51
|
Antov MI, Plog E, Bierwirth P, Keil A, Stockhorst U. Visuocortical tuning to a threat-related feature persists after extinction and consolidation of conditioned fear. Sci Rep 2020; 10:3926. [PMID: 32127551 PMCID: PMC7054355 DOI: 10.1038/s41598-020-60597-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/14/2020] [Indexed: 12/28/2022] Open
Abstract
Neurons in the visual cortex sharpen their orientation tuning as humans learn aversive contingencies. A stimulus orientation (CS+) that reliably predicts an aversive noise (unconditioned stimulus: US) is selectively enhanced in lower-tier visual cortex, while similar unpaired orientations (CS-) are inhibited. Here, we examine in male volunteers how sharpened visual processing is affected by fear extinction learning (where no US is presented), and how fear and extinction memory undergo consolidation one day after the original learning episode. Using steady-state visually evoked potentials from electroencephalography in a fear generalization task, we found that extinction learning prompted rapid changes in orientation tuning: Both conditioned visuocortical and skin conductance responses to the CS+ were strongly reduced. Next-day re-testing (delayed recall) revealed a brief but precise return-of-tuning to the CS+ in visual cortex accompanied by a brief, more generalized return-of-fear in skin conductance. Explorative analyses also showed persistent tuning to the threat cue in higher visual areas, 24 h after successful extinction, outlasting peripheral responding. Together, experience-based changes in the sensitivity of visual neurons show response patterns consistent with memory consolidation and spontaneous recovery, the hallmarks of long-term neural plasticity.
Collapse
Affiliation(s)
- Martin I Antov
- Institute of Psychology, Experimental Psychology II and Biological Psychology, University of Osnabrück, D-49074, Osnabrück, Germany.
| | - Elena Plog
- Institute of Psychology, Experimental Psychology II and Biological Psychology, University of Osnabrück, D-49074, Osnabrück, Germany
| | - Philipp Bierwirth
- Institute of Psychology, Experimental Psychology II and Biological Psychology, University of Osnabrück, D-49074, Osnabrück, Germany
| | - Andreas Keil
- Department of Psychology and Center for the Study of Emotion and Attention, University of Florida, Gainesville, Florida, 32611, USA
| | - Ursula Stockhorst
- Institute of Psychology, Experimental Psychology II and Biological Psychology, University of Osnabrück, D-49074, Osnabrück, Germany
| |
Collapse
|
52
|
Chmitorz A, Kurth K, Mey LK, Wenzel M, Lieb K, Tüscher O, Kubiak T, Kalisch R. Assessment of Microstressors in Adults: Questionnaire Development and Ecological Validation of the Mainz Inventory of Microstressors. JMIR Ment Health 2020; 7:e14566. [PMID: 32130154 PMCID: PMC7063526 DOI: 10.2196/14566] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 09/25/2019] [Accepted: 11/02/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Many existing scales for microstressor assessment do not differentiate between objective (ie, observable) stressor events and stressful cognitions or concerns. They often mix items assessing objective stressor events with items measuring other aspects of stress, such as perceived stressor severity, the evoked stress reaction, or further consequences on health, which may result in spurious associations in studies that include other questionnaires that measure such constructs. Most scales were developed several decades ago; therefore, modern life stressors may not be represented. Ecological momentary assessment (EMA) allows for sampling of current behaviors and experiences in real time and in the natural habitat, thereby maximizing the generalization of the findings to real-life situations (ie, ecological validity) and minimizing recall bias. However, it has not been used for the validation of microstressor questionnaires so far. OBJECTIVE The aim is to develop a questionnaire that (1) allows for retrospective assessment of microstressors over one week, (2) focuses on objective (ie, observable) microstressors, (3) includes stressors of modern life, and (4) separates stressor occurrence from perceived stressor severity. METHODS Cross-sectional (N=108) and longitudinal studies (N=10 and N=70) were conducted to evaluate the Mainz Inventory of Microstressors (MIMIS). In the longitudinal studies, EMA was used to compare stressor data, which was collected five times per day for 7 or 30 days with retrospective reports (end-of-day, end-of-week). Pearson correlations and multilevel modeling were used in the analyses. RESULTS High correlations were found between end-of-week, end-of-day, and EMA data for microstressor occurrence (counts) (r≥.69 for comparisons per week, r≥.83 for cumulated data) and for mean perceived microstressor severity (r≥.74 for comparisons per week, r≥.85 for cumulated data). The end-of-week questionnaire predicted the EMA assessments sufficiently (counts: beta=.03, 95% CI .02-.03, P<.001; severity: beta=.73, 95% CI .59-.88, P<.001) and the association did not change significantly over four subsequent weeks. CONCLUSIONS Our results provide evidence for the ecological validity of the MIMIS questionnaire.
