
Abstract
We reveal unique hydrogen (H-) bonding patterns and exploit them to control the kinetics, pathways and length of supramolecular polymers (SPs). New bisamide-containing monomers were designed to elucidate the role of competing intra- vs. intermolecular H-bonding interactions on the kinetics of supramolecular polymerization (SP). Remarkably, two polymerization-inactive metastable states were discovered. Contrary to previous examples, the commonly assumed intramolecularly H-bonded monomer does not evolve into intermolecularly H-bonded SPs via ring opening, but rather forms a metastable dimer. In this dimer, all H-bonding sites are saturated, either intra- or intermolecularly, hampering elongation. The dimers exhibit an advantageous preorganization, which upon opening of the intramolecular portion of the H-bonding motif facilitates SP in a consecutive process. The retardation of spontaneous self-assembly as a result of two metastable states enables length control in SP by seed-mediated growth.
Collapse
Affiliation(s)
- Jonas Matern
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 3648149MünsterGermany
| | - Zulema Fernández
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 3648149MünsterGermany
| | - Nils Bäumer
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 3648149MünsterGermany
| | - Gustavo Fernández
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 3648149MünsterGermany
| |
Collapse
|
52
|
Tan M, Takeuchi M, Takai A. Cooperative self-assembling process of core-substituted naphthalenediimide induced by amino-yne click reaction. Chem Commun (Camb) 2022; 58:7196-7199. [PMID: 35671101 DOI: 10.1039/d2cc02331h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a cooperative (i.e., nucleation-elongation) self-assembling process of a core-substituted naphthalenediimide induced by a catalyst-free amino-yne click reaction at 298 K. The self-assembling process was initiated immediately in the presence of nuclei (seeds). The combination of the click reaction and the seeded self-assembling process paves the way for precise control over supramolecular assemblies of electron-deficient π-systems.
Collapse
Affiliation(s)
- Minghan Tan
- Molecular Design and Function Group, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan. .,Department of Materials Science and Engineering, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Masayuki Takeuchi
- Molecular Design and Function Group, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan. .,Department of Materials Science and Engineering, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Atsuro Takai
- Molecular Design and Function Group, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan.
| |
Collapse
|
53
|
Li C, Zhang X, Dong M, Han X. Progress on Crowding Effect in Cell-like Structures. MEMBRANES 2022; 12:593. [PMID: 35736300 PMCID: PMC9228500 DOI: 10.3390/membranes12060593] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 12/10/2022]
Abstract
Several biological macromolecules, such as proteins, nucleic acids, and polysaccharides, occupy about 30% of the space in cells, resulting in a crowded macromolecule environment. The crowding effect within cells exerts an impact on the functions of biological components, the assembly behavior of biomacromolecules, and the thermodynamics and kinetics of metabolic reactions. Cell-like structures provide confined and independent compartments for studying the working mechanisms of cells, which can be used to study the physiological functions arising from the crowding effect of macromolecules in cells. This article mainly summarizes the progress of research on the macromolecular crowding effects in cell-like structures. It includes the effects of this crowding on actin assembly behavior, tubulin aggregation behavior, and gene expression. The challenges and future trends in this field are presented at the end of the paper.
Collapse
Affiliation(s)
- Chao Li
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 92 West Da-Zhi Street, Harbin 150001, China; (C.L.); (X.Z.)
| | - Xiangxiang Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 92 West Da-Zhi Street, Harbin 150001, China; (C.L.); (X.Z.)
| | - Mingdong Dong
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000 Aarhus, Denmark
| | - Xiaojun Han
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 92 West Da-Zhi Street, Harbin 150001, China; (C.L.); (X.Z.)
| |
Collapse
|
54
|
Fan H, Li K, Tu T, Zhu X, Zhang L, Liu M. ATP-Induced Emergent Circularly Polarized Luminescence and Encryption. Angew Chem Int Ed Engl 2022; 61:e202200727. [PMID: 35195948 DOI: 10.1002/anie.202200727] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Indexed: 02/06/2023]
Abstract
Biomimetic ATP-driven supramolecular assembly is important to understand various biological processes and dissipative systems. Here, we report an ATP-driven chiral assembly exhibiting circularly polarized luminescence (CPL) via the interaction of an achiral terpyridine-based ZnII complex with nucleotides. It was found that while the metal complexes could co-assemble with the nucleotides to form fluorescent assemblies, only a combination of furan-substituted terpyridine complex and ATP showed an intense CPL with a dissymmetry factor (glum ) as high as 0.20. This means that the complex could recognize ATP using CPL as a readout signal, thus providing an example of ATP encryption. Interestingly, when ATP was transferred into ADP or AMP under enzymatic hydrolysis, the CPL decreases or disappears. Addition of ATP generates CPL again, thus producing an ATP-induced CPL system. This work presents the first example of ATP-induced CPL and encryption.
Collapse
Affiliation(s)
- Huahua Fan
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kun Li
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tao Tu
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai, 200433, China
| | - Xuefeng Zhu
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190, China
| | - Li Zhang
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190, China
| | - Minghua Liu
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
55
|
Selmani S, Schwartz E, Mulvey JT, Wei H, Grosvirt-Dramen A, Gibson W, Hochbaum AI, Patterson JP, Ragan R, Guan Z. Electrically Fueled Active Supramolecular Materials. J Am Chem Soc 2022; 144:7844-7851. [PMID: 35446034 DOI: 10.1021/jacs.2c01884] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Fuel-driven dissipative self-assemblies play essential roles in living systems, contributing both to their complex, dynamic structures and emergent functions. Several dissipative supramolecular materials have been created using chemicals or light as fuel. However, electrical energy, one of the most common energy sources, has remained unexplored for such purposes. Here, we demonstrate a new platform for creating active supramolecular materials using electrically fueled dissipative self-assembly. Through an electrochemical redox reaction network, a transient and highly active supramolecular assembly is achieved with rapid kinetics, directionality, and precise spatiotemporal control. As electronic signals are the default information carriers in modern technology, the described approach offers a potential opportunity to integrate active materials into electronic devices for bioelectronic applications.
Collapse
Affiliation(s)
- Serxho Selmani
- Center for Complex and Active Materials, University of California, Irvine, Irvine, California 92697, United States.,Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Eric Schwartz
- Center for Complex and Active Materials, University of California, Irvine, Irvine, California 92697, United States.,Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Justin T Mulvey
- Center for Complex and Active Materials, University of California, Irvine, Irvine, California 92697, United States.,Department of Materials Science and Engineering, University of California, Irvine, Irvine, California 92697, United States
| | - Hong Wei
- Center for Complex and Active Materials, University of California, Irvine, Irvine, California 92697, United States.,Department of Materials Science and Engineering, University of California, Irvine, Irvine, California 92697, United States
| | - Adam Grosvirt-Dramen
- Center for Complex and Active Materials, University of California, Irvine, Irvine, California 92697, United States.,Department of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, California 92697, United States
| | - Wyeth Gibson
- Center for Complex and Active Materials, University of California, Irvine, Irvine, California 92697, United States.,Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Allon I Hochbaum
- Center for Complex and Active Materials, University of California, Irvine, Irvine, California 92697, United States.,Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States.,Department of Materials Science and Engineering, University of California, Irvine, Irvine, California 92697, United States.,Department of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, California 92697, United States.,Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Joseph P Patterson
- Center for Complex and Active Materials, University of California, Irvine, Irvine, California 92697, United States.,Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States.,Department of Materials Science and Engineering, University of California, Irvine, Irvine, California 92697, United States
| | - Regina Ragan
- Center for Complex and Active Materials, University of California, Irvine, Irvine, California 92697, United States.,Department of Materials Science and Engineering, University of California, Irvine, Irvine, California 92697, United States
| | - Zhibin Guan
- Center for Complex and Active Materials, University of California, Irvine, Irvine, California 92697, United States.,Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States.,Department of Materials Science and Engineering, University of California, Irvine, Irvine, California 92697, United States.,Department of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, California 92697, United States.,Department of Biomedical Engineering, University of California, Irvine, Irvine, California 92697, United States
| |
Collapse
|
56
|
Molecular communications in complex systems of dynamic supramolecular polymers. Nat Commun 2022; 13:2162. [PMID: 35443756 PMCID: PMC9021206 DOI: 10.1038/s41467-022-29804-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/29/2022] [Indexed: 11/21/2022] Open
Abstract
Supramolecular polymers are composed of monomers that self-assemble non-covalently, generating distributions of monodimensional fibres in continuous communication with each other and with the surrounding solution. Fibres, exchanging molecular species, and external environment constitute a sole complex system, which intrinsic dynamics is hard to elucidate. Here we report coarse-grained molecular simulations that allow studying supramolecular polymers at the thermodynamic equilibrium, explicitly showing the complex nature of these systems, which are composed of exquisitely dynamic molecular entities. Detailed studies of molecular exchange provide insights into key factors controlling how assemblies communicate with each other, defining the equilibrium dynamics of the system. Using minimalistic and finer chemically relevant molecular models, we observe that a rich concerted complexity is intrinsic in such self-assembling systems. This offers a new dynamic and probabilistic (rather than structural) picture of supramolecular polymer systems, where the travelling molecular species continuously shape the assemblies that statistically emerge at the equilibrium. The dynamic structure of supramolecular polymers is challenging to determine both in experiments and in simulations. Here the authors use coarse-grained molecular models to provide a comprehensive analysis of the molecular communication in these complex molecular systems.
