51
|
Masliantsev K, Karayan-Tapon L, Guichet PO. Hippo Signaling Pathway in Gliomas. Cells 2021; 10:184. [PMID: 33477668 PMCID: PMC7831924 DOI: 10.3390/cells10010184] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 12/15/2022] Open
Abstract
The Hippo signaling pathway is a highly conserved pathway involved in tissue development and regeneration that controls organ size through the regulation of cell proliferation and apoptosis. The core Hippo pathway is composed of a block of kinases, MST1/2 (Mammalian STE20-like protein kinase 1/2) and LATS1/2 (Large tumor suppressor 1/2), which inhibits nuclear translocation of YAP/TAZ (Yes-Associated Protein 1/Transcriptional co-activator with PDZ-binding motif) and its downstream association with the TEAD (TEA domain) family of transcription factors. This pathway was recently shown to be involved in tumorigenesis and metastasis in several cancers such as lung, breast, or colorectal cancers but is still poorly investigated in brain tumors. Gliomas are the most common and the most lethal primary brain tumors representing about 80% of malignant central nervous system neoplasms. Despite intensive clinical protocol, the prognosis for patients remains very poor due to systematic relapse and treatment failure. Growing evidence demonstrating the role of Hippo signaling in cancer biology and the lack of efficient treatments for malignant gliomas support the idea that this pathway could represent a potential target paving the way for alternative therapeutics. Based on recent advances in the Hippo pathway deciphering, the main goal of this review is to highlight the role of this pathway in gliomas by a state-of-the-art synthesis.
Collapse
Affiliation(s)
- Konstantin Masliantsev
- Inserm U1084, Laboratoire de Neurosciences Expérimentales et Cliniques, F-86073 Poitiers, France; (K.M.); (L.K.-T.)
- Université de Poitiers, F-86073 Poitiers, France
- CHU de Poitiers, Laboratoire de Cancérologie Biologique, F-86022 Poitiers, France
| | - Lucie Karayan-Tapon
- Inserm U1084, Laboratoire de Neurosciences Expérimentales et Cliniques, F-86073 Poitiers, France; (K.M.); (L.K.-T.)
- Université de Poitiers, F-86073 Poitiers, France
- CHU de Poitiers, Laboratoire de Cancérologie Biologique, F-86022 Poitiers, France
| | - Pierre-Olivier Guichet
- Inserm U1084, Laboratoire de Neurosciences Expérimentales et Cliniques, F-86073 Poitiers, France; (K.M.); (L.K.-T.)
- Université de Poitiers, F-86073 Poitiers, France
- CHU de Poitiers, Laboratoire de Cancérologie Biologique, F-86022 Poitiers, France
| |
Collapse
|
52
|
Schuster A, Klein E, Neirinckx V, Knudsen AM, Fabian C, Hau AC, Dieterle M, Oudin A, Nazarov PV, Golebiewska A, Muller A, Perez-Hernandez D, Rodius S, Dittmar G, Bjerkvig R, Herold-Mende C, Klink B, Kristensen BW, Niclou SP. AN1-type zinc finger protein 3 (ZFAND3) is a transcriptional regulator that drives Glioblastoma invasion. Nat Commun 2020; 11:6366. [PMID: 33311477 PMCID: PMC7732990 DOI: 10.1038/s41467-020-20029-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 11/04/2020] [Indexed: 01/12/2023] Open
Abstract
The infiltrative nature of Glioblastoma (GBM), the most aggressive primary brain tumor, critically prevents complete surgical resection and masks tumor cells behind the blood brain barrier reducing the efficacy of systemic treatment. Here, we use a genome-wide interference screen to determine invasion-essential genes and identify the AN1/A20 zinc finger domain containing protein 3 (ZFAND3) as a crucial driver of GBM invasion. Using patient-derived cellular models, we show that loss of ZFAND3 hampers the invasive capacity of GBM, whereas ZFAND3 overexpression increases motility in cells that were initially not invasive. At the mechanistic level, we find that ZFAND3 activity requires nuclear localization and integral zinc-finger domains. Our findings indicate that ZFAND3 acts within a nuclear protein complex to activate gene transcription and regulates the promoter of invasion-related genes such as COL6A2, FN1, and NRCAM. Further investigation in ZFAND3 function in GBM and other invasive cancers is warranted. Glioblastomas (GBMs) are highly invasive brain tumours, but the underlying mechanisms of GBM invasion are unclear. Here, the authors perform an RNA interference screen and identify AN1-Type Zinc Finger protein 3 (ZFAND3) as a regulator of GBM invasion, and find that it acts through the transcriptional regulation of invasion-related genes.
