51
|
Briviba M, Silamikelis I, Kalnina I, Ansone L, Rovite V, Elbere I, Radovica-Spalvina I, Fridmanis D, Aladyeva J, Konrade I, Pirags V, Klovins J. Metformin strongly affects transcriptome of peripheral blood cells in healthy individuals. PLoS One 2019; 14:e0224835. [PMID: 31703101 PMCID: PMC6839856 DOI: 10.1371/journal.pone.0224835] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 10/22/2019] [Indexed: 01/22/2023] Open
Abstract
Metformin is a commonly used antihyperglycaemic agent for the treatment of type 2 diabetes mellitus. Nevertheless, the exact mechanisms of action, underlying the various therapeutic effects of metformin, remain elusive. The goal of this study was to evaluate the alterations in longitudinal whole-blood transcriptome profiles of healthy individuals after a one-week metformin intervention in order to identify the novel molecular targets and further prompt the discovery of predictive biomarkers of metformin response. Next generation sequencing-based transcriptome analysis revealed metformin-induced differential expression of genes involved in intestinal immune network for IgA production and cytokine-cytokine receptor interaction pathways. Significantly elevated faecal sIgA levels during administration of metformin, and its correlation with the expression of genes associated with immune response (CXCR4, HLA-DQA1, MAP3K14, TNFRSF21, CCL4, ACVR1B, PF4, EPOR, CXCL8) supports a novel hypothesis of strong association between metformin and intestinal immune system, and for the first time provide evidence for altered RNA expression as a contributing mechanism of metformin's action. In addition to universal effects, 4 clusters of functionally related genes with a subject-specific differential expression were distinguished, including genes relevant to insulin production (HNF1B, HNF1A, HNF4A, GCK, INS, NEUROD1, PAX4, PDX1, ABCC8, KCNJ11) and cholesterol homeostasis (APOB, LDLR, PCSK9). This inter-individual variation of the metformin effect on the transcriptional regulation goes in line with well-known variability of the therapeutic response to the drug.
Collapse
Affiliation(s)
- Monta Briviba
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | | | - Ineta Kalnina
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Laura Ansone
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Vita Rovite
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Ilze Elbere
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | | | | | | | | | - Valdis Pirags
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Janis Klovins
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| |
Collapse
|
52
|
Baloghova N, Lidak T, Cermak L. Ubiquitin Ligases Involved in the Regulation of Wnt, TGF-β, and Notch Signaling Pathways and Their Roles in Mouse Development and Homeostasis. Genes (Basel) 2019; 10:genes10100815. [PMID: 31623112 PMCID: PMC6826584 DOI: 10.3390/genes10100815] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 10/02/2019] [Accepted: 10/13/2019] [Indexed: 12/20/2022] Open
Abstract
The Wnt, TGF-β, and Notch signaling pathways are essential for the regulation of cellular polarity, differentiation, proliferation, and migration. Differential activation and mutual crosstalk of these pathways during animal development are crucial instructive forces in the initiation of the body axis and the development of organs and tissues. Due to the ability to initiate cell proliferation, these pathways are vulnerable to somatic mutations selectively producing cells, which ultimately slip through cellular and organismal checkpoints and develop into cancer. The architecture of the Wnt, TGF-β, and Notch signaling pathways is simple. The transmembrane receptor, activated by the extracellular stimulus, induces nuclear translocation of the transcription factor, which subsequently changes the expression of target genes. Nevertheless, these pathways are regulated by a myriad of factors involved in various feedback mechanisms or crosstalk. The most prominent group of regulators is the ubiquitin-proteasome system (UPS). To open the door to UPS-based therapeutic manipulations, a thorough understanding of these regulations at a molecular level and rigorous confirmation in vivo are required. In this quest, mouse models are exceptional and, thanks to the progress in genetic engineering, also an accessible tool. Here, we reviewed the current understanding of how the UPS regulates the Wnt, TGF-β, and Notch pathways and we summarized the knowledge gained from related mouse models.