Collapse
Affiliation(s)
- Andrea Chmitorz
- Department of Psychiatry and Psychotherapy, University Medical Center Mainz, Mainz, Germany.,Faculty of Social Work, Health Care and Nursing Sciences, Esslingen University of Applied Sciences, Esslingen, Germany
| | - Karolina Kurth
- Department of Psychiatry and Psychotherapy, University Medical Center Mainz, Mainz, Germany.,Health Psychology, Institute for Psychology, Johannes Gutenberg University, Mainz, Germany.,Leibniz Institute for Resilience Research, Mainz, Germany
| | - Lara K Mey
- Department of Psychiatry and Psychotherapy, University Medical Center Mainz, Mainz, Germany.,Health Psychology, Institute for Psychology, Johannes Gutenberg University, Mainz, Germany.,Leibniz Institute for Resilience Research, Mainz, Germany
| | - Mario Wenzel
- Health Psychology, Institute for Psychology, Johannes Gutenberg University, Mainz, Germany.,Leibniz Institute for Resilience Research, Mainz, Germany
| | - Klaus Lieb
- Department of Psychiatry and Psychotherapy, University Medical Center Mainz, Mainz, Germany.,Leibniz Institute for Resilience Research, Mainz, Germany
| | - Oliver Tüscher
- Department of Psychiatry and Psychotherapy, University Medical Center Mainz, Mainz, Germany.,Leibniz Institute for Resilience Research, Mainz, Germany
| | - Thomas Kubiak
- Health Psychology, Institute for Psychology, Johannes Gutenberg University, Mainz, Germany.,Leibniz Institute for Resilience Research, Mainz, Germany
| | - Raffael Kalisch
- Leibniz Institute for Resilience Research, Mainz, Germany.,Neuroimaging Center, University Medical Center, Mainz, Germany
| |
Collapse
|
53
|
Neural responses during extinction learning predict exposure therapy outcome in phobia: results from a randomized-controlled trial. Neuropsychopharmacology 2020; 45:534-541. [PMID: 31352467 PMCID: PMC6969109 DOI: 10.1038/s41386-019-0467-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 07/13/2019] [Accepted: 07/19/2019] [Indexed: 01/31/2023]
Abstract
Extinction learning is assumed to represent a core mechanism underlying exposure therapy. Empirical evaluations of this assumption, however, are largely lacking. The current study investigated whether neural activations and self-report outcomes during extinction learning and extinction recall could specifically predict exposure therapy response in specific phobia. In this double-blind randomized controlled trial, individuals with spider phobia (N = 45; female/male = 41/4) were on group basis randomly allocated to exposure therapy (n = 25; female/male = 24/1) or progressive muscle relaxation (PMR; n = 20; female/male = 17/3). Intervention effects were measured with the Fears of Spiders questionnaire. Participants also underwent a three-day fear conditioning, extinction learning, and extinction recall paradigm during functional magnetic resonance imaging at baseline. Extinction outcomes were self-reported fear and threat expectancy, and neural responses during conditioned stimulus processing and during extinction-related prediction errors (US omissions) in regions of interest (ventromedial prefrontal cortex (vmPFC) and nucleus accumbens). Results showed that exposure therapy resulted in stronger symptom reductions than PMR (Cohen's d = 0.90). Exposure therapy response was specifically predicted by prediction-error related vmPFC activation during early extinction. There were also indications vmPFC activations during conditioned safety stimulus processing at early extinction predicted therapy outcome. Neural activations during extinction recall and self-report data did however not predict therapy outcome. These findings indicate that exposure therapy may rely on neural extinction learning processes. Prediction errors are thought to drive the extinction learning process, and prediction error-related vmPFC activation specifically predicted therapy outcome. The extent to which vmPFC processes safety signals may additionally be predictive of exposure therapy response, but the specificity is less clear.