Collapse
Affiliation(s)
- Anne Schuster
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Eliane Klein
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Virginie Neirinckx
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Arnon Møldrup Knudsen
- Department of Pathology, Odense University Hospital, Odense, Denmark.,Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Carina Fabian
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg.,Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Ann-Christin Hau
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Monika Dieterle
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Anais Oudin
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Petr V Nazarov
- Quantitative Biology Unit, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Anna Golebiewska
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Arnaud Muller
- Quantitative Biology Unit, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | | | - Sophie Rodius
- Quantitative Biology Unit, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Gunnar Dittmar
- Quantitative Biology Unit, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Rolf Bjerkvig
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg.,Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Christel Herold-Mende
- Division of Neurosurgical Research, Department of Neurosurgery, University of Heidelberg, Heidelberg, Germany
| | - Barbara Klink
- National Center of Genetics, Laboratoire National de Santé, Dudelange, Luxembourg.,Functional Tumor Genetics, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Bjarne Winther Kristensen
- Department of Pathology, Odense University Hospital, Odense, Denmark.,Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Simone P Niclou
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg. .,Department of Biomedicine, University of Bergen, Bergen, Norway.
| |
Collapse
|
53
|
Bozec D, Sattiraju A, Bouras A, Jesu Raj JG, Rivera D, Huang Y, Junqueira Alves C, Tejero R, Tsankova NM, Zou H, Hadjipanayis C, Friedel RH. Akaluc bioluminescence offers superior sensitivity to track in vivo glioma expansion. Neurooncol Adv 2020; 2:vdaa134. [PMID: 33241215 PMCID: PMC7680182 DOI: 10.1093/noajnl/vdaa134] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Background Longitudinal tracking of tumor growth using noninvasive bioluminescence imaging (BLI) is a key approach for studies of in vivo cancer models, with particular relevance for investigations of malignant gliomas in rodent intracranial transplant paradigms. Akaluciferase (Akaluc) is a new BLI system with higher signal strength than standard firefly luciferase (Fluc). Here, we establish Akaluc BLI as a sensitive method for in vivo tracking of glioma expansion. Methods We engineered a lentiviral vector for expression of Akaluc in high-grade glioma cell lines, including patient-derived glioma stem cell (GSC) lines. Akaluc-expressing glioma cells were compared to matching cells expressing Fluc in both in vitro and in vivo BLI assays. We also conducted proof-of-principle BLI studies with intracranial transplant cohorts receiving chemoradiation therapy. Results Akaluc-expressing glioma cells produced more than 10 times higher BLI signals than Fluc-expressing counterparts when examined in vitro, and more than 100-fold higher signals when compared to Fluc-expressing counterparts in intracranial transplant models in vivo. The high sensitivity of Akaluc permitted detection of intracranial glioma transplants starting as early as 4 h after implantation and with as little as 5000 transplanted cells. The sensitivity of the system allowed us to follow engraftment and expansion of intracranial transplants of GSC lines. Akaluc was also robust for sensitive detection of in vivo tumor regression after therapy and subsequent relapse. Conclusion Akaluc BLI offers superior sensitivity for in vivo tracking of glioma in the intracranial transplant paradigm, facilitating sensitive approaches for the study of glioma growth and response to therapy.