Collapse
Affiliation(s)
- Nikol Baloghova
- Laboratory of Cancer Biology, Division BIOCEV, Institute of Molecular Genetics of the Czech Academy of Sciences, 252 42 Vestec, Czech Republic.
| | - Tomas Lidak
- Laboratory of Cancer Biology, Division BIOCEV, Institute of Molecular Genetics of the Czech Academy of Sciences, 252 42 Vestec, Czech Republic.
| | - Lukas Cermak
- Laboratory of Cancer Biology, Division BIOCEV, Institute of Molecular Genetics of the Czech Academy of Sciences, 252 42 Vestec, Czech Republic.
| |
Collapse
|
53
|
Li C, Huang Z, Zhu L, Yu X, Gao T, Feng J, Hong H, Yin H, Zhou T, Qi W, Yang Z, Liu C, Yang X, Gao G. The contrary intracellular and extracellular functions of PEDF in HCC development. Cell Death Dis 2019; 10:742. [PMID: 31582735 PMCID: PMC6776659 DOI: 10.1038/s41419-019-1976-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 06/15/2019] [Accepted: 06/24/2019] [Indexed: 01/13/2023]
Abstract
Pigment epithelium-derived factor (PEDF), a classic angiogenic inhibitor, has been reported to function as a tumor suppression protein and to downregulate in many types of solid tumors. However, the expression level of PEDF and its role in hepatocellular carcinoma (HCC) are contradictory. The present study investigates the expression and different activities of secreted and intracellular PEDF during HCC development, as well as the underlying mechanism of PEDF on HCC lipid disorders. We found that PEDF had no association with patients' prognosis, although PEDF was highly expressed and inhibited angiogenesis in HCC tumor tissues. The animal experiments indicated that full-length PEDF exhibited equalizing effects on tumor growth activation and tumor angiogenesis inhibition in the late stage of HCC progression. Importantly, the pro-tumor activity was mediated by the intracellular PEDF, which causes accumulation of free fatty acids (FFAs) in vivo and in vitro. Based on the correlation analysis of PEDF and lipid metabolic indexes in human HCC tissues, we demonstrated that the intracellular PEDF led to the accumulation of FFA and eventually promoted HCC cell growth by inhibiting the activation of AMPK via ubiquitin-proteasome-mediated degradation, which causes increased de novo fatty acid synthesis and decreased FFA oxidation. Our findings revealed why elevated PEDF did not improve the patients' prognosis as the offsetting intracellular and extracellular activities. This study will lead to a comprehensive understanding of the diverse role of PEDF in HCC and provide a new selective strategy by supplement of extracellular PEDF and downregulation of intracellular PEDF for the prevention and treatment of liver cancer.
Collapse
Affiliation(s)
- Cen Li
- Program of Molecular Medicine, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Department of Pathology, School of Medicine, New York Medical College, Valhalla, New York, USA
| | - Zhijian Huang
- Program of Molecular Medicine, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Liuqing Zhu
- Program of Molecular Medicine, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xianhuan Yu
- Second Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Tianxiao Gao
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Juan Feng
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Honghai Hong
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Haofan Yin
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Ti Zhou
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Weiwei Qi
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Zhonghan Yang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Chao Liu
- Second Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
| | - Xia Yang
- Program of Molecular Medicine, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China. .,Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China. .,Guangdong Engineering and Technology Research Center for Gene Manipulation and Biomacromolecular Products, Sun Yat-sen University, Guangzhou, China.
| | - Guoquan Gao
- Program of Molecular Medicine, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China. .,Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China. .,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
54
|
Vila IK, Park MK, Setijono SR, Yao Y, Kim H, Badin PM, Choi S, Narkar V, Choi SW, Chung J, Moro C, Song SJ, Song MS. A muscle-specific UBE2O/AMPKα2 axis promotes insulin resistance and metabolic syndrome in obesity. JCI Insight 2019; 4:128269. [PMID: 31292296 DOI: 10.1172/jci.insight.128269] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 05/24/2019] [Indexed: 02/06/2023] Open
Abstract
Ubiquitin-conjugating enzyme E2O (UBE2O) is expressed preferentially in metabolic tissues, but its role in regulating energy homeostasis has yet to be defined. Here we find that UBE2O is markedly upregulated in obese subjects with type 2 diabetes and show that whole-body disruption of Ube2o in mouse models in vivo results in improved metabolic profiles and resistance to high-fat diet-induced (HFD-induced) obesity and metabolic syndrome. With no difference in nutrient intake, Ube2o-/- mice were leaner and expended more energy than WT mice. In addition, hyperinsulinemic-euglycemic clamp studies revealed that Ube2o-/- mice were profoundly insulin sensitive. Through phenotype analysis of HFD mice with muscle-, fat-, or liver-specific knockout of Ube2o, we further identified UBE2O as an essential regulator of glucose and lipid metabolism programs in skeletal muscle, but not in adipose or liver tissue. Mechanistically, UBE2O acted as a ubiquitin ligase and targeted AMPKα2 for ubiquitin-dependent degradation in skeletal muscle; further, muscle-specific heterozygous knockout of Prkaa2 ablated UBE2O-controlled metabolic processes. These results identify the UBE2O/AMPKα2 axis as both a potent regulator of metabolic homeostasis in skeletal muscle and a therapeutic target in the treatment of diabetes and metabolic disorders.