Collapse
|
54
|
Lonsdorf TB, Klingelhöfer-Jens M, Andreatta M, Beckers T, Chalkia A, Gerlicher A, Jentsch VL, Meir Drexler S, Mertens G, Richter J, Sjouwerman R, Wendt J, Merz CJ. Navigating the garden of forking paths for data exclusions in fear conditioning research. eLife 2019; 8:e52465. [PMID: 31841112 PMCID: PMC6989118 DOI: 10.7554/elife.52465] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/16/2019] [Indexed: 12/21/2022] Open
Abstract
In this report, we illustrate the considerable impact of researcher degrees of freedom with respect to exclusion of participants in paradigms with a learning element. We illustrate this empirically through case examples from human fear conditioning research, in which the exclusion of 'non-learners' and 'non-responders' is common - despite a lack of consensus on how to define these groups. We illustrate the substantial heterogeneity in exclusion criteria identified in a systematic literature search and highlight the potential problems and pitfalls of different definitions through case examples based on re-analyses of existing data sets. On the basis of these studies, we propose a consensus on evidence-based rather than idiosyncratic criteria, including clear guidelines on reporting details. Taken together, we illustrate how flexibility in data collection and analysis can be avoided, which will benefit the robustness and replicability of research findings and can be expected to be applicable to other fields of research that involve a learning element.
Collapse
Affiliation(s)
- Tina B Lonsdorf
- Department of Systems NeuroscienceUniversity Medical Center Hamburg EppendorfHamburgGermany
| | | | - Marta Andreatta
- Department of Psychology, Biological Psychology, Clinical Psychology and PsychotherapyUniversity of WürzburgWürzburgGermany
- Instutute of Psychology, Education & Child StudiesErasmus University RotterdamRotterdamNetherlands
| | - Tom Beckers
- Centre for the Psychology of Learning and Experimental Psychopathology and Leuven Brain InstituteKU LeuvenLeuvenBelgium
| | - Anastasia Chalkia
- Centre for the Psychology of Learning and Experimental Psychopathology and Leuven Brain InstituteKU LeuvenLeuvenBelgium
| | - Anna Gerlicher
- Faculty of Social and Behavioural Sciences, Programme group Clinical PsychologyUniversity of AmsterdamAmsterdamNetherlands
| | - Valerie L Jentsch
- Institute of Cognitive Neuroscience, Department of Cognitive PsychologyRuhr University BochumBochumGermany
| | - Shira Meir Drexler
- Institute of Cognitive Neuroscience, Department of Cognitive PsychologyRuhr University BochumBochumGermany
| | - Gaetan Mertens
- Department of PsychologyUtrecht UniversityUtrechtNetherlands
| | - Jan Richter
- Department of Physiological and Clinical Psychology/PsychotherapyUniversity of GreifswaldGreifswaldGermany
| | - Rachel Sjouwerman
- Department of Systems NeuroscienceUniversity Medical Center Hamburg EppendorfHamburgGermany
| | - Julia Wendt
- Biological Psychology and Affective ScienceUniversity of PotsdamPotsdamGermany
| | - Christian J Merz
- Institute of Cognitive Neuroscience, Department of Cognitive PsychologyRuhr University BochumBochumGermany
| |
Collapse
|
55
|
Malikowska-Racia N, Popik P, Sałat K. Behavioral effects of buspirone in a mouse model of posttraumatic stress disorder. Behav Brain Res 2019; 381:112380. [PMID: 31765726 DOI: 10.1016/j.bbr.2019.112380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/11/2019] [Accepted: 11/21/2019] [Indexed: 11/16/2022]
Abstract
Buspirone presents a unique profile of action, which involves activation of 5-HT1A receptors and complex effects on D2-like dopaminergic receptors. This medication is studied in terms of potential clinical repositioning to conditions that are associated with dopaminergic dysfunctions including schizophrenia and substance use disorder. Buspirone antagonizes D3 and D4 receptors, however, depending on the dose it differentially interacts with D2 receptors. Previously, we reported that some of D2/D3 dopaminergic agonists attenuate PTSD-like behavioral symptoms in mice. Here we investigated whether buspirone could also affect PTSD-like symptoms. We used the single prolonged stress (mSPS) protocol to induce PTSD-like behavior in adult male CD-1 mice. Buspirone (0.5, 2, or 10 mg/kg, i.p.) was injected for 15 consecutive days. The subjects were repeatedly examined in a variety of behavioral tests measuring conditioned freezing response, antidepressant-like