Collapse
|
57
|
Matern J, Fernandez Z, Bäumer N, Fernandez G. Expanding the Scope of Metastable Species in Hydrogen Bonding‐Directed Supramolecular Polymerization. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jonas Matern
- WWU Münster: Westfalische Wilhelms-Universitat Munster Organisch-Chemisches Institut GERMANY
| | - Zulema Fernandez
- WWU Münster: Westfalische Wilhelms-Universitat Munster Organisch-Chemisches Institut GERMANY
| | - Nils Bäumer
- WWU Münster: Westfalische Wilhelms-Universitat Munster Organisch-Chemisches Institut GERMANY
| | - Gustavo Fernandez
- WWU Münster Organisch-Chemisches Institut Correnstraße, 4ß 48149 Münster GERMANY
| |
Collapse
|
58
|
Transient chirality inversion during racemization of a helical cobalt(III) complex. Proc Natl Acad Sci U S A 2022; 119:e2113237119. [PMID: 35259015 PMCID: PMC8931221 DOI: 10.1073/pnas.2113237119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
SignificanceWe first observed a transient chirality inversion on a simple unimolecular platform during the racemization of a chiral helical complex [LCo3A6]3+, i.e., the helicity changed from P-rich (right-handed) to M-rich (left-handed), which then racemized to a P/M equimolar mixture in spite of the absence of a reagent that could induce the M helix. This transient chirality inversion was observed only in the forward reaction, whereas the reverse reaction showed a simple monotonic change with an induction time. Consequently, the M helicity appeared only in the forward reaction. These forward and reverse reactions constitute a hysteretic cycle. Compounds showing such unique time responses would be useful for developing time-programmable switchable materials that can control the physical/chemical properties in a time-dependent manner.
Collapse
|
59
|
Fan H, Li K, Tu T, Zhu X, Zhang L, Liu M. ATP‐Induced Emergent Circularly Polarized Luminescence and Encryption. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Huahua Fan
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics Institute of Chemistry, Chinese Academy of Sciences Zhongguancun North First Street 2 Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Kun Li
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics Institute of Chemistry, Chinese Academy of Sciences Zhongguancun North First Street 2 Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Tao Tu
- Department of Chemistry Fudan University 220 Handan Road Shanghai 200433 China
| | - Xuefeng Zhu
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics Institute of Chemistry, Chinese Academy of Sciences Zhongguancun North First Street 2 Beijing 100190 China
| | - Li Zhang
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics Institute of Chemistry, Chinese Academy of Sciences Zhongguancun North First Street 2 Beijing 100190 China
| | - Minghua Liu
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics Institute of Chemistry, Chinese Academy of Sciences Zhongguancun North First Street 2 Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
60
|
Li M, Ma Z, Pan C, Zhang X, Zhang W, Yang B, Li Y. Chemical Fuel Mediated Self-Regulatory Polymer Brushes for Autonomous Fluorescence Modulator and Wettability Switcher. Macromol Rapid Commun 2022; 43:e2100878. [PMID: 35080275 DOI: 10.1002/marc.202100878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/24/2022] [Indexed: 11/06/2022]
Abstract
Synthetic systems of non-equilibrium self-assembly have made considerable progress, however, the achievement of innovative materials with self-regulated functions analogous to living systems remains a grand challenge. Herein, we report a versatile non-equilibrium system of polymer brushes with spatiotemporally programmable properties and functions driven by chemical fuels. By combining a responsive polymer with an autonomous pH regulator, the polymer brushes self-regulate their swelling and deswelling process with tunable lifetimes. By using patterned copolymer brushes with pH-responsive fluorescence moiety, we create an autonomous fluorescence modulator that self-regulates its fluorescence in spatiotemporally programmable fashion driven by a chemical or an enzymatic reaction. Furthermore, we implement a self-regulated wettability switcher of polymer brushes both in air and in an aqueous solution. The methodology and results in this work provide a useful avenue into the exploration of non-equilibrium synthetic materials with programmable functions and would accelerate the transformative developments of non-equilibrium materials and systems in practical applications. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Mengyuan Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Ziwen Ma
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Chunyu Pan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Xiaoye Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Wenke Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Yunfeng Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| |
Collapse
|
61
|
Feng Y, Philp D. A Molecular Replication Process Drives Supramolecular Polymerization. J Am Chem Soc 2021; 143:17029-17039. [PMID: 34617739 DOI: 10.1021/jacs.1c06404] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Supramolecular polymers are materials in which the connections between monomers in the polymer main chain are non-covalent bonds. This area has seen rapid expansion in the last two decades and has been exploited in several applications. However, suitable contiguous hydrogen-bond arrays can be difficult to synthesize, placing some limitations on the deployment of supramolecular polymers. We have designed a hydrogen-bonded polymer assembled from a bifunctional monomer composed of two replicating templates separated by a rigid spacer. This design allows the autocatalytic formation of the polymer main chain through the self-templating properties of the replicators and drives the synthesis of the bifunctional monomer from its constituent components in solution. The template-directed 1,3-dipolar cycloaddition reaction between nitrone and maleimide proceeds with high diastereoselectivity, affording the bifunctional monomer. The high binding affinity between the self-complementary replicating templates that allows the bifunctional monomer to polymerize in solution is derived from the positive cooperativity associated with this binding process. The assembly of the polymer in solution has been investigated by diffusion-ordered NMR spectroscopy. Both microcrystalline and thin films of the polymeric material can be prepared readily and have been characterized by powder X-ray diffraction and scanning electron microscopy. These results demonstrate that the approach described here is a valid one for the construction of supramolecular polymers and can be extended to systems where the rigid spacer between the replicating templates is replaced by one carrying additional function.
Collapse
Affiliation(s)
- Yuanning Feng
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Douglas Philp
- School of Chemistry, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, U.K
| |
Collapse
|
62
|
Maity D, Hamilton AD. The helical supramolecular assembly of oligopyridylamide foldamers in aqueous media can be guided by adenosine diphosphates. Chem Commun (Camb) 2021; 57:9192-9195. [PMID: 34519293 DOI: 10.1039/d1cc02704b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A metal-free and achiral tri-pyridylamide foldamer, DM 11, containing a critical naphthalimide side chain self-assembles in a left-handed helical manner in the presence of chiral adenosine phosphates, under physiological conditions. Surprisingly, a very high degree of helicity in the foldamer assemblies was observed with ADP compared to other nucleoside phosphates, including ATP.
Collapse
Affiliation(s)
- Debabrata Maity
- Department of Chemistry, New York University, New York, NY 10003, USA.
| | - Andrew D Hamilton
- Department of Chemistry, New York University, New York, NY 10003, USA.
| |
Collapse
|
63
|
A dissipative pathway for the structural evolution of DNA fibres. Nat Chem 2021; 13:843-849. [PMID: 34373598 DOI: 10.1038/s41557-021-00751-w] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 06/14/2021] [Indexed: 11/08/2022]
Abstract
Biochemical networks interconnect, grow and evolve to express new properties as different chemical pathways are selected during a continuous cycle of energy consumption and transformation. In contrast, synthetic systems that push away from equilibrium usually return to the same self-assembled state, often generating waste that limits system recyclability and prevents the formation of adaptable networks. Here we show that annealing by slow proton dissipation selects for otherwise inaccessible morphologies of fibres built from DNA and cyanuric acid. Using single-molecule fluorescence microscopy, we observe that proton dissipation influences the growth mechanism of supramolecular polymerization, healing gaps within fibres and converting highly branched, interwoven networks into nanocable superstructures. Just as the growth kinetics of natural fibres determine their structural attributes to modulate function, our system of photoacid-enabled depolymerization and repolymerization selects for healed materials to yield organized, robust fibres. Our method provides a chemical route for error-checking, distinct from thermal annealing, that improves the morphologies and properties of supramolecular materials using out-of-equilibrium systems.
Collapse
|
64
|
Sarkar A, Sasmal R, Das A, Venugopal A, Agasti SS, George SJ. Tricomponent Supramolecular Multiblock Copolymers with Tunable Composition via Sequential Seeded Growth. Angew Chem Int Ed Engl 2021; 60:18209-18216. [PMID: 34111324 DOI: 10.1002/anie.202105342] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/25/2021] [Indexed: 01/28/2023]
Abstract
Synthesis of supramolecular block co-polymers (BCP) with small monomers and predictive sequence requires elegant molecular design and synthetic strategies. Herein we report the unparalleled synthesis of tri-component supramolecular BCPs with tunable microstructure by a kinetically controlled sequential seeded supramolecular polymerization of fluorescent π-conjugated monomers. Core-substituted naphthalene diimide (cNDI) derivatives with different core substitutions and appended with β-sheet forming peptide side chains provide perfect monomer design with spectral complementarity, pathway complexity and minimal structural mismatch to synthesize and characterize the multi-component BCPs. The distinct fluorescent nature of various cNDI monomers aids the spectroscopic probing of the seeded growth process and the microscopic visualization of resultant supramolecular BCPs using Structured Illumination Microscopy (SIM). Kinetically controlled sequential seeded supramolecular polymerization presented here is reminiscent of the multi-step synthesis of covalent BCPs via living chain polymerization. These findings provide a promising platform for constructing unique functional organic heterostructures for various optoelectronic and catalytic applications.
