51
|
Ghara M, Pan S, Chattaraj PK. Donor-Acceptor vs Electron-Shared Bonding: Triatomic Si nC 3-n ( n ≤ 3) Clusters Stabilized by Cyclic Alkyl(amino) Carbene. J Phys Chem A 2019; 123:10764-10771. [PMID: 31774284 DOI: 10.1021/acs.jpca.9b09807] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
SinC3-n (n ≤ 3) clusters are interstellar species that are transient in nature at ambient conditions. Herein, the structure, stability, and nature of bonding in cyclic alkyl(amino) carbene (cAAC) protected SinC3-n (n ≤ 3) clusters are studied in silico. The Si3(cAAC)3 complex was previously reported to be synthesized in large scale. The present results indicate that because the C-CcAAC bond is stronger than the Si-CcAAC bond, C3(cAAC)3 and SiC2(cAAC)3 complexes have significantly larger stability with respect to ligand dissociation than the Si3(cAAC)3 complex, while Si2C(cAAC)3 has almost the same stability as in the latter complex. Moreover, considering the Si3(cAAC)3 complex as a precursor, the hypothetical successive single Si substitution process by a single C atom in Si3(cAAC)3 complex is exergonic in nature. The bonding situation is analyzed by employing natural bond orbital (NBO), electron density, and energy decomposition analyses in combination with the natural orbital for chemical valence theory. These studies show that the nature of bonding in C-CcAAC and Si-CcAAC bonds differs significantly from each other. The former bonds are best described as an electron-shared double bond, whereas the latter bonds are of donor-acceptor type consisting of two components, Si←CcAAC σ-donation and Si→CcAAC π-back-donation. Nevertheless, in the former bonds, covalent character is larger than the ionic one but in the latter bonds the reverse is true. For some Si-CcAAC bonds, the π-natural orbital cannot be located by the NBO method, presumably because of slightly lower occupancy than the cutoff values, but the electron density analysis confirms that different Si-CcAAC bonds in a given complex are almost equivalent in terms of electron density distribution. This paper reports an interesting change in bonding pattern when one replaces Si by a C atom in triatomic silicon carbide clusters stabilized by a ligand.
Collapse
Affiliation(s)
- Manas Ghara
- Department of Chemistry and Center for Theoretical Studies , Indian Institute of Technology Kharagpur , Kharagpur 721302 , India
| | - Sudip Pan
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials , Nanjing Tech University , Nanjing 211816 , China
| | - Pratim K Chattaraj
- Department of Chemistry and Center for Theoretical Studies , Indian Institute of Technology Kharagpur , Kharagpur 721302 , India.,Department of Chemistry , Indian Institute of Technology Bombay , Mumbai 400076 , India
| |
Collapse
|
52
|
Zhuang J, Abella L, Sergentu DC, Yao YR, Jin M, Yang W, Zhang X, Li X, Zhang D, Zhao Y, Li X, Wang S, Echegoyen L, Autschbach J, Chen N. Diuranium(IV) Carbide Cluster U2C2 Stabilized Inside Fullerene Cages. J Am Chem Soc 2019; 141:20249-20260. [DOI: 10.1021/jacs.9b10247] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
| | - Laura Abella
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, United States
| | - Dumitru-Claudiu Sergentu
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, United States
| | - Yang-Rong Yao
- Department of Chemistry, University of Texas at El Paso, 500 West University Avenue, El Paso, Texas 79968, United States
| | | | | | | | | | | | | | | | | | - Luis Echegoyen
- Department of Chemistry, University of Texas at El Paso, 500 West University Avenue, El Paso, Texas 79968, United States
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, United States
| | | |
Collapse
|
53
|
Ariyarathna IR, Miliordos E. Carbon monoxide activation by atomic thorium: ground and excited state reaction pathways. Phys Chem Chem Phys 2019; 21:24469-24477. [PMID: 31686066 DOI: 10.1039/c9cp04946k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Multi-reference configuration interaction (MRCI) and single reference coupled cluster calculations are performed for the ThCO and OThC isomers. Scalar and spin-orbit relativistic effects are considered through a relativistic pseudopotential and the coupling of MRCI wavefunctions via the Breit-Pauli spin-orbit Hamiltonian. Optimized geometries, excitation energies, and vibrational frequencies are reported for both isomers. Full potential energy profiles are constructed for the Th+CO reaction and the conversion of the produced ThCO to OThC. Linear ThCO was found to be more stable than the highly ionic bent OThC system by about 4 kcal mol-1. The interconversion barrier is estimated to be around 30 kcal mol-1. Our results are in agreement with earlier experimental data for the two isomers. The lowest lying states of Th do not populate f-orbitals and resemble the electronic structure of Ti. Therefore, the ability of the two atoms to activate the C[triple bond, length as m-dash]O bond is compared. OTiC is found to be about 40 kcal mol-1 less stable than TiCO revealing the efficiency of Th and possibly other f-block elements to activate multiple chemical bonds as opposed to d-block metals.