Collapse
Affiliation(s)
- Dominique Bozec
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Brain Tumor Nanotechnology Laboratory, Tisch Cancer Institute at Mount Sinai, New York, New York, USA
| | - Anirudh Sattiraju
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Alexandros Bouras
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Brain Tumor Nanotechnology Laboratory, Tisch Cancer Institute at Mount Sinai, New York, New York, USA
| | - Joe G Jesu Raj
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Brain Tumor Nanotechnology Laboratory, Tisch Cancer Institute at Mount Sinai, New York, New York, USA
| | - Daniel Rivera
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Brain Tumor Nanotechnology Laboratory, Tisch Cancer Institute at Mount Sinai, New York, New York, USA
| | - Yong Huang
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Chrystian Junqueira Alves
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Rut Tejero
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Nadejda M Tsankova
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Hongyan Zou
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Constantinos Hadjipanayis
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Brain Tumor Nanotechnology Laboratory, Tisch Cancer Institute at Mount Sinai, New York, New York, USA
| | - Roland H Friedel
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
54
|
Zhang LL, Lu J, Liu RQ, Hu MJ, Zhao YM, Tan S, Wang SY, Zhang B, Nie W, Dong Y, Zhong H, Zhang W, Zhao XD, Han BH. Chromatin accessibility analysis reveals that TFAP2A promotes angiogenesis in acquired resistance to anlotinib in lung cancer cells. Acta Pharmacol Sin 2020; 41:1357-1365. [PMID: 32415222 PMCID: PMC7608858 DOI: 10.1038/s41401-020-0421-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/15/2020] [Indexed: 12/24/2022]
Abstract
Anlotinib, a multitarget tyrosine kinase inhibitor, is effective as a third-line treatment against non-small cell lung cancer (NSCLC). However, acquired resistance occurs during its administration. To understand the molecular mechanisms of anlotinib resistance, we characterized chromatin accessibility in both the parental and anlotinib-resistant lung cancer cell line NCI-H1975 through ATAC-seq. Compared with the parental cells, we identified 2666 genomic regions with greater accessibility in anlotinib-resistant cells, in which angiogenesis-related processes and the motifs of 21 transcription factors were enriched. Among these transcription factors, TFAP2A was upregulated. TFAP2A knockdown robustly diminished tumor-induced angiogenesis and partially rescued the anti-angiogenic activity of anlotinib. Furthermore, transcriptome analysis indicated that 2280 genes were downregulated in anlotinib-resistant cells with TFAP2A knocked down, among which the PDGFR, TGF-β, and VEGFR signaling pathways were enriched. Meanwhile, we demonstrated that TFAP2A binds to accessible sites within BMP4 and HSPG2. Collectively, this study suggests that TFAP2A accelerates anlotinib resistance by promoting tumor-induced angiogenesis.
Collapse
|
55
|
Rogerson C, Ogden S, Britton E, Ang Y, Sharrocks AD. Repurposing of KLF5 activates a cell cycle signature during the progression from a precursor state to oesophageal adenocarcinoma. eLife 2020; 9:e57189. [PMID: 32880368 PMCID: PMC7544504 DOI: 10.7554/elife.57189] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 09/03/2020] [Indexed: 12/13/2022] Open
Abstract
Oesophageal adenocarcinoma (OAC) is one of the most common causes of cancer deaths. Barrett's oesophagus (BO) is the only known precancerous precursor to OAC, but our understanding about the molecular events leading to OAC development is limited. Here, we have integrated gene expression and chromatin accessibility profiles of human biopsies and identified a strong cell cycle gene expression signature in OAC compared to BO. Through analysing associated chromatin accessibility changes, we have implicated the transcription factor KLF5 in the transition from BO to OAC. Importantly, we show that KLF5 expression is unchanged during this transition, but instead, KLF5 is redistributed across chromatin to directly regulate cell cycle genes specifically in OAC cells. This new KLF5 target gene programme has potential prognostic significance as high levels correlate with poorer patient survival. Thus, the repurposing of KLF5 for novel regulatory activity in OAC provides new insights into the mechanisms behind disease progression.