Collapse
Affiliation(s)
- Isabelle K Vila
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Mi Kyung Park
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Yixin Yao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hyejin Kim
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Pierre-Marie Badin
- Center for Metabolic and Degenerative Diseases, Institute of Molecular Medicine, The University of Texas McGovern Medical School, Houston, Texas, USA
| | - Sekyu Choi
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Vihang Narkar
- Center for Metabolic and Degenerative Diseases, Institute of Molecular Medicine, The University of Texas McGovern Medical School, Houston, Texas, USA
| | - Sung-Woo Choi
- Department of Orthopedic Surgery, Soonchunhyang University College of Medicine, Seoul, South Korea
| | - Jongkyeong Chung
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Cedric Moro
- Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases, UMR 1048, Inserm, Toulouse, France
| | - Su Jung Song
- Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, Cheonan-si, South Korea
| | - Min Sup Song
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
55
|
Naulé L, Kaiser UB. Evolutionary Conservation of MKRN3 and Other Makorins and Their Roles in Puberty Initiation and Endocrine Functions. Semin Reprod Med 2019; 37:166-173. [PMID: 31972861 PMCID: PMC8603287 DOI: 10.1055/s-0039-3400965] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Puberty is a critical period of development regulated by genetic, nutritional, and environmental factors. The role of makorin ring finger protein 3 (MKRN3) in the regulation of pubertal timing was revealed when loss-of-function mutations were identified in patients with central precocious puberty (CPP). To date, MKRN3 mutations are the most common known genetic cause of CPP. MKRN3 is a member of the makorin family of ubiquitin ligases, together with MKRN1 and MKRN2. The Mkrn genes have been identified in both vertebrates and invertebrates and show high evolutionary conservation of their gene and protein structures. While the existence of Mkrn orthologues in a wide spectrum of species suggests a vital cellular role of the makorins, their role in puberty initiation and endocrine functions is just beginning to be investigated. In this review, we discuss recent studies that have shown the involvement of Mkrn3 and other makorins in the regulation of pubertal development and other endocrine functions, including metabolism and fertility, as well as their underlying mechanisms of action.
Collapse
Affiliation(s)
- Lydie Naulé
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Ursula B. Kaiser
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
56
|
Jeong EB, Jeong SS, Cho E, Kim EY. Makorin 1 is required for Drosophila oogenesis by regulating insulin/Tor signaling. PLoS One 2019; 14:e0215688. [PMID: 31009498 PMCID: PMC6476528 DOI: 10.1371/journal.pone.0215688] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 04/05/2019] [Indexed: 01/02/2023] Open
Abstract
Reproduction is a process that is extremely sensitive to changes in nutritional status. The nutritional control of oogenesis via insulin signaling has been reported; however, the mechanism underlying its sensitivity and tissue specificity has not been elucidated. Here, we determined that Drosophila Makorin RING finger protein 1 gene (Mkrn1) functions in the metabolic regulation of oogenesis. Mkrn1 was endogenously expressed at high levels in ovaries and Mkrn1 knockout resulted in female sterility. Mkrn1-null egg chambers were previtellogenic without egg production. FLP-FRT mosaic analysis revealed that Mkrn1 is essential in germline cells, but not follicle cells, for ovarian function. As well, AKT phosphorylation via insulin signaling was greatly reduced in the germline cells, but not the follicle cells, of the mutant clones in the ovaries. Furthermore, protein-rich diet elevated Mkrn1 protein levels, without increased mRNA levels. The p-AKT and p-S6K levels, downstream targets of insulin/Tor signaling, were significantly increased by a nutrient-rich diet in wild-type ovaries whereas those were low in Mkrn1exS compared to wild-type ovaries. Taken together, our results suggest that nutrient availability upregulates the Mkrn1 protein, which acts as a positive regulator of insulin signaling to confer sensitivity and tissue specificity in the ovaries for proper oogenesis based on nutritional status.