effects, anxiety, and ultrasonic vocal response to the restraint stress. Mouse SPS resulted in prolonged immobility in the forced swim test and freezing in the fear-conditioning test, and produced symptoms of anxiety. Buspirone dose-dependently decreased the exaggerated freezing response in mice, but only at the dose of 2 mg/kg exhibited the anxiolytic-like effect in the elevated plus maze test. Buspirone reduced the number of ultrasonic calls in mSPS-exposed mice but revealed no antidepressant-like effect in the forced swim test. Present data suggest some positive effects of buspirone in the treatment of selected PTSD-like symptoms and prompt for its further clinical evaluation.
Collapse
Affiliation(s)
- Natalia Malikowska-Racia
- Department of Pharmacodynamics, Chair of Pharmacodynamics, Jagiellonian University Medical College, 9 Medyczna St., 30-688, Krakow, Poland.
| | - Piotr Popik
- Faculty of Health Sciences, Jagiellonian University Medical College, 12 Michalowskiego St., 31-126, Krakow, Poland; Department of Behavioral Neuroscience and Drug Development Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna St., 31-343, Krakow, Poland
| | - Kinga Sałat
- Department of Pharmacodynamics, Chair of Pharmacodynamics, Jagiellonian University Medical College, 9 Medyczna St., 30-688, Krakow, Poland
| |
Collapse
|
56
|
Abstract
Animal studies have demonstrated that catecholamines regulate several aspects of fear conditioning. In humans, however, pharmacological manipulations of the catecholaminergic system have been scarce, and their primary focus has been to interfering with catecholaminergic activity after fear acquisition or expression had taken place, using L-Dopa, primarily, as catecholaminergic precursor. Here, we sought to determine if putative increases in presynaptic dopamine and norepinephrine by tyrosine administered before conditioning could affect fear expression. Electrodermal activity (EDA) of 46 healthy participants (24 placebo, 22 tyrosine) was measured in an instructed fear task. Results showed that tyrosine abolished fear expression compared to placebo. Importantly, tyrosine did not affect EDA responses to the aversive stimulus (UCS) or alter participants’ mood. Therefore, the effect of tyrosine on fear expression cannot be attributed to these factors. Taken together, these findings provide evidence that the catecholaminergic system influences fear expression in humans.
Collapse
|
57
|
van den Brink RL, Pfeffer T, Donner TH. Brainstem Modulation of Large-Scale Intrinsic Cortical Activity Correlations. Front Hum Neurosci 2019; 13:340. [PMID: 31649516 PMCID: PMC6794422 DOI: 10.3389/fnhum.2019.00340] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 09/17/2019] [Indexed: 12/22/2022] Open
Abstract
Brain activity fluctuates continuously, even in the absence of changes in sensory input or motor output. These intrinsic activity fluctuations are correlated across brain regions and are spatially organized in macroscale networks. Variations in the strength, topography, and topology of correlated activity occur over time, and unfold upon a backbone of long-range anatomical connections. Subcortical neuromodulatory systems send widespread ascending projections to the cortex, and are thus ideally situated to shape the temporal and spatial structure of intrinsic correlations. These systems are also the targets of the pharmacological treatment of major neurological and psychiatric disorders, such as Parkinson's disease, depression, and schizophrenia. Here, we review recent work that has investigated how neuromodulatory systems shape correlations of intrinsic fluctuations of large-scale cortical activity. We discuss studies in the human, monkey, and rodent brain, with a focus on non-invasive recordings of human brain activity. We provide a structured but selective overview of this work and distil a number of emerging principles. Future efforts to chart the effect of specific neuromodulators and, in particular, specific receptors, on intrinsic correlations may help identify shared or antagonistic principles between different neuromodulatory systems. Such principles can inform models of healthy brain function and may provide an important reference for understanding altered cortical dynamics that are evident in neurological and psychiatric disorders, potentially paving the way for mechanistically inspired biomarkers and individualized treatments of these disorders.