Collapse
Affiliation(s)
- Isuru R Ariyarathna
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849-5312, USA.
| | | |
Collapse
|
54
|
Su W, Pan S, Sun X, Zhao L, Frenking G, Zhu C. Cerium-carbon dative interactions supported by carbodiphosphorane. Dalton Trans 2019; 48:16108-16114. [PMID: 31620743 DOI: 10.1039/c9dt03770e] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A set of complexes containing dative interactions between a rare-earth metal and carbon are reported. Complex 2, Br3Ce(CDP)(THF), with a Ce←C bond was synthesized by the reaction of CeBr3 with a carbon(0) ligand, carbodiphosphorane (CDP). More significantly, a trivalent cerium complex 3, [BrCe(CDP)2](BPh4)2, with two σ dative interactions C→Ce←C was also isolated, which represents an unusual example of two dative interactions formed with the same atom in a molecule. Furthermore, π donation by the second lone-pair electrons of the CDP ligand is rather weak. Single-crystal X-ray diffraction shows that the Ce-C bond lengths in these complexes are comparable with those in cerium(iii)-carbene species. Density functional theory calculations support the dative interaction formation in these complexes and the strength of σ-donation in 3 is stronger than that in 2.
Collapse
Affiliation(s)
- Wei Su
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| | - Sudip Pan
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China.
| | - Xiong Sun
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| | - Lili Zhao
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China.
| | - Gernot Frenking
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China. and Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, Marburg 35032, Germany. and Donostia International Physics Center (DIPC), P.K. 1072, 20080 Donostia, Euskadi, Spain
| | - Congqing Zhu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
55
|
Klein M, Xie X, Burghaus O, Sundermeyer J. Synthesis and Characterization of a N,C,N-Carbodiphosphorane Pincer Ligand and Its Complexes. Organometallics 2019. [DOI: 10.1021/acs.organomet.9b00489] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Marius Klein
- Fachbereich Chemie and Wissenschaftliches Zentrum für Materialwissenschaften (WZMW), Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35043 Marburg, Germany
| | - Xiulan Xie
- Fachbereich Chemie and Wissenschaftliches Zentrum für Materialwissenschaften (WZMW), Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35043 Marburg, Germany
| | - Olaf Burghaus
- Fachbereich Chemie and Wissenschaftliches Zentrum für Materialwissenschaften (WZMW), Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35043 Marburg, Germany
| | - Jörg Sundermeyer
- Fachbereich Chemie and Wissenschaftliches Zentrum für Materialwissenschaften (WZMW), Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35043 Marburg, Germany
| |
Collapse
|
56
|
Saha R, Jana G, Pan S, Merino G, Chattaraj PK. How Far Can One Push the Noble Gases Towards Bonding?: A Personal Account. Molecules 2019; 24:E2933. [PMID: 31412650 PMCID: PMC6719121 DOI: 10.3390/molecules24162933] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 01/29/2023] Open
Abstract
Noble gases (Ngs) are the least reactive elements in the periodic table towards chemical bond formation when compared with other elements because of their completely filled valence electronic configuration. Very often, extreme conditions like low temperatures, high pressures and very reactive reagents are required for them to form meaningful chemical bonds with other elements. In this personal account, we summarize our works to date on Ng complexes where we attempted to theoretically predict viable Ng complexes having strong bonding to synthesize them under close to ambient conditions. Our works cover three different types of Ng complexes, viz., non-insertion