Collapse
Affiliation(s)
- Eui Beom Jeong
- Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Kyunggi-do, Republic of Korea
- Department of Brain Science, Ajou University School of Medicine, Suwon, Kyunggi-do, Republic of Korea
| | - Seong Su Jeong
- Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Kyunggi-do, Republic of Korea
- Department of Brain Science, Ajou University School of Medicine, Suwon, Kyunggi-do, Republic of Korea
| | - Eunjoo Cho
- Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Kyunggi-do, Republic of Korea
- Department of Brain Science, Ajou University School of Medicine, Suwon, Kyunggi-do, Republic of Korea
- * E-mail: (EYK); (EC)
| | - Eun Young Kim
- Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Kyunggi-do, Republic of Korea
- Department of Brain Science, Ajou University School of Medicine, Suwon, Kyunggi-do, Republic of Korea
- * E-mail: (EYK); (EC)
| |
Collapse
|
57
|
Tran HT, Cho E, Jeong S, Jeong EB, Lee HS, Jeong SY, Hwang JS, Kim EY. Makorin 1 Regulates Developmental Timing in Drosophila. Mol Cells 2018; 41:1024-1032. [PMID: 30396233 PMCID: PMC6315317 DOI: 10.14348/molcells.2018.0367] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 09/15/2018] [Accepted: 09/25/2018] [Indexed: 12/13/2022] Open
Abstract
The central mechanisms coordinating growth and sexual maturation are well conserved across invertebrates and vertebrates. Although mutations in the gene encoding makorin RING finger protein 3 (mkrn3 ) are associated with central precocious puberty in humans, a causal relationship has not been elucidated. Here, we examined the role of mkrn1, a Drosophila ortholog of mammalian makorin genes, in the regulation of developmental timing. Loss of MKRN1 in mkrn1 exS prolonged the 3rd instar stage and delayed the onset of pupariation, resulting in bigger size pupae. MKRN1 was expressed in the prothoracic gland, where the steroid hormone ecdysone is produced. Furthermore, mkrn1 exS larvae exhibited reduced mRNA levels of phantom, which encodes ecdysone-synthesizing enzyme and E74, which is a downstream target of ecdysone. Collectively, these results indicate that MKRN1 fine-tunes developmental timing and sexual maturation by affecting ecdysone synthesis in Drosophila. Moreover, our study supports the notion that malfunction of makorin gene family member, mkrn3 dysregulates the timing of puberty in mammals.
Collapse
Affiliation(s)
- Hong Thuan Tran
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Kyunggi-do 16499,
Korea
- Department of Brain Science, Ajou University Medical Center, Kyunggi-do 16499,
Korea
| | - Eunjoo Cho
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Kyunggi-do 16499,
Korea
- Department of Brain Science, Ajou University Medical Center, Kyunggi-do 16499,
Korea
| | - Seongsu Jeong
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Kyunggi-do 16499,
Korea
- Department of Brain Science, Ajou University Medical Center, Kyunggi-do 16499,
Korea
| | - Eui Beom Jeong
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Kyunggi-do 16499,
Korea
- Department of Brain Science, Ajou University Medical Center, Kyunggi-do 16499,
Korea
| | - Hae Sang Lee
- Department of Pediatrics, Ajou University Medical Center, Kyunggi-do 16499,
Korea
| | - Seon Yong Jeong
- Department of Medical Genetics, Ajou University Medical Center, Kyunggi-do 16499,
Korea
| | - Jin Soon Hwang
- Department of Pediatrics, Ajou University Medical Center, Kyunggi-do 16499,
Korea
| | - Eun Young Kim
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Kyunggi-do 16499,
Korea
- Department of Brain Science, Ajou University Medical Center, Kyunggi-do 16499,
Korea
| |
Collapse
|