Collapse
Affiliation(s)
- Aritra Sarkar
- New Chemistry Unit (NCU) and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore, 560064, India
| | - Ranjan Sasmal
- New Chemistry Unit (NCU) and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore, 560064, India
| | - Angshuman Das
- New Chemistry Unit (NCU) and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore, 560064, India
| | - Akhil Venugopal
- New Chemistry Unit (NCU) and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore, 560064, India
| | - Sarit S Agasti
- New Chemistry Unit (NCU) and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore, 560064, India
| | - Subi J George
- New Chemistry Unit (NCU) and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore, 560064, India
| |
Collapse
|
65
|
Gao Z, Qiu S, Yan F, Zhang S, Wang F, Tian W. Time-encoded bio-fluorochromic supramolecular co-assembly for rewritable security printing. Chem Sci 2021; 12:10041-10047. [PMID: 34377397 PMCID: PMC8317669 DOI: 10.1039/d1sc03105h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 06/23/2021] [Indexed: 12/27/2022] Open
Abstract
Innovative fluorescence security technologies for paper-based information are still highly pursued nowadays because data leakage and indelibility have become serious economic and social problems. Herein, we report a novel transient bio-fluorochromic supramolecular co-assembly mediated by a hydrolytic enzyme (ALP: alkaline phosphatase) towards rewritable security printing. A co-assembly based on the designed tetrabranched cationic diethynylanthracene monomer tends to be formed by adding adenosine triphosphate (ATP) as the biofuel. The resulting co-assembly possesses a time-encoded bio-fluorochromic feature, upon successively hydrolyzing ATP with ALP and re-adding new batches of ATP. On this basis, the dynamic fluorescent properties of this time-encoded co-assembly system have been successfully enabled in rewritable security patterns via an inkjet printing technique, providing fascinating potential for fluorescence security materials with a biomimetic mode.
Collapse
Affiliation(s)
- Zhao Gao
- Shaanxi Key Laboratory of Macromolecular Science and Technology, MOE Key Laboratory of Material Physics and Chemistry Under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University Xi'an 710072 P. R. China
| | - Shuai Qiu
- Shaanxi Key Laboratory of Macromolecular Science and Technology, MOE Key Laboratory of Material Physics and Chemistry Under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University Xi'an 710072 P. R. China
| | - Fei Yan
- Shaanxi Key Laboratory of Macromolecular Science and Technology, MOE Key Laboratory of Material Physics and Chemistry Under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University Xi'an 710072 P. R. China
| | - Shuyi Zhang
- Shaanxi Key Laboratory of Macromolecular Science and Technology, MOE Key Laboratory of Material Physics and Chemistry Under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University Xi'an 710072 P. R. China
| | - Feng Wang
- CAS Key Laboratory of Soft Matter Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Polymer Science and Engineering, University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Wei Tian
- Shaanxi Key Laboratory of Macromolecular Science and Technology, MOE Key Laboratory of Material Physics and Chemistry Under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University Xi'an 710072 P. R. China
| |
Collapse
|
66
|
Sarkar S, Sarkar A, Som A, Agasti SS, George SJ. Stereoselective Primary and Secondary Nucleation Events in Multicomponent Seeded Supramolecular Polymerization. J Am Chem Soc 2021; 143:11777-11787. [PMID: 34308651 DOI: 10.1021/jacs.1c05642] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Bioinspired, kinetically controlled seeded growth has been recently shown to provide length, dispersity, and sequence control on the primary structure of dynamic supramolecular polymers. However, command over the molecular organization at all hierarchical levels for the modulation of higher order structures of supramolecular polymers remains a formidable task. In this context, a surface-catalyzed secondary nucleation process, which plays an important role in the autocatalytic generation of amyloid fibrils and also during the chiral crystallization of small monomers, offers exciting possibilities for topology control in synthetic macromolecular systems by introducing secondary growth pathways compared to the usual primary nucleation-elongation process. However, mechanistic insights into the molecular determinants and driving forces for the secondary nucleation event in synthetic systems are not yet realized. Herein, we attempt to fill this dearth by showing an unprecedented molecular chirality control on the primary and secondary nucleation events in seed-induced supramolecular polymerization. Comprehensive kinetic experiments using in situ spectroscopic probing of the temporal changes of the monomer organization during the growth process provide a unique study to characterize the primary and secondary nucleation events in a supramolecular polymerization process. Kinetic analyses along with various microscopic studies further reveal the remarkable effect of stereoselective nucleation and seeding events on the (micro)structural aspects of the resulting multicomponent supramolecular polymers.
Collapse
Affiliation(s)
- Souvik Sarkar
- New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India
| | - Aritra Sarkar
- New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India
| | - Arka Som
- New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India
| | - Sarit S Agasti
- New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India
| | - Subi J George
- New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India
| |
Collapse
|
67
|
Sarkar A, Sasmal R, Das A, Venugopal A, Agasti SS, George SJ. Tricomponent Supramolecular Multiblock Copolymers with Tunable Composition via Sequential Seeded Growth. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105342] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Aritra Sarkar
- New Chemistry Unit (NCU) and School of Advanced Materials (SAMat) Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur Bangalore 560064 India
| | - Ranjan Sasmal
- New Chemistry Unit (NCU) and School of Advanced Materials (SAMat) Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur Bangalore 560064 India
| | - Angshuman Das
- New Chemistry Unit (NCU) and School of Advanced Materials (SAMat) Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur Bangalore 560064 India
| | - Akhil Venugopal
- New Chemistry Unit (NCU) and School of Advanced Materials (SAMat) Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur Bangalore 560064 India
| | - Sarit S. Agasti
- New Chemistry Unit (NCU) and School of Advanced Materials (SAMat) Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur Bangalore 560064 India
| | - Subi J. George
- New Chemistry Unit (NCU) and School of Advanced Materials (SAMat) Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur Bangalore 560064 India
| |
Collapse
|
68
|
Shyshov O, Haridas SV, Pesce L, Qi H, Gardin A, Bochicchio D, Kaiser U, Pavan GM, von Delius M. Living supramolecular polymerization of fluorinated cyclohexanes. Nat Commun 2021; 12:3134. [PMID: 34035277 PMCID: PMC8149861 DOI: 10.1038/s41467-021-23370-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/23/2021] [Indexed: 02/07/2023] Open
Abstract
The development of powerful methods for living covalent polymerization has been a key driver of progress in organic materials science. While there have been remarkable reports on living supramolecular polymerization recently, the scope of monomers is still narrow and a simple solution to the problem is elusive. Here we report a minimalistic molecular platform for living supramolecular polymerization that is based on the unique structure of all-cis 1,2,3,4,5,6-hexafluorocyclohexane, the most polar aliphatic compound reported to date. We use this large dipole moment (6.2 Debye) not only to thermodynamically drive the self-assembly of supramolecular polymers, but also to generate kinetically trapped monomeric states. Upon addition of well-defined seeds, we observed that the dormant monomers engage in a kinetically controlled supramolecular polymerization. The obtained nanofibers have an unusual double helical structure and their length can be controlled by the ratio between seeds and monomers. The successful preparation of supramolecular block copolymers demonstrates the versatility of the approach.
Collapse
Affiliation(s)
| | | | - Luca Pesce
- Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland, Lugano-Viganello, Switzerland
| | - Haoyuan Qi
- Central Facility of Electron Microscopy, Electron Microscopy Group of Materials Science, University of Ulm, Ulm, Germany
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technical University of Dresden, Dresden, Germany
| | - Andrea Gardin
- Department of Applied Science and Technology, Politecnico di Torino, Torino, Italy
| | - Davide Bochicchio
- Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland, Lugano-Viganello, Switzerland
- Department of Physics, Università degli studi di Genova, Genova, Italy
| | - Ute Kaiser
- Central Facility of Electron Microscopy, Electron Microscopy Group of Materials Science, University of Ulm, Ulm, Germany
| | - Giovanni M Pavan
- Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland, Lugano-Viganello, Switzerland.
- Department of Applied Science and Technology, Politecnico di Torino, Torino, Italy.
| | - Max von Delius
- Institute of Organic Chemistry, University of Ulm, Ulm, Germany.
| |
Collapse
|
69
|
Zong Y, Xu SM, Shi W, Lu C. Oriented arrangement of simple monomers enabled by confinement: towards living supramolecular polymerization. Nat Commun 2021; 12:2596. [PMID: 33972542 PMCID: PMC8110532 DOI: 10.1038/s41467-021-22827-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 03/25/2021] [Indexed: 11/24/2022] Open
Abstract
The living supramolecular polymerization technique provides an exciting research avenue. However, in comparison with the thermodynamic spontaneous nucleation, using simple monomers to realize living supramolecular polymerization is hardly possible from an energy principle. This is because the activation barrier of kinetically trapped simple monomer (nucleation step) is insufficiently high to control the kinetics of subsequent elongation. Here, with the benefit of the confinement from the layered double hydroxide (LDH) nanomaterial, various simple monomers, (such as benzene, naphthalene and pyrene derivatives) successfully form living supramolecular polymer (LSP) with length control and narrow dispersity. The degree of polymerization can reach ~6000. Kinetics studies reveal LDH overcomes a huge energy barrier to inhibit undesired spontaneous nucleation of monomers and disassembly of metastable states. The universality of this strategy will usher exploration into other multifunctional molecules and promote the development of functional LSP. Using simple monomers in living supramolecular polymerization is difficult due to energy principles. Here the authors use confinement from a layered double hydroxide nanomaterial to successfully polymerise several simple monomers with length control and narrow dispersity.