Collapse
Affiliation(s)
- R. L. van den Brink
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - T. Pfeffer
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - T. H. Donner
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Psychology, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Center for Brain and Cognition, Institute for Interdisciplinary Studies, Amsterdam, Netherlands
| |
Collapse
|
58
|
Sartori SB, Singewald N. Novel pharmacological targets in drug development for the treatment of anxiety and anxiety-related disorders. Pharmacol Ther 2019; 204:107402. [PMID: 31470029 DOI: 10.1016/j.pharmthera.2019.107402] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 08/19/2019] [Indexed: 12/24/2022]
Abstract
Current medication for anxiety disorders is suboptimal in terms of efficiency and tolerability, highlighting the need for improved drug treatments. In this review an overview of drugs being studied in different phases of clinical trials for their potential in the treatment of fear-, anxiety- and trauma-related disorders is presented. One strategy followed in drug development is refining and improving compounds interacting with existing anxiolytic drug targets, such as serotonergic and prototypical GABAergic benzodiazepines. A more innovative approach involves the search for compounds with novel mechanisms of anxiolytic action using the growing knowledge base concerning the relevant neurocircuitries and neurobiological mechanisms underlying pathological fear and anxiety. The target systems evaluated in clinical trials include glutamate, endocannabinoid and neuropeptide systems, as well as ion channels and targets derived from phytochemicals. Examples of promising novel candidates currently in clinical development for generalised anxiety disorder, social anxiety disorder, panic disorder, obsessive compulsive disorder or post-traumatic stress disorder include ketamine, riluzole, xenon with one common pharmacological action of modulation of glutamatergic neurotransmission, as well as the neurosteroid aloradine. Finally, compounds such as D-cycloserine, MDMA, L-DOPA and cannabinoids have shown efficacy in enhancing fear-extinction learning in humans. They are thus investigated in clinical trials as an augmentative strategy for speeding up and enhancing the long-term effectiveness of exposure-based psychotherapy, which could render chronic anxiolytic drug treatment dispensable for many patients. These efforts are indicative of a rekindled interest and renewed optimism in the anxiety drug discovery field, after decades of relative stagnation.
Collapse
Affiliation(s)
- Simone B Sartori
- Institute of Pharmacy, Department of Pharmacology and Toxicology, Center for Molecular Biosciences Innsbruck (CMBI), Leopold Franzens University Innsbruck, Innsbruck, Austria
| | - Nicolas Singewald
- Institute of Pharmacy, Department of Pharmacology and Toxicology, Center for Molecular Biosciences Innsbruck (CMBI), Leopold Franzens University Innsbruck, Innsbruck, Austria.
| |
Collapse
|
59
|
Hu K. Investigations into ventral prefrontal cortex using mediation models. J Neurosci Res 2019; 98:632-642. [PMID: 31420919 DOI: 10.1002/jnr.24512] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 07/21/2019] [Accepted: 07/22/2019] [Indexed: 11/11/2022]
Abstract
The ventral prefrontal cortex (vPFC) is a major focus of investigation in neuroscience, particularly in the studies of emotion and emotion-cognition integration. A crucial question concerning the regulatory function of vPFC is how it is recruited, especially how the function maps onto the structure and determines appropriate behavior. In social exclusion studies, mediation model analyses suggest that vPFC regulates distress by disrupting anterior cingulate cortex (ACC) activities, whereas I recently report (Hu, 2018; Neuropsychologia) that ventral medial prefrontal cortex appears to defend the organism from acute stress by activating ACC. In this review, I synthesize and highlight functional imaging research with mediation analysis that over the past decades has begun to offer new insights into the brain mechanisms underlying vPFC. Toward this end, the first section of the paper outlines a model of the processes and neural systems involved in the interaction of emotion and cognition. The second and third sections survey recent research on emotional regulation with negative and positive pathways, respectively, emanating from vPFC. The fourth section summarizes the current dynamic network findings. Functional mediation analysis helps to identify signals within vPFC and others that are common and/or specific to particular information processing. Finally, I provide a personal perspective of the adoption of mediation model analysis in the investigations into vPFC.