Collapse
Affiliation(s)
- Connor Rogerson
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of ManchesterManchesterUnited Kingdom
| | - Samuel Ogden
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of ManchesterManchesterUnited Kingdom
| | - Edward Britton
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of ManchesterManchesterUnited Kingdom
| | | | - Yeng Ang
- School of Medical Sciences, Faculty of Biology, Medicine and Health, University of ManchesterManchesterUnited Kingdom
- GI Science Centre, Salford Royal NHS FT, University of ManchesterSalfordUnited Kingdom
| | - Andrew D Sharrocks
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of ManchesterManchesterUnited Kingdom
| |
Collapse
|
56
|
Pierini T, Nardelli C, Lema Fernandez AG, Pierini V, Pellanera F, Nofrini V, Gorello P, Moretti M, Arniani S, Roti G, Giovenali P, Lupattelli M, Metro G, Molica C, Castrioto C, Corinaldesi R, Laurenti ME, Ascani S, Mecucci C, La Starza R. New somatic TERT promoter variants enhance the Telomerase activity in Glioblastoma. Acta Neuropathol Commun 2020; 8:145. [PMID: 32843091 PMCID: PMC7445914 DOI: 10.1186/s40478-020-01022-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/12/2020] [Indexed: 12/15/2022] Open
Abstract
The catalytic activity of human Telomerase Reverse Transcriptase (TERT) compensates for the loss of telomere length, eroded during each cell cycle, to ensure a correct division of stem and germinal cells. In human tumors, ectopic TERT reactivation, most frequently due to hotspot mutations in the promoter region (TERTp), i.e. c.1-124 C > T, c.1-146 C > T, confers a proliferative advantage to neoplastic cells. In gliomas, TERTp mutations (TERTpmut) mainly occur in oligodendroglioma and glioblastoma. We screened, for TERTp hotspot mutations, 301 adult patients with gliomas and identified heterozygous mutations in 239 cases: 94% of oligodendroglioma, 85% of glioblastoma, and 37.5% of diffuse/anaplastic astrocytoma. Besides the recurrent c.1-124 C > T and c.1-146 C > T, two cases of glioblastoma harbored novel somatic TERTp variants, which consisted of a tandem duplications of 22 nucleotides, i.e. a TERTp c.1-100_1-79dup and TERTp c.1-110_1-89, both located downstream c.1-124 C > T and c.1-146 C > T. In silico analysis predicted the formation of 119 and 108 new transcription factor’s recognition sites for TERTp c.1-100_1-79dup and TERTp c.1-110_1-89, respectively. TERTp duplications (TERTpdup) mainly affected the binding capacity of two transcription factors’ families, i.e. the members of the E-twenty-six and the Specificity Protein/Krüppel-Like Factor groups. In fact, these new TERTpdup significantly enhanced the E-twenty-six transcription factors’ binding capacity, which is also typically increased by the two c.1-124 C > T/c.1-146 C > T hotspot TERTpmut. On the other hand, they were distinguished by enhanced affinity for the Krüppel proteins. The luciferase assay confirmed that TERTpdup behaved as gain-of-function mutations causing a 2,3-2,5 fold increase of TERT transcription. The present study provides new insights into TERTp mutational spectrum occurring in central nervous system tumors, with the identification of new recurrent somatic gain-of-function mutations, occurring in 0.8% of glioblastoma IDH-wildtype.
Collapse
|
57
|
Mohammadinejad R, Biagioni A, Arunkumar G, Shapiro R, Chang KC, Sedeeq M, Taiyab A, Hashemabadi M, Pardakhty A, Mandegary A, Thiery JP, Aref AR, Azimi I. EMT signaling: potential contribution of CRISPR/Cas gene editing. Cell Mol Life Sci 2020; 77:2701-2722. [PMID: 32008085 PMCID: PMC11104910 DOI: 10.1007/s00018-020-03449-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 12/24/2019] [Accepted: 01/02/2020] [Indexed: 02/06/2023]
Abstract
Epithelial to mesenchymal transition (EMT) is a complex plastic and reversible cellular process that has critical roles in diverse physiological and pathological phenomena. EMT is involved in embryonic development, organogenesis and tissue repair, as well as in fibrosis, cancer metastasis and drug resistance. In recent years, the ability to edit the genome using the clustered regularly interspaced palindromic repeats (CRISPR) and associated protein (Cas) system has greatly contributed to identify or validate critical genes in pathway signaling. This review delineates the complex EMT networks and discusses recent studies that have used CRISPR/Cas technology to further advance our understanding of the EMT process.