Collapse
Affiliation(s)
- Yingtong Zong
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, P. R. China
| | - Si-Min Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, P. R. China
| | - Wenying Shi
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, P. R. China.
| | - Chao Lu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, P. R. China.
| |
Collapse
|
70
|
Reinke L, Koch M, Müller-Renno C, Kubik S. Selective sensing of adenosine monophosphate (AMP) over adenosine diphosphate (ADP), adenosine triphosphate (ATP), and inorganic phosphates with zinc(II)-dipicolylamine-containing gold nanoparticles. Org Biomol Chem 2021; 19:3893-3900. [PMID: 33949587 DOI: 10.1039/d1ob00341k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Mixed monolayer-protected gold nanoparticles containing surface-bound triethylene glycol and dipicolylamine groups aggregated in water/methanol, 1 : 2 (v/v) in the presence of nucleotides, if the solution also contained zinc(ii) nitrate to convert the dipicolylamine units into the corresponding zinc complexes. Nanoparticle aggregation could be followed with the naked eye by the colour change of the solution from red to purple followed by nanoparticle precipitation. The sensitivity was highest for adenosine triphosphate (ATP), which could be detected at concentrations >10 μM, and decreased over adenosine diphosphate (ADP) to adenosine monophosphate (AMP), consistent with the typically higher affinity of zinc(ii)-dipicolylamine-derived receptors for higher charged nucleotides. Inorganic sodium diphosphate and triphosphate interfered in the assay by also inducing nanoparticle aggregation. However, while the nucleotide-induced aggregates persisted even at higher analyte concentrations, the nanoparticles that were precipitated with inorganic salts redissolved again when the salt concentration was increased. The thus resulting solutions retained their ability to respond to nucleotides, but they now preferentially responded to AMP. Accordingly, AMP could be sensed selectively at concentrations ≥50 μM in an aqueous environment, even in the presence of other nucleotides and inorganic anions. This work thus introduces a novel approach for the sensing of a nucleotide that is often the most difficult analyte to detect with other assays.
Collapse
Affiliation(s)
- Lena Reinke
- Technische Universität Kaiserslautern, Fachbereich Chemie - Organische Chemie, Erwin-Schrödinger-Straße 54, 67663 Kaiserslautern, Germany.
| | - Marcus Koch
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
| | - Christine Müller-Renno
- Technische Universität Kaiserslautern, Fachbereich Physik und Forschungszentrum OPTIMAS, AG Grenzflächen, Nanomaterialien und Biophysik, Erwin-Schrödinger-Straße 56, 67663 Kaiserslautern, Germany
| | - Stefan Kubik
- Technische Universität Kaiserslautern, Fachbereich Chemie - Organische Chemie, Erwin-Schrödinger-Straße 54, 67663 Kaiserslautern, Germany.
| |
Collapse
|
71
|
Ghosh A, Paul I, Schmittel M. Multitasking with Chemical Fuel: Dissipative Formation of a Pseudorotaxane Rotor from Five Distinct Components. J Am Chem Soc 2021; 143:5319-5323. [PMID: 33787253 DOI: 10.1021/jacs.1c01948] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A 3-fold completive self-sorted library of dynamic motifs was integrated into the design of the pseudorotaxane-based rotor [Zn(2·H+)(3)(4)]2+ operating at k298 = 15.4 kHz. The rotational motion in the five-component device is based on association/dissociation of the pyridyl head of the pseudorotaxane rotator arm between two zinc(II) porphyrin stations. Addition of TFA or 2-cyano-2-phenylpropanoic acid as a chemical fuel to a zinc release system and the loose rotor components 2-4 enabled the liberated zinc(II) ions and protons to act in unison, setting up the rotor through the formation of a heteroleptic zinc complex and a pseudorotaxane linkage. With chemical fuel, the dissipative system was reproducibly pulsed three times without a problem. Due to the double role of the fuel acid, two kinetically distinct processes played a role in both the out-of-equilibrium assembly and disassembly of the rotor, highlighting the complex issues in multitasking of chemical fuels.
Collapse
Affiliation(s)
- Amit Ghosh
- Center of Micro- and Nanochemistry and Engineering, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Strasse 2, D-57068 Siegen, Germany
| | - Indrajit Paul
- Center of Micro- and Nanochemistry and Engineering, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Strasse 2, D-57068 Siegen, Germany
| | - Michael Schmittel
- Center of Micro- and Nanochemistry and Engineering, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Strasse 2, D-57068 Siegen, Germany
| |
Collapse
|
72
|
Kei P, Howell MT, Chavez CA, Mai JC, Do C, Hong K, Nesterov EE. Kinetically Controlled Formation of Semi-crystalline Conjugated Polymer Nanostructures. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Peter Kei
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Mitchell T. Howell
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois 60115, United States
| | - Carlos A. Chavez
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Joseph C. Mai
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Changwoo Do
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Kunlun Hong
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Evgueni E. Nesterov
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois 60115, United States
| |
Collapse
|
73
|
Oh JS, Kim KY, Park J, Lee H, Park Y, Cho J, Lee SS, Kim H, Jung SH, Jung JH. Dynamic Transformation of a Ag+-Coordinated Supramolecular Nanostructure from a 1D Needle to a 1D Helical Tube via a 2D Ribbon Accompanying the Conversion of Complex Structures. J Am Chem Soc 2021; 143:3113-3123. [DOI: 10.1021/jacs.0c10678] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Jeong Sang Oh
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Ka Young Kim
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jaehyeon Park
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Hyeonju Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Younwoo Park
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jaeheung Cho
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Shim Sung Lee
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Hyungjun Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Sung Ho Jung
- Department of Liberal Arts, Gyeongnam National University of Science and Technology (GNTECH), Jinju 52725, Republic of Korea
| | - Jong Hwa Jung
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
74
|
van der Helm MP, de Beun T, Eelkema R. On the use of catalysis to bias reaction pathways in out-of-equilibrium systems. Chem Sci 2021; 12:4484-4493. [PMID: 34163713 PMCID: PMC8179475 DOI: 10.1039/d0sc06406h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 02/09/2021] [Indexed: 12/29/2022] Open
Abstract
Catalysis is an essential function in living systems and provides a way to control complex reaction networks. In natural out-of-equilibrium chemical reaction networks (CRNs) driven by the consumption of chemical fuels, enzymes provide catalytic control over pathway kinetics, giving rise to complex functions. Catalytic regulation of man-made fuel-driven systems is far less common and mostly deals with enzyme catalysis instead of synthetic catalysts. Here, we show via simulations, illustrated by literature examples, how any catalyst can be incorporated in a non-equilibrium CRN and what their effect is on the behavior of the system. Alteration of the catalysts' concentrations in batch and flow gives rise to responses in maximum conversion, lifetime (i.e. product half-lives and t90 - time to recover 90% of the reactant) and steady states. In situ up or downregulation of catalysts' levels temporarily changes the product steady state, whereas feedback elements can give unusual concentration profiles as a function of time and self-regulation in a CRN. We show that simulations can be highly effective in predicting CRN behavior. In the future, shifting the focus from enzyme catalysis towards small molecule and metal catalysis in out-of-equilibrium systems can provide us with new reaction networks and enhance their application potential in synthetic materials, overall advancing the design of man-made responsive and interactive systems.
Collapse
Affiliation(s)
- Michelle P van der Helm
- Department of Chemical Engineering, Delft University of Technology Van der Maasweg 9 2629 HZ Delft The Netherlands +31 15 27 81035
| | - Tuanke de Beun
- Department of Chemical Engineering, Delft University of Technology Van der Maasweg 9 2629 HZ Delft The Netherlands +31 15 27 81035
| | - Rienk Eelkema
- Department of Chemical Engineering, Delft University of Technology Van der Maasweg 9 2629 HZ Delft The Netherlands +31 15 27 81035
| |
Collapse
|
75
|
Mukhopadhyay RD, Choi S, Sen SK, Hwang IC, Kim K. Transient Self-assembly Processes Operated by Gaseous Fuels under Out-of-Equilibrium Conditions. Chem Asian J 2020; 15:4118-4123. [PMID: 33135872 DOI: 10.1002/asia.202001183] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/27/2020] [Indexed: 12/11/2022]
Abstract
Herein we report transient out-of-equilibrium self-assembly of molecules operated by gaseous fuel mixtures. The combination of an active gaseous chemical fuel and an inert gas or compressed air, which assists the degassing of the gaseous fuel from the solution, drives the transient self-assembly process. The gaseous nature of the fuel as well as the exhaust helps in their easy removal and thereby prevents their accumulation within the system and helps in maintaining the efficiency of the transient self-assembly process. The strategy is executed with a rather simple experimental set up and operates at ambient temperatures. Our approach may find use in the development of smart materials suitable for applications such as temporally active gas sensing and sequestration.