Collapse
Affiliation(s)
- Kesong Hu
- Department of Psychology, Lake Superior State University, Sault Ste. Marie, Michigan.,Institute of Mental Health, Nanjing Xiaozhuang University, Nanjing, China
| |
Collapse
|
60
|
Torrisi SA, Leggio GM, Drago F, Salomone S. Therapeutic Challenges of Post-traumatic Stress Disorder: Focus on the Dopaminergic System. Front Pharmacol 2019; 10:404. [PMID: 31057408 PMCID: PMC6478703 DOI: 10.3389/fphar.2019.00404] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 04/01/2019] [Indexed: 12/18/2022] Open
Abstract
Post-traumatic stress disorder (PTSD) is a mental illness developed by vulnerable individuals exposed to life-threatening events. The pharmacological unresponsiveness displayed by the vast majority of PTSD patients has raised considerable interest in understanding the poorly known pathophysiological mechanisms underlying this disorder. Most studies in the field focused, so far, on noradrenergic mechanisms, because of their well-established role in either tuning arousal or in encoding emotional memories. However, less attention has been paid to other neural systems. Manipulations of the dopaminergic system alter behavioral responses to stressful situations and recent findings suggest that dopaminergic dysfunction might play an overriding role in the pathophysiology of PTSD. In the present review, dopaminergic mechanisms relevant for the pathogenesis of PTSD, as well as potential dopaminergic-based pharmacotherapies are discussed in the context of addressing the unmet medical need for new and effective drugs for treatment of PTSD.
Collapse
Affiliation(s)
| | - Gian Marco Leggio
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Salvatore Salomone
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| |
Collapse
|
61
|
Hass-Cohen N, Clyde Findlay JM. The art therapy relational neuroscience and memory reconsolidation four drawing protocol. ARTS IN PSYCHOTHERAPY 2019. [DOI: 10.1016/j.aip.2019.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
62
|
Kalisch R, Gerlicher AMV, Duvarci S. A Dopaminergic Basis for Fear Extinction. Trends Cogn Sci 2019; 23:274-277. [PMID: 30803871 DOI: 10.1016/j.tics.2019.01.013] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/28/2019] [Accepted: 01/28/2019] [Indexed: 12/22/2022]
Abstract
It is a joyous relief when an event we dread fails to materialize. In fear extinction, the appetitive nature of an omitted aversive event is not a mere epiphenomenon but drives the reduction of fear responses and the formation of long-term extinction memories. Dopamine emerges as key neurobiological mediator of these related processes.
Collapse
Affiliation(s)
- Raffael Kalisch
- Deutsches Resilienz Zentrum (DRZ), Johannes Gutenberg University Medical Center, Mainz, Germany; Neuroimaging Center (NIC), Focus Program Translational Neuroscience (FTN), Johannes Gutenberg University Medical Center, Mainz, Germany.
| | - Anna M V Gerlicher
- Department of Clinical Psychology, University of Amsterdam, Amsterdam, The Netherlands
| | - Sevil Duvarci
- Institute of Neurophysiology, Neuroscience Center, Goethe University, Frankfurt, Germany
| |
Collapse
|
63
|
Cahill EN, Milton AL. Neurochemical and molecular mechanisms underlying the retrieval-extinction effect. Psychopharmacology (Berl) 2019; 236:111-132. [PMID: 30656364 PMCID: PMC6373198 DOI: 10.1007/s00213-018-5121-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 11/12/2018] [Indexed: 12/26/2022]
Abstract
Extinction within the reconsolidation window, or 'retrieval-extinction', has received much research interest as a possible technique for targeting the reconsolidation of maladaptive memories with a behavioural intervention. However, it remains to be determined whether the retrieval-extinction effect-a long-term reduction in fear behaviour, which appears resistant to spontaneous recovery, renewal and reinstatement-depends specifically on destabilisation of the original memory (the 'reconsolidation-update' account) or represents facilitation of an extinction memory (the 'extinction-facilitation' account). We propose that comparing the neurotransmitter systems, receptors and intracellular signalling pathways recruited by reconsolidation, extinction and retrieval-extinction will provide a way of distinguishing between these accounts.