Collapse
Affiliation(s)
- Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Alessio Biagioni
- Section of Experimental Pathology and Oncology, Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Ganesan Arunkumar
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Rebecca Shapiro
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Kun-Che Chang
- Department of Ophthalmology, School of Medicine, Byers Eye Institute, Stanford University, Palo Alto, CA, 94303, USA
| | - Mohammed Sedeeq
- Division of Pharmacy, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Aftab Taiyab
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, L8S 4L8, Canada
| | - Mohammad Hashemabadi
- Department of Biology, Faculty of Sciences, Shahid Bahonar University, Kerman, Iran
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Abbas Pardakhty
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Mandegary
- Physiology Research Center, Institute of Neuropharmacology and Department of Toxicology & Pharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Jean-Paul Thiery
- Guangzhou Regenerative Medicine and Health, Guangdong Laboratory, Guangzhou, China
| | - Amir Reza Aref
- Department of Medical Oncology, Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA.
| | - Iman Azimi
- Division of Pharmacy, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia.
| |
Collapse
|
58
|
Liu Y. Clinical implications of chromatin accessibility in human cancers. Oncotarget 2020; 11:1666-1678. [PMID: 32405341 PMCID: PMC7210018 DOI: 10.18632/oncotarget.27584] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 04/03/2020] [Indexed: 01/19/2023] Open
Abstract
Assay for transposase-accessible chromatin using sequencing (ATAC-seq) has not yet been widely used in cancer research. Clinical implications of chromatin accessibility assessed by ATAC-seq profiling in human cancers especially in a large patient cohort is largely unknown. In this study, we analyzed ATAC-seq data in 404 cancer patients from the Cancer Genome Atlas, representing the largest cancer patient cohort with ATAC-seq data, and correlated chromatin accessibility with patient demographics, tumor histology, molecular subtypes, and survival. Our results showed that chromatin accessibility varies from chromosome to chromosome, and is different in different genomic regions along the same chromosome. Chromatin accessibility especially on the X chromosome is strongly dependent on patient sex, but not much on patient age or tumor stage. Striking difference in chromatin accessibility is observed between lung adenocarcinoma and lung squamous cell carcinoma, the two most common histological subgroups in lung cancer. Furthermore, chromatin accessibility was different between basal and non-basal breast cancer. Finally, we identified prognostic peaks in the promoter regions that were significantly correlated with survival. In particular, we identified six peaks in the ESR1 gene promoter region in the ATAC-seq profiling and found that the peak about 247 bp away from the transcription start site was significantly associated with better survival. In conclusion, our study provides an alternative mechanism underlying tumor prognosis.