Collapse
Affiliation(s)
- Rahul Dev Mukhopadhyay
- Center for Self-assembly and Complexity (CSC), Institute for Basic Science (IBS), Pohang, 37673, Republic of Korea
| | - Seoyeon Choi
- Center for Self-assembly and Complexity (CSC), Institute for Basic Science (IBS), Pohang, 37673, Republic of Korea.,Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Shovan Kumar Sen
- Center for Self-assembly and Complexity (CSC), Institute for Basic Science (IBS), Pohang, 37673, Republic of Korea
| | - In-Chul Hwang
- Center for Self-assembly and Complexity (CSC), Institute for Basic Science (IBS), Pohang, 37673, Republic of Korea
| | - Kimoon Kim
- Center for Self-assembly and Complexity (CSC), Institute for Basic Science (IBS), Pohang, 37673, Republic of Korea.,Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.,Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| |
Collapse
|
76
|
Perego C, Pesce L, Capelli R, George SJ, Pavan GM. Multiscale Molecular Modelling of ATP‐Fueled Supramolecular Polymerisation and Depolymerisation**. CHEMSYSTEMSCHEM 2020. [DOI: 10.1002/syst.202000038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Claudio Perego
- Department of Innovative Technologies University of Applied Sciences and Arts of Southern Switzerland, Galleria 2 Via Cantonale 2c 6928 Manno Switzerland
| | - Luca Pesce
- Department of Innovative Technologies University of Applied Sciences and Arts of Southern Switzerland, Galleria 2 Via Cantonale 2c 6928 Manno Switzerland
| | - Riccardo Capelli
- Department of Applied Science and Technology Politecnico di Torino Corso Duca degli Abruzzi 24 10129 Torino Italy
| | - Subi J. George
- Supramolecular Chemistry Laboratory New Chemistry Unit Jawaharlal Neru Centre for Advanced Scientific Research Jakkur Bangalore 560064 India
| | - Giovanni M. Pavan
- Department of Innovative Technologies University of Applied Sciences and Arts of Southern Switzerland, Galleria 2 Via Cantonale 2c 6928 Manno Switzerland
- Department of Applied Science and Technology Politecnico di Torino Corso Duca degli Abruzzi 24 10129 Torino Italy
| |
Collapse
|
77
|
Mishra A, Dhiman S, George SJ. ATP‐Driven Synthetic Supramolecular Assemblies: From ATP as a Template to Fuel. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006614] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Ananya Mishra
- Supramolecular Chemistry Laboratory New Chemistry Unit School of Advanced Materials (SAMat) Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur Bangalore 560064 India
| | - Shikha Dhiman
- Supramolecular Chemistry Laboratory New Chemistry Unit School of Advanced Materials (SAMat) Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur Bangalore 560064 India
| | - Subi J. George
- Supramolecular Chemistry Laboratory New Chemistry Unit School of Advanced Materials (SAMat) Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur Bangalore 560064 India
| |
Collapse
|
78
|
Control of self-assembly pathways toward conglomerate and racemic supramolecular polymers. Nat Commun 2020; 11:5460. [PMID: 33122635 PMCID: PMC7596528 DOI: 10.1038/s41467-020-19189-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/28/2020] [Indexed: 12/26/2022] Open
Abstract
Homo- and heterochiral aggregation during crystallization of organic molecules has significance both for fundamental questions related to the origin of life as well as for the separation of homochiral compounds from their racemates in industrial processes. Herein, we analyse these phenomena at the lowest level of hierarchy – that is the self-assembly of a racemic mixture of (R,R)- and (S,S)-PBI into 1D supramolecular polymers. By a combination of UV/vis and NMR spectroscopy as well as atomic force microscopy, we demonstrate that homochiral aggregation of the racemic mixture leads to the formation of two types of supramolecular conglomerates under kinetic control, while under thermodynamic control heterochiral aggregation is preferred, affording a racemic supramolecular polymer. FT-IR spectroscopy and quantum-chemical calculations reveal unique packing arrangements and hydrogen-bonding patterns within these supramolecular polymers. Time-, concentration- and temperature-dependent UV/vis experiments provide further insights into the kinetic and thermodynamic control of the conglomerate and racemic supramolecular polymer formation. Homo- and heterochiral aggregation is a process of interest to prebiotic and chiral separation chemistry. Here, the authors analyze the self-assembly of a racemic mixture into 1D supramolecular polymers and find homochiral aggregation into conglomerates under kinetic control, while under thermodynamic control a racemic polymer is formed.
Collapse
|
79
|
Mishra A, Dhiman S, George SJ. ATP‐Driven Synthetic Supramolecular Assemblies: From ATP as a Template to Fuel. Angew Chem Int Ed Engl 2020; 60:2740-2756. [DOI: 10.1002/anie.202006614] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/09/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Ananya Mishra
- Supramolecular Chemistry Laboratory New Chemistry Unit School of Advanced Materials (SAMat) Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur Bangalore 560064 India
| | - Shikha Dhiman
- Supramolecular Chemistry Laboratory New Chemistry Unit School of Advanced Materials (SAMat) Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur Bangalore 560064 India
| | - Subi J. George
- Supramolecular Chemistry Laboratory New Chemistry Unit School of Advanced Materials (SAMat) Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur Bangalore 560064 India
| |
Collapse
|
80
|
Deng J, Walther A. ATP-Responsive and ATP-Fueled Self-Assembling Systems and Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002629. [PMID: 32881127 DOI: 10.1002/adma.202002629] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/21/2020] [Indexed: 06/11/2023]
Abstract
Adenosine triphosphate (ATP) is a central metabolite that plays an indispensable role in various cellular processes, from energy supply to cell-to-cell signaling. Nature has developed sophisticated strategies to use the energy stored in ATP for many metabolic and non-equilibrium processes, and to sense and bind ATP for biological signaling. The variations in the ATP concentrations from one organelle to another, from extracellular to intracellular environments, and from normal cells to cancer cells are one motivation for designing ATP-triggered and ATP-fueled systems and materials, because they show great potential for applications in biological systems by using ATP as a trigger or chemical fuel. Over the last decade, ATP has been emerging as an attractive co-assembling component for man-made stimuli-responsive as well as for fuel-driven active systems and materials. Herein, current advances and emerging concepts for ATP-triggered and ATP-fueled self-assemblies and materials are discussed, shedding light on applications and highlighting future developments. By bringing together concepts of different domains, that is from supramolecular chemistry to DNA nanoscience, from equilibrium to non-equilibrium self-assembly, and from fundamental sciences to applications, the aim is to cross-fertilize current approaches with the ultimate aim to bring synthetic ATP-dependent systems closer to living systems.
Collapse
Affiliation(s)
- Jie Deng
- A3BMS Lab - Active, Adaptive and Autonomous Bioinspired Materials, Institute for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Straße 31, Freiburg, 79104, Germany
- Freiburg Materials Research Center (FMF), University of Freiburg, Stefan-Meier-Str. 21, Freiburg, 79104, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, Freiburg, 79110, Germany
| | - Andreas Walther
- A3BMS Lab - Active, Adaptive and Autonomous Bioinspired Materials, Institute for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Straße 31, Freiburg, 79104, Germany
- Freiburg Materials Research Center (FMF), University of Freiburg, Stefan-Meier-Str. 21, Freiburg, 79104, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, Freiburg, 79110, Germany
- Cluster of Excellence livMatS @ FIT - Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, Freiburg, D-79110, Germany
| |
Collapse
|
81
|
Chandrabhas S, Maiti S, Fortunati I, Ferrante C, Gabrielli L, Prins LJ. Nucleotide-Selective Templated Self-Assembly of Nanoreactors under Dissipative Conditions. Angew Chem Int Ed Engl 2020; 59:22223-22229. [PMID: 32833254 DOI: 10.1002/anie.202010199] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Indexed: 02/06/2023]
Abstract
Nature adopts complex chemical networks to finely tune biochemical processes. Indeed, small biomolecules play a key role in regulating the flux of metabolic pathways. Chemistry, which was traditionally focused on reactions in simple mixtures, is dedicating increasing attention to the network reactivity of highly complex synthetic systems, able to display new kinetic phenomena. Herein, we show that the addition of monophosphate nucleosides to a mixture of amphiphiles and reagents leads to the selective templated formation of self-assembled structures, which can accelerate a reaction between two hydrophobic reactants. The correct matching between nucleotide and the amphiphile head group is fundamental for the selective formation of the assemblies and for the consequent up-regulation of the chemical reaction. Transient stability of the nanoreactors is obtained under dissipative conditions, driven by enzymatic dephosphorylation of the templating nucleotides. These results show that small molecules can play a key role in modulating network reactivity, by selectively templating self-assembled structures that are able to up-regulate chemical reaction pathways.