of NgXY type, insertion of XNgY type and Ng encapsulated cage complexes where X and Y can represent any atom or group of atoms. While the first category of Ng complexes can be thermochemically stable at a certain temperature depending on the strength of the Ng-X bond, the latter two categories are kinetically stable, and therefore, their viability and the corresponding conditions depend on the size of the activation barrier associated with the release of Ng atom(s). Our major focus was devoted to understand the bonding situation in these complexes by employing the available state-of-the-art theoretic tools like natural bond orbital, electron density, and energy decomposition analyses in combination with the natural orbital for chemical valence theory. Intriguingly, these three types of complexes represent three different types of bonding scenarios. In NgXY, the strength of the donor-acceptor Ng→XY interaction depends on the polarizing power of binding the X center to draw the rather rigid electron density of Ng towards itself, and sometimes involvement of such orbitals becomes large enough, particularly for heavier Ng elements, to consider them as covalent bonds. On the other hand, in most of the XNgY cases, Ng forms an electron-shared covalent bond with X while interacting electrostatically with Y representing itself as [XNg]+Y-. Nevertheless, in some of the rare cases like NCNgNSi, both the C-Ng and Ng-N bonds can be represented as electron-shared covalent bonds. On the other hand, a cage host is an excellent moiety to examine the limits that can be pushed to attain bonding between two Ng atoms (even for He) at high pressure. The confinement effect by a small cage-like B12N12 can even induce some covalent interaction within two He atoms in the He2@B12N12 complex.
Collapse
Affiliation(s)
- Ranajit Saha
- Department of Chemistry and Centre for Theoretical Studies Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Gourhari Jana
- Department of Chemistry and Centre for Theoretical Studies Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Sudip Pan
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China.
| | - Gabriel Merino
- Departamento de Física Aplicada, Centro de Investigación y de Estudios Avanzados, Unidad Mérida. Km 6 Antigua Carretera a Progreso. Apdo. Postal 73, Cordemex, Mérida 97310, Yuc., Mexico.
| | - Pratim Kumar Chattaraj
- Department of Chemistry and Centre for Theoretical Studies Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India.
| |
Collapse
|
57
|
Fustier-Boutignon M, Nebra N, Mézailles N. Geminal Dianions Stabilized by Main Group Elements. Chem Rev 2019; 119:8555-8700. [PMID: 31194516 DOI: 10.1021/acs.chemrev.8b00802] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
This review is dedicated to the chemistry of stable and isolable species that bear two lone pairs at the same C center, i.e., geminal dianions, stabilized by main group elements. Three cases can thus be considered: the geminal-dilithio derivative, for which the two substituents at C are neutral, the yldiide derivatives, for which one substituent is neutral while the other is charged, and finally the geminal bisylides, for which the two substituents are positively charged. In this review, the syntheses and electronic structures of the geminal dianions are presented, followed by the studies dedicated to their reactivity toward organic substrates and finally to their coordination chemistry and applications.
Collapse
Affiliation(s)
- Marie Fustier-Boutignon
- UPS, CNRS, LHFA UMR 5069 , Université de Toulouse , 118 Route de Narbonne , 31062 Toulouse , France
| | - Noel Nebra
- UPS, CNRS, LHFA UMR 5069 , Université de Toulouse , 118 Route de Narbonne , 31062 Toulouse , France
| | - Nicolas Mézailles
- UPS, CNRS, LHFA UMR 5069 , Université de Toulouse , 118 