Collapse
Affiliation(s)
- Yuexin Liu
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
59
|
The Bradykinin-BDKRB1 Axis Regulates Aquaporin 4 Gene Expression and Consequential Migration and Invasion of Malignant Glioblastoma Cells via a Ca 2+-MEK1-ERK1/2-NF-κB Mechanism. Cancers (Basel) 2020; 12:cancers12030667. [PMID: 32182968 PMCID: PMC7139930 DOI: 10.3390/cancers12030667] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/06/2020] [Accepted: 03/10/2020] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common form of brain tumor and is very aggressive. Rapid migration and invasion of glioblastoma cells are two typical features driving malignance of GBM. Bradykinin functionally prompts calcium influx via activation of bradykinin receptor B1/B2 (BDKRB1/2). In this study, we evaluated the roles of bradykinin in migration and invasion of glioblastoma cells and the possible mechanisms. Expressions of aquaporin 4 (AQP4) mRNA and protein were upregulated in human glioblastomas. Furthermore, exposure of human U87 MG glioblastoma cells to bradykinin specifically increased levels of BDKRB1. Successively, bradykinin stimulated influx of calcium, phosphorylation of MEK1 and extracellular signal-regulated kinase (ERK)1/2, translocation and transactivation of nuclear factor-kappaB (NF-κB), and expressions of AQP4 mRNA and protein. Concomitantly, migration and invasion of human glioblastoma cells were elevated by bradykinin. Knocking-down BDKRB1 concurrently decreased AQP4 mRNA expression and cell migration and invasion. The bradykinin-induced effects were further confirmed in murine GL261 glioblastoma cells. Therefore, bradykinin can induce AQP4 expression and subsequent migration and invasion through BDKRB1-mediated calcium influx and subsequent activation of a MEK1-ERK1/2-NF-κB pathway. The bradykinin-BDKRB1 axis and AQP4 could be precise targets for treating GBM patients.
Collapse
|
60
|
Rubio K, Castillo-Negrete R, Barreto G. Non-coding RNAs and nuclear architecture during epithelial-mesenchymal transition in lung cancer and idiopathic pulmonary fibrosis. Cell Signal 2020; 70:109593. [PMID: 32135188 DOI: 10.1016/j.cellsig.2020.109593] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/28/2020] [Accepted: 02/29/2020] [Indexed: 12/13/2022]
Abstract
Lung cancer (LC) is the leading cause of cancer-related deaths worldwide. On the other hand, idiopathic pulmonary fibrosis (IPF) is the most common interstitial lung disease showing a prevalence of 20 new cases per 100,000 persons per year. Despite differences in cellular origin and pathological phenotypes, LC and IPF are lung diseases that share common features, including hyperproliferation of specific cell types in the lung, involvement of epithelial-mesenchymal transition (EMT) and enhanced activity of signaling pathways, such as tissue growth factor (TGFB), epidermal growth factor (EGF), fibroblast growth factor (FGF), wingless secreted glycoprotein (WNT) signaling, among others. EMT is a process during which epithelial cells lose their cell polarity and cell-cell adhesion, and acquire migratory and invasive properties to become mesenchymal cells. EMT involves numerous morphological hallmarks of hyperproliferative diseases, like cell plasticity, resistance to apoptosis, dedifferentiation and proliferation, thereby playing a central role during organ fibrosis and cancer progression. EMT was considered as an "all-or-none" process. In contrast to these outdated dichotomist interpretations, recent reports suggest that EMT occurs gradually involving different epithelial cell intermediate states with mesenchyme-like characteristics. These cell intermediate states of EMT differ from each other in their cell plasticity, invasiveness and metastatic potential, which in turn are induced by signals from their microenvironment. EMT is regulated by several transcription factors (TFs), which are members of prominent families of master regulators of transcription. In addition, there is increasing evidence for the important contribution of noncoding RNAs (ncRNAs) to EMT. In our review we highlight articles dissecting the function of different ncRNAs subtypes and nuclear architecture in cell intermediate states of EMT, as well as their involvement in LC and IPF.
Collapse
Affiliation(s)
- Karla Rubio
- Brain and Lung Epigenetics (BLUE), Glycobiology, Cell Growth and Tissue Repair Research Unit (Gly-CRRET), Université Paris-Est Créteil (UPEC), 94010 Créteil, France; Lung Cancer Epigenetic, Max-Planck-Institute for Heart and Lung Research, Parkstraße 1, 61231 Bad Nauheim, Germany
| | - Rafael Castillo-Negrete
- Brain and Lung Epigenetics (BLUE), Glycobiology, Cell Growth and Tissue Repair Research Unit (Gly-CRRET), Université Paris-Est Créteil (UPEC), 94010 Créteil, France; Lung Cancer Epigenetic, Max-Planck-Institute for Heart and Lung Research, Parkstraße 1, 61231 Bad Nauheim, Germany
| | - Guillermo Barreto
- Brain and Lung Epigenetics (BLUE), Glycobiology, Cell Growth and Tissue Repair Research Unit (Gly-CRRET), Université Paris-Est Créteil (UPEC), 94010 Créteil, France; Lung Cancer Epigenetic, Max-Planck-Institute for Heart and Lung Research, Parkstraße 1, 61231 Bad Nauheim, Germany; Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russian Federation; Universities of Giessen and Marburg Lung Center (UGMLC), The German Center of Lung Research (Deutsches Zentrum für Lungenforschung, DZL), Germany.