Collapse
Affiliation(s)
- Sushmitha Chandrabhas
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Subhabrata Maiti
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Mohali Knowledge City, Manauli, 140306, India
| | - Ilaria Fortunati
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Camilla Ferrante
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Luca Gabrielli
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Leonard J Prins
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131, Padova, Italy
| |
Collapse
|
82
|
Chandrabhas S, Maiti S, Fortunati I, Ferrante C, Gabrielli L, Prins LJ. Nucleotide‐Selective Templated Self‐Assembly of Nanoreactors under Dissipative Conditions. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010199] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Sushmitha Chandrabhas
- Department of Chemical Sciences University of Padova Via Marzolo 1 35131 Padova Italy
| | - Subhabrata Maiti
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) Mohali Knowledge City, Manauli 140306 India
| | - Ilaria Fortunati
- Department of Chemical Sciences University of Padova Via Marzolo 1 35131 Padova Italy
| | - Camilla Ferrante
- Department of Chemical Sciences University of Padova Via Marzolo 1 35131 Padova Italy
| | - Luca Gabrielli
- Department of Chemical Sciences University of Padova Via Marzolo 1 35131 Padova Italy
| | - Leonard J. Prins
- Department of Chemical Sciences University of Padova Via Marzolo 1 35131 Padova Italy
| |
Collapse
|
83
|
van der Weijden A, Winkens M, Schoenmakers SMC, Huck WTS, Korevaar PA. Autonomous mesoscale positioning emerging from myelin filament self-organization and Marangoni flows. Nat Commun 2020; 11:4800. [PMID: 32968072 PMCID: PMC7511956 DOI: 10.1038/s41467-020-18555-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/25/2020] [Indexed: 11/09/2022] Open
Abstract
Out-of-equilibrium molecular systems hold great promise as dynamic, reconfigurable matter that executes complex tasks autonomously. However, translating molecular scale dynamics into spatiotemporally controlled phenomena emerging at mesoscopic scale remains a challenge-especially if one aims at a design where the system itself maintains gradients that are required to establish spatial differentiation. Here, we demonstrate how surface tension gradients, facilitated by a linear amphiphile molecule, generate Marangoni flows that coordinate the positioning of amphiphile source and drain droplets floating at air-water interfaces. Importantly, at the same time, this amphiphile leads, via buckling instabilities in lamellar systems of said amphiphile, to the assembly of millimeter long filaments that grow from the source droplets and get absorbed at the drain droplets. Thereby, the Marangoni flows and filament organization together sustain the autonomous positioning of interconnected droplet-filament networks at the mesoscale. Our concepts provide potential for the development of non-equilibrium matter with spatiotemporal programmability.
Collapse
Affiliation(s)
- Arno van der Weijden
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 AJ, The Netherlands
| | - Mitch Winkens
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 AJ, The Netherlands
| | - Sandra M C Schoenmakers
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 AJ, The Netherlands
| | - Wilhelm T S Huck
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 AJ, The Netherlands
| | - Peter A Korevaar
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 AJ, The Netherlands.
| |
Collapse
|
84
|
Mukherjee A, Ghosh S. Circularly Polarized Luminescence from Chiral Supramolecular Polymer and Seeding Effect. Chemistry 2020; 26:12874-12881. [DOI: 10.1002/chem.202002056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/09/2020] [Indexed: 11/06/2022]
Affiliation(s)
- Anurag Mukherjee
- School of Applied and Interdisciplinary Sciences Indian Association for the Cultivation of Science 2A and 2B Raja S. C. Mullick Road Kolkata 700032 India
| | - Suhrit Ghosh
- School of Applied and Interdisciplinary Sciences Indian Association for the Cultivation of Science 2A and 2B Raja S. C. Mullick Road Kolkata 700032 India
| |
Collapse
|
85
|
van Ravensteijn BGP, Voets IK, Kegel WK, Eelkema R. Out-of-Equilibrium Colloidal Assembly Driven by Chemical Reaction Networks. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:10639-10656. [PMID: 32787015 PMCID: PMC7497707 DOI: 10.1021/acs.langmuir.0c01763] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/08/2020] [Indexed: 05/20/2023]
Abstract
Transient assembled structures play an indispensable role in a wide variety of processes fundamental to living organisms including cellular transport, cell motility, and proliferation. Typically, the formation of these transient structures is driven by the consumption of molecular fuels via dissipative reaction networks. In these networks, building blocks are converted from inactive precursor states to active (assembling) states by (a set of) irreversible chemical reactions. Since the activated state is intrinsically unstable and can be maintained only in the presence of sufficient fuel, fuel depletion results in the spontaneous disintegration of the formed superstructures. Consequently, the properties and behavior of these assembled structures are governed by the kinetics of fuel consumption rather than by their thermodynamic stability. This fuel dependency endows biological systems with unprecedented spatiotemporal adaptability and inherent self-healing capabilities. Fascinated by these unique material characteristics, coupling the assembly behavior to molecular fuel or light-driven reaction networks was recently implemented in synthetic (supra)molecular systems. In this invited feature article, we discuss recent studies demonstrating that dissipative assembly is not limited to the molecular world but can also be translated to building blocks of colloidal dimensions. We highlight crucial guiding principles for the successful design of dissipative colloidal systems and illustrate these with the current state of the art. Finally, we present our vision on the future of the field and how marrying nonequilibrium self-assembly with the functional properties associated with colloidal building blocks presents a promising route for the development of next-generation materials.
Collapse
Affiliation(s)
- Bas G. P. van Ravensteijn
- Institute
for Complex Molecular Systems, Department of Chemical Engineering
and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Ilja K. Voets
- Institute
for Complex Molecular Systems, Department of Chemical Engineering
and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Willem K. Kegel
- Van
’t Hoff Laboratory for Physical and Colloid Chemistry, Debye
Institute for NanoMaterials Science, Utrecht
University, 3584 CH Utrecht, The Netherlands
| | - Rienk Eelkema
- Department
of Chemical Engineering, Delft University
of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
86
|
Sarkar S, Sarkar A, George SJ. Stereoselective Seed‐Induced Living Supramolecular Polymerization. Angew Chem Int Ed Engl 2020; 59:19841-19845. [DOI: 10.1002/anie.202006248] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/11/2020] [Indexed: 11/12/2022]
Affiliation(s)
- Souvik Sarkar
- New Chemistry Unit and School of Advanced Materials (SAMat) Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur Bangalore 560064 India
| | - Aritra Sarkar
- New Chemistry Unit and School of Advanced Materials (SAMat) Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur Bangalore 560064 India
| | - Subi J. George
- New Chemistry Unit and School of Advanced Materials (SAMat) Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur Bangalore 560064 India
| |
Collapse
|
87
|
Sarkar S, Sarkar A, George SJ. Stereoselective Seed‐Induced Living Supramolecular Polymerization. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006248] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Souvik Sarkar
- New Chemistry Unit and School of Advanced Materials (SAMat) Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur Bangalore 560064 India
| | - Aritra Sarkar
- New Chemistry Unit and School of Advanced Materials (SAMat) Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur Bangalore 560064 India
| | - Subi J. George
- New Chemistry Unit and School of Advanced Materials (SAMat) Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur Bangalore 560064 India
| |
Collapse
|
88
|
Transient dormant monomer states for supramolecular polymers with low dispersity. Nat Commun 2020; 11:3967. [PMID: 32770122 PMCID: PMC7415150 DOI: 10.1038/s41467-020-17799-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 07/15/2020] [Indexed: 12/13/2022] Open
Abstract
Temporally controlled cooperative and living supramolecular polymerization by the buffered release of monomers has been recently introduced as an important concept towards obtaining monodisperse and multicomponent self-assembled materials. In synthetic, dynamic supramolecular polymers, this requires efficient design strategies for the dormant, inactive states of the monomers to kinetically retard the otherwise spontaneous nucleation process. However, a generalized design principle for the dormant monomer states to expand the scope of precision supramolecular polymers has not been established yet, due to the enormous differences in the mechanism, energetic parameters of self-assembly and monomer exchange dynamics of the diverse class of supramolecular polymers. Here we report the concept of transient dormant states of monomers generated by redox reactions as a predictive general design to achieve monodisperse supramolecular polymers of electronically active, chromophoric or donor-acceptor, monomers. The concept has been demonstrated with charge-transfer supramolecular polymers with an alternating donor-acceptor sequence. Monodisperse and well-defined self-assembled materials can be obtained by fuel-driven temporally controlled supramolecular polymerization via the buffered release of monomers. Here the authors show that a redox-responsive transient dormant state of monomer generated by redox reaction can lead to supramolecular polymers with low dispersity.