Collapse
Affiliation(s)
- Emma N Cahill
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Site, Cambridge, CB2 3EG, UK
| | - Amy L Milton
- Department of Psychology, University of Cambridge, Downing Site, Cambridge, CB2 3EB, UK.
- Behavioural and Clinical Neuroscience Institute, Cambridge, CB2 3EB, UK.
| |
Collapse
|
64
|
Gerlicher AMV, Tüscher O, Kalisch R. L-DOPA improves extinction memory retrieval after successful fear extinction. Psychopharmacology (Berl) 2019; 236:3401-3412. [PMID: 31243481 PMCID: PMC6892771 DOI: 10.1007/s00213-019-05301-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 06/05/2019] [Indexed: 11/30/2022]
Abstract
RATIONALE A promising strategy to prevent a return of fear after exposure-based therapy in anxiety disorders is to pharmacologically enhance the extinction memory consolidation presumed to occur after exposure. Accumulating evidence suggests that the effect of a number of pharmacological consolidation enhancers depends on a successful fear reduction during exposure. Here, we employed the dopamine precursor L-DOPA to clarify whether its documented potential to enhance extinction memory consolidation is dependent on successful fear extinction. METHODS In two double-blind, randomized and placebo-controlled experiments (experiment 1: N = 79, experiment 2: N = 32) comprising fear conditioning (day 1), extinction followed by administration of 150 mg L-DOPA or placebo (day 2) and a memory test (day 3) in healthy male adults, conditioned responses were assessed as differential skin conductance responses. We tested whether the effect of L-DOPA on conditioned responses at test depended on conditioned responses at the end of extinction in an experiment with a short (10 trials, experiment 1) and long (25 trials, experiment 2) extinction session. RESULTS In both experiments, the effect of L-DOPA was dependent on conditioned responses at the end of extinction. That is, post-extinction L-DOPA compared to placebo administration reduced conditioned responses at test only in participants showing a complete reduction of conditioned fear at the end of extinction. CONCLUSION The results support the potential use of L-DOPA as a pharmacological adjunct to exposure treatment, but point towards a common boundary condition for pharmacological consolidation enhancers: a successful reduction of fear in the exposure session.
Collapse
Affiliation(s)
- A. M. V. Gerlicher
- Neuroimaging Center (NIC), Focus Program Translational Neuroscience (FTN), Johannes Gutenberg University Medical Center, Langenbeckstr. 1, 55131 Mainz, Germany ,Deutsches Resilienz Zentrum (DRZ), Johannes Gutenberg University Medical Center, Untere Zahlbacher Str. 8, 55131 Mainz, Germany ,Present Address: Department of Clinical Psychology, University of Amsterdam, Nieuwe Achtergracht 129B, 1018 WS Amsterdam, The Netherlands
| | - O. Tüscher
- Deutsches Resilienz Zentrum (DRZ), Johannes Gutenberg University Medical Center, Untere Zahlbacher Str. 8, 55131 Mainz, Germany ,Department of Psychiatry and Psychotherapy, Johannes Gutenberg University Medical Center, Untere Zahlbacher Str. 8, 55131 Mainz, Germany
| | - R. Kalisch
- Neuroimaging Center (NIC), Focus Program Translational Neuroscience (FTN), Johannes Gutenberg University Medical Center, Langenbeckstr. 1, 55131 Mainz, Germany ,Deutsches Resilienz Zentrum (DRZ), Johannes Gutenberg University Medical Center, Untere Zahlbacher Str. 8, 55131 Mainz, Germany
| |
Collapse
|