| |
Collapse
|
61
|
Yin L, Li W, Xu A, Shi H, Wang K, Yang H, Wang R, Peng B. SH3BGRL2 inhibits growth and metastasis in clear cell renal cell carcinoma via activating hippo/TEAD1-Twist1 pathway. EBioMedicine 2020; 51:102596. [PMID: 31911271 PMCID: PMC7000347 DOI: 10.1016/j.ebiom.2019.12.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/06/2019] [Accepted: 12/06/2019] [Indexed: 12/12/2022] Open
Abstract
Background Clear cell renal cell carcinoma (ccRCC) is one of the most prevalent malignancies in the world, and tumor metastasis is still the main reason for disease progression. Accumulating evidence shows that SH3BGRL2 may play a key role in tumor progression and metastasis. However, the role of SH3BGRL2 in ccRCC has not been systematically investigated and remains elusive. Methods The clinical significance of SH3BGRL2 was evaluated by bioinformatic analysis and tissue microarray (TMA) samples. SH3BGRL2 expression was determined by RT-PCR, western blot and immunohistochemistry staining. Tumor suppressive effect of SH3BGRL2 was determined by both in vitro and in vivo studies. Western blot, chromatin immunoprecipitation assay and luciferase report assay were applied for mechanism dissection. Findings SH3BGRL2 was crucial for epithelial-mesenchymal transition (EMT) progression and metastasis in ccRCC. Clinically, SH3BGRL2 was identified as an independent prognostic factor for ccRCC patients. Gain- and loss-of-function results suggested that SH3BGRL2 played a critical role in cell proliferation, migration and invasion. Mechanistically, we found that SH3BGRL2 acted as a tumor suppressor through Hippo/TEAD1 signaling, then TEAD1 altered Twist1 expression at the transcriptional level via directly binding to its promoter region. Interpretation Our findings established that SH3BGRL2 performed as a tumor suppressor and modulator via Hippo/TEAD1-Twist1 signaling in ccRCC, and the alteration of SH3BGRL2 could serve as a functional response biomarker of tumor progression and metastasis in ccRCC.
Collapse
Affiliation(s)
- Lei Yin
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine in Tongji University, Shanghai, China
| | - Wenjia Li
- Shanghai Institute of Cardiovascular Disease, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Aiming Xu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Heng Shi
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine in Tongji University, Shanghai, China
| | - Keyi Wang
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine in Tongji University, Shanghai, China
| | - Huan Yang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Ronghao Wang
- School of basic medical sciences, Southwest Medical University, Luzhou, China.
| | - Bo Peng
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine in Tongji University, Shanghai, China.