Collapse
|
89
|
Ariga K, Jia X, Song J, Hill JP, Leong DT, Jia Y, Li J. Nanoarchitektonik als ein Ansatz zur Erzeugung bioähnlicher hierarchischer Organisate. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000802] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Katsuhiko Ariga
- WPI Research Center for Materials Nanoarchitectonics (MANA) National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
- Graduate School of Frontier Sciences The University of Tokyo 5-1-5 Kashiwanoha Kashiwa Chiba 277-8561 Japan
| | - Xiaofang Jia
- WPI Research Center for Materials Nanoarchitectonics (MANA) National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - Jingwen Song
- Graduate School of Frontier Sciences The University of Tokyo 5-1-5 Kashiwanoha Kashiwa Chiba 277-8561 Japan
| | - Jonathan P. Hill
- WPI Research Center for Materials Nanoarchitectonics (MANA) National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - David Tai Leong
- Department of Chemical & Biomolecular Engineering National University of Singapore Singapore 117585 Singapur
| | - Yi Jia
- Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Key Lab of Colloid, Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Key Lab of Colloid, Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| |
Collapse
|
90
|
Ariga K, Jia X, Song J, Hill JP, Leong DT, Jia Y, Li J. Nanoarchitectonics beyond Self-Assembly: Challenges to Create Bio-Like Hierarchic Organization. Angew Chem Int Ed Engl 2020; 59:15424-15446. [PMID: 32170796 DOI: 10.1002/anie.202000802] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Indexed: 01/04/2023]
Abstract
Incorporation of non-equilibrium actions in the sequence of self-assembly processes would be an effective means to establish bio-like high functionality hierarchical assemblies. As a novel methodology beyond self-assembly, nanoarchitectonics, which has as its aim the fabrication of functional materials systems from nanoscopic units through the methodological fusion of nanotechnology with other scientific disciplines including organic synthesis, supramolecular chemistry, microfabrication, and bio-process, has been applied to this strategy. The application of non-equilibrium factors to conventional self-assembly processes is discussed on the basis of examples of directed assembly, Langmuir-Blodgett assembly, and layer-by-layer assembly. In particular, examples of the fabrication of hierarchical functional structures using bio-active components such as proteins or by the combination of bio-components and two-dimensional nanomaterials, are described. Methodologies described in this review article highlight possible approaches using the nanoarchitectonics concept beyond self-assembly for creation of bio-like higher functionalities and hierarchical structural organization.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.,Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| | - Xiaofang Jia
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Jingwen Song
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| | - Jonathan P Hill
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - David Tai Leong
- Department of Chemical & Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Yi Jia
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
91
|
Deng J, Walther A. ATP-powered molecular recognition to engineer transient multivalency and self-sorting 4D hierarchical systems. Nat Commun 2020; 11:3658. [PMID: 32694613 PMCID: PMC7374688 DOI: 10.1038/s41467-020-17479-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 07/03/2020] [Indexed: 02/07/2023] Open
Abstract
Biological systems organize multiple hierarchical structures in parallel, and create dynamic assemblies and functions by energy dissipation. In contrast, emerging artificial non-equilibrium self-assembling systems have remained relatively simplistic concerning hierarchical design, and non-equilibrium multi-component systems are uncharted territory. Here we report a modular DNA toolbox allowing to program transient non-equilibrium multicomponent systems across hierarchical length scales by introducing chemically fueled molecular recognition orchestrated by reaction networks of concurrent ATP-powered ligation and cleavage of freely programmable DNA building blocks. Going across hierarchical levels, we demonstrate transient side-chain functionalized nucleic acid polymers, and further introduce the concept of transient cooperative multivalency as a key to bridge length scales to pioneer fuel-driven encapsulation, self-assembly of colloids, and non-equilibrium transient narcissistic colloidal self-sorting on a systems level. The fully programmable and functionalizable DNA components pave the way to design chemically fueled 4D (3 space, 1 time) molecular multicomponent systems and autonomous materials.
Collapse
Affiliation(s)
- Jie Deng
- A3BMS Lab, Institute for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Straße 31, 79104, Freiburg, Germany
- DFG Cluster of Excellence "Living, Adaptive and Energy-Autonomous Materials Systems" (livMatS), 79110, Freiburg, Germany
- Freiburg Materials Research Center, University of Freiburg, Stefan-Meier-Straße 21, 79104, Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, 79110, Freiburg, Germany
- Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, Albertstraße 19, 79104, Freiburg, Germany
| | - Andreas Walther
- A3BMS Lab, Institute for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Straße 31, 79104, Freiburg, Germany.
- DFG Cluster of Excellence "Living, Adaptive and Energy-Autonomous Materials Systems" (livMatS), 79110, Freiburg, Germany.
- Freiburg Materials Research Center, University of Freiburg, Stefan-Meier-Straße 21, 79104, Freiburg, Germany.
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, 79110, Freiburg, Germany.
- Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, Albertstraße 19, 79104, Freiburg, Germany.
| |
Collapse
|
92
|
Dhiman S, Ghosh R, Sarkar S, George SJ. Controlled synthesis of organic two-dimensional nanostructures via reaction-driven, cooperative supramolecular polymerization. Chem Sci 2020; 11:12701-12709. [PMID: 34094465 PMCID: PMC8163148 DOI: 10.1039/d0sc02670k] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/16/2020] [Indexed: 01/26/2023] Open
Abstract
The bottom-up approach of supramolecular polymerization is an effective synthetic method for functional organic nanostructures. However, the uncontrolled growth and polydisperse structural outcome often lead to low functional efficiency. Thus, precise control over the structural characteristics of supramolecular polymers is the current scientific hurdle. Research so far has tended to focus on systems with inherent kinetic control by the presence of metastable state monomers either through conformational molecular design or by exploring pathway complexity. The need of the hour is to create generic strategies for dormant states of monomers that can be extended to different molecules and various structural organizations and dimensions. Here we venture to demonstrate chemical reaction-driven cooperative supramolecular polymerization as an alternative strategy for the controlled synthesis of organic two-dimensional nanostructures. In our approach, the dynamic imine bond is exploited to convert a non-assembling dormant monomer to an activated amphiphilic structure in a kinetically controlled manner. The chemical reaction governed retarded nucleation-elongation growth provides control over dispersity and size.
Collapse
Affiliation(s)
- Shikha Dhiman
- Supramolecular Chemistry Laboratory, New Chemistry Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre of Advanced Scientific Research (JNCASR) Jakkur Bangalore 560064 India
| | - Rita Ghosh
- Supramolecular Chemistry Laboratory, New Chemistry Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre of Advanced Scientific Research (JNCASR) Jakkur Bangalore 560064 India
| | - Souvik Sarkar
- Supramolecular Chemistry Laboratory, New Chemistry Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre of Advanced Scientific Research (JNCASR) Jakkur Bangalore 560064 India
| | - Subi J George
- Supramolecular Chemistry Laboratory, New Chemistry Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre of Advanced Scientific Research (JNCASR) Jakkur Bangalore 560064 India
| |
Collapse
|
93
|
Supramolecular double-stranded Archimedean spirals and concentric toroids. Nat Commun 2020; 11:3578. [PMID: 32681045 PMCID: PMC7368029 DOI: 10.1038/s41467-020-17356-5] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/23/2020] [Indexed: 02/06/2023] Open
Abstract
Connecting molecular-level phenomena to larger scales and, ultimately, to sophisticated molecular systems that resemble living systems remains a considerable challenge in supramolecular chemistry. To this end, molecular self-assembly at higher hierarchical levels has to be understood and controlled. Here, we report unusual self-assembled structures formed from a simple porphyrin derivative. Unexpectedly, this formed a one-dimensional (1D) supramolecular polymer that coiled to give an Archimedean spiral. Our analysis of the supramolecular polymerization by using mass-balance models suggested that the Archimedean spiral is formed at high concentrations of the monomer, whereas other aggregation types might form at low concentrations. Gratifyingly, we discovered that our porphyrin-based monomer formed supramolecular concentric toroids at low concentrations. Moreover, a mechanistic insight into the self-assembly process permitted a controlled synthesis of these concentric toroids. This study both illustrates the richness of self-assembled structures at higher levels of hierarchy and demonstrates a topological effect in noncovalent synthesis. Connecting molecular-level phenomena to larger scales and molecular systems that resemble living systems remains a considerable challenge in supramolecular chemistry. Here, the authors report different self-assembly patterns in a porphyrin structure which can form – depending on the concentration - spirals or toroids.
Collapse
|
94
|
Kubota R, Makuta M, Suzuki R, Ichikawa M, Tanaka M, Hamachi I. Force generation by a propagating wave of supramolecular nanofibers. Nat Commun 2020; 11:3541. [PMID: 32669562 PMCID: PMC7363860 DOI: 10.1038/s41467-020-17394-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/17/2020] [Indexed: 01/07/2023] Open
Abstract
Dynamic spatiotemporal patterns that arise from out-of-equilibrium biochemical reactions generate forces in living cells. Despite considerable recent efforts, rational design of spatiotemporal patterns in artificial molecular systems remains at an early stage of development. Here, we describe force generation by a propagating wave of supramolecular nanofibers. Inspired by actin dynamics, a reaction network is designed to control the formation and degradation of nanofibers by two chemically orthogonal stimuli. Real-time fluorescent imaging successfully visualizes the propagating wave based on spatiotemporally coupled generation and collapse of nanofibers. Numerical simulation indicates that the concentration gradient of degradation stimulus and the smaller diffusion coefficient of the nanofiber are critical for wave emergence. Moreover, the force (0.005 pN) generated by chemophoresis and/or depletion force of this propagating wave can move nanobeads along the wave direction.
Collapse
Affiliation(s)
- Ryou Kubota
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Masahiro Makuta
- Department of Physics, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Ryo Suzuki
- Center for Integrative Medicine and Physics, Institute for Advanced Study, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Masatoshi Ichikawa
- Department of Physics, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Motomu Tanaka
- Center for Integrative Medicine and Physics, Institute for Advanced Study, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan.,Physical Chemistry of Biosystems, Institute of Physical Chemistry, Heidelberg University, 69120, Heidelberg, Germany
| | - Itaru Hamachi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan. .,JST-ERATO, Hamachi Innovative Molecular Technology for Neuroscience, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8530, Japan.
| |
Collapse
|
95
|
Deng J, Bezold D, Jessen HJ, Walther A. Multiple Light Control Mechanisms in ATP-Fueled Non-equilibrium DNA Systems. Angew Chem Int Ed Engl 2020; 59:12084-12092. [PMID: 32232894 PMCID: PMC7384039 DOI: 10.1002/anie.202003102] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Indexed: 12/13/2022]
Abstract
Fuel-driven self-assemblies are gaining ground for creating autonomous systems and materials, whose temporal behavior is preprogrammed by a reaction network. However, up to now there has been a lack of simple external control mechanisms of the transient behavior, at best using remote and benign light control. Even more challenging is to use different wavelengths to modulate the reactivity of different components of the system, for example, as fuel or building blocks. Success would enable such systems to navigate along different trajectories in a wavelength-dependent fashion. Herein, we introduce the first examples of light control in ATP-fueled, dynamic covalent DNA polymerization systems organized in an enzymatic reaction network of concurrent ATP-powered ligation and restriction. We demonstrate concepts for light activation and modulation by introducing caged ATP derivatives and caged DNA building blocks, making it possible to realize light-activated fueling, self-sorting in structure and behavior, and transition across different wavelength-dependent dynamic steady states.
Collapse
Affiliation(s)
- Jie Deng
- Institute for Macromolecular ChemistryUniversity of FreiburgStefan-Meier-Strasse 3179104FreiburgGermany
- DFG Cluster of Excellence “Living, Adaptive and Energy-Autonomous Materials Systems” (livMatS)79110FreiburgGermany
- Freiburg Materials Research Center (FMF)University of FreiburgStefan-Meier-Strasse 2179104FreiburgGermany
- Freiburg Center for Interactive Materials & Bioinspired Technologies (FIT)University of FreiburgGeorge-Köhler-Allee 10579110FreiburgGermany
| | - Dominik Bezold
- Institute of Organic ChemistryUniversity of FreiburgAlbertstrasse 2179104FreiburgGermany
- DFG Cluster of Excellence “Living, Adaptive and Energy-Autonomous Materials Systems” (livMatS)79110FreiburgGermany
| | - Henning J. Jessen
- Institute of Organic ChemistryUniversity of FreiburgAlbertstrasse 2179104FreiburgGermany
- DFG Cluster of Excellence “Living, Adaptive and Energy-Autonomous Materials Systems” (livMatS)79110FreiburgGermany
| | - Andreas Walther
- Institute for Macromolecular ChemistryUniversity of FreiburgStefan-Meier-Strasse 3179104FreiburgGermany
- DFG Cluster of Excellence “Living, Adaptive and Energy-Autonomous Materials Systems” (livMatS)79110FreiburgGermany
- Freiburg Materials Research Center (FMF)University of FreiburgStefan-Meier-Strasse 2179104FreiburgGermany
- Freiburg Center for Interactive Materials & Bioinspired Technologies (FIT)University of FreiburgGeorge-Köhler-Allee 10579110FreiburgGermany
| |
Collapse
|
96
|
Del Grosso E, Prins LJ, Ricci F. Transient DNA‐Based Nanostructures Controlled by Redox Inputs. Angew Chem Int Ed Engl 2020; 59:13238-13245. [DOI: 10.1002/anie.202002180] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/15/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Erica Del Grosso
- Department of Chemistry University of Rome Tor Vergata, Via della Ricerca Scientifica 00133 Rome Italy
| | - Leonard J. Prins
- Department of Chemical Sciences University of Padua Via Marzolo 1 35131 Padua Italy
| | - Francesco Ricci
- Department of Chemistry University of Rome Tor Vergata, Via della Ricerca Scientifica 00133 Rome Italy
| |
Collapse
|
97
|
Del Grosso E, Prins LJ, Ricci F. Transient DNA‐Based Nanostructures Controlled by Redox Inputs. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202002180] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Erica Del Grosso
- Department of Chemistry University of Rome Tor Vergata, Via della Ricerca Scientifica 00133 Rome Italy
| | - Leonard J. Prins
- Department of Chemical Sciences University of Padua Via Marzolo 1 35131 Padua Italy
| | - Francesco Ricci
- Department of Chemistry University of Rome Tor Vergata, Via della Ricerca Scientifica 00133 Rome Italy
| |
Collapse
|
98
|
Sarkar A, Behera T, Sasmal R, Capelli R, Empereur-Mot C, Mahato J, Agasti SS, Pavan GM, Chowdhury A, George SJ. Cooperative Supramolecular Block Copolymerization for the Synthesis of Functional Axial Organic Heterostructures. J Am Chem Soc 2020; 142:11528-11539. [PMID: 32501694 DOI: 10.1021/jacs.0c04404] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Supramolecular block copolymerzation with optically or electronically complementary monomers provides an attractive bottom-up approach for the non-covalent synthesis of nascent axial organic heterostructures, which promises to deliver useful applications in energy conversion, optoelectronics, and catalysis. However, the synthesis of supramolecular block copolymers (BCPs) constitutes a significant challenge due to the exchange dynamics of non-covalently bound monomers and hence requires fine microstructure control. Furthermore, temporal stability of the segmented microstructure is a prerequisite to explore the applications of functional supramolecular BCPs. Herein, we report the cooperative supramolecular block copolymerization of fluorescent monomers in solution under thermodynamic control for the synthesis of axial organic heterostructures with light-harvesting properties. The fluorescent nature of the core-substituted naphthalene diimide (cNDI) monomers enables a detailed spectroscopic probing during the supramolecular block copolymerization process to unravel a nucleation-growth mechanism, similar to that of chain copolymerization for covalent block copolymers. Structured illumination microscopy (SIM) imaging of BCP chains characterizes the segmented microstructure and also allows size distribution analysis to reveal the narrow polydispersity (polydispersity index (PDI) ≈ 1.1) for the individual block segments. Spectrally resolved fluorescence microscopy on single block copolymerized organic heterostructures shows energy migration and light-harvesting across the interfaces of linearly connected segments. Molecular dynamics and metadynamics simulations provide useful mechanistic insights into the free energy of interaction between the monomers as well as into monomer exchange mechanisms and dynamics, which have a crucial impact on determining the copolymer microstructure. Our comprehensive spectroscopic, microscopic, and computational analyses provide an unambiguous structural, dynamic, and functional characterization of the supramolecular BCPs. The strategy presented here is expected to pave the way for the synthesis of multi-component organic heterostructures for various functions.
Collapse
Affiliation(s)
- Aritra Sarkar
- New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India
| | - Tejmani Behera
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Ranjan Sasmal
- New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India
| | - Riccardo Capelli
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi24, 10129 Torino, Italy
| | - Charly Empereur-Mot
- Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland, Galleria 2, Via Cantonale 2c, CH-6928 Manno, Switzerland
| | - Jaladhar Mahato
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Sarit S Agasti
- New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India
| | - Giovanni M Pavan
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi24, 10129 Torino, Italy.,Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland, Galleria 2, Via Cantonale 2c, CH-6928 Manno, Switzerland
| | - Arindam Chowdhury
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Subi J George
- New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India
| |
Collapse
|
99
|
Kumar M, Sementa D, Narang V, Riedo E, Ulijn RV. Self-Assembly Propensity Dictates Lifetimes in Transient Naphthalimide-Dipeptide Nanofibers. Chemistry 2020; 26:8372-8376. [PMID: 32428282 DOI: 10.1002/chem.202001008] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/05/2020] [Indexed: 01/07/2023]
Abstract
Transient self-assembly of dipeptide nanofibers with lifetimes that are predictably variable through dipeptide sequence design are presented. This was achieved using 1,8-naphthalimide (NI) amino acid methyl-esters (Phe, Tyr, Leu) that are biocatalytically coupled to amino acid-amides (Phe, Tyr, Leu, Val, Ala, Ser) to form self-assembling NI-dipeptides. However, competing hydrolysis of the dipeptides results in disassembly. It was demonstrated that the kinetic parameters like lifetimes of these nanofibers can be predictably regulated by the thermodynamic parameter, namely the self-assembly propensity of the constituent dipeptide sequence. These lifetimes could vary from minutes, to hours, to permanent gels that do not degrade. Moreover, the in-built NI fluorophore was utilized to image the transient nanostructures in solution with stimulated emission depletion (STED) based super-resolution fluorescence microscopy.
Collapse
Affiliation(s)
- Mohit Kumar
- Nanoscience Initiative at Advanced Science Research Center (ASRC), The Graduate Center, City University of New York, 85 Saint Nicholas Terrace, New York, NY, 10031, USA
| | - Deborah Sementa
- Nanoscience Initiative at Advanced Science Research Center (ASRC), The Graduate Center, City University of New York, 85 Saint Nicholas Terrace, New York, NY, 10031, USA
| | - Vishal Narang
- Nanoscience Initiative at Advanced Science Research Center (ASRC), The Graduate Center, City University of New York, 85 Saint Nicholas Terrace, New York, NY, 10031, USA
| | - Elisa Riedo
- Tandon School of Engineering, New York University, 6 MetroTech Center, Brooklyn, NY, 11201, USA
| | - Rein V Ulijn
- Nanoscience Initiative at Advanced Science Research Center (ASRC), The Graduate Center, City University of New York, 85 Saint Nicholas Terrace, New York, NY, 10031, USA.,Department of Chemistry, Hunter College, City University of New York, 695 Park Avenue, New York, NY, 10065, USA
| |
Collapse
|
100
|
|