| |
Collapse
|
62
|
Wang X, Li XD, Fu Z, Zhou Y, Huang X, Jiang X. Long non‑coding RNA LINC00473/miR‑195‑5p promotes glioma progression via YAP1‑TEAD1‑Hippo signaling. Int J Oncol 2019; 56:508-521. [PMID: 31894297 PMCID: PMC6959464 DOI: 10.3892/ijo.2019.4946] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 11/08/2019] [Indexed: 12/12/2022] Open
Abstract
There is an urgent need to identify novel potential therapeutic targets for diagnosis and treatment of glioma, a common primary tumor in brain, due to its high-level invasiveness. Long non-coding RNA (lncRNA) LINC00473 has been reported as potentially critical regulators in various types of cancer tumorigenesis. However, the effects of LINC00473 on glioma cells is unclear. The present study aimed to investigate the clinical significance, effects and mechanism of LINC00437 on glioma tumorigenesis. In the present study, LINC00473 was significantly increased in glioma tissues and in cell models, and predicted a poor prognosis in patients with glioma. Notably, LINC00473 knockdown not only suppressed cell proliferation, invasion and migration of glioma cells, but also blocked cell cycle progression and induced apoptosis. Subcutaneous xenotransplanted tumor model experiments revealed that reduced LINC00473 expression was able to suppress in vivo glioma growth. Mechanistically, LINC00473 functioned as a competing endogenous (ce)RNA to decrease microRNA (miR)-195-5p expression. Moreover, Yes-associated protein 1 (YAP1) and TEA domain family member 1 (TEAD1) were identified as downstream targets of miR-195-5p, whose expression levels were inhibited by miR-195-5p. LINC00473 knockdown suppressed glioma progression through the decrease of miR-195-5p and subsequent increase of YAP1 and TEAD1 expression levels. These results indicated LINC00473 might act as a ceRNA to sponge miR-195-5p, thus promoting YAP1 and TEAD1 expressions, and shedding light on the underlying mechanisms of LINC00473-induced glioma progression.
Collapse
Affiliation(s)
- Xuan Wang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Xu Dong Li
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Zhenyuan Fu
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Yan Zhou
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Xing Huang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Xiaobing Jiang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
63
|
Lentiviral Vectors as Tools for the Study and Treatment of Glioblastoma. Cancers (Basel) 2019; 11:cancers11030417. [PMID: 30909628 PMCID: PMC6468594 DOI: 10.3390/cancers11030417] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/06/2019] [Accepted: 03/19/2019] [Indexed: 12/17/2022] Open
Abstract
Glioblastoma (GBM) has the worst prognosis among brain tumors, hence basic biology, preclinical, and clinical studies are necessary to design effective strategies to defeat this disease. Gene transfer vectors derived from the most-studied lentivirus-the Human Immunodeficiency Virus type 1-have wide application in dissecting GBM specific features to identify potential therapeutic targets. Last-generation lentiviruses (LV), highly improved in safety profile and gene transfer capacity, are also largely employed as delivery systems of therapeutic molecules to be employed in gene therapy (GT) approaches. LV were initially used in GT protocols aimed at the expression of suicide factors to induce GBM cell death. Subsequently, LV were adopted to either express small noncoding RNAs to affect different aspects of GBM biology or to overcome the resistance to both chemo- and radiotherapy that easily develop in this tumor after initial therapy. Newer frontiers include adoption of LV for engineering T cells to express chimeric antigen receptors recognizing specific GBM antigens, or for transducing specific cell types that, due to their biological properties, can function as carriers of therapeutic molecules to the cancer mass. Finally, LV allow the setting up of improved animal models crucial for the validation of GBM specific therapies.
Collapse
|
64
|
Aquaporin-4 Water Channel in the Brain and Its Implication for Health and Disease. Cells 2019; 8:cells8020090. [PMID: 30691235 PMCID: PMC6406241 DOI: 10.3390/cells8020090] [Citation(s) in RCA: 168] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 01/23/2019] [Accepted: 01/23/2019] [Indexed: 02/08/2023] Open
Abstract
Aquaporin-4 (AQP4) is a water channel expressed on astrocytic endfeet in the brain. The role of AQP4 has been studied in health and in a range of pathological conditions. Interest in AQP4 has increased since it was discovered to be the target antigen in the inflammatory autoimmune disease neuromyelitis optica spectrum disorder (NMOSD). Emerging data suggest that AQP4 may also be implicated in the glymphatic system and may be involved in the clearance of beta-amyloid in Alzheimer’s disease (AD). In this review, we will describe the role of AQP4 in the adult and developing brain as well as its implication for disease.
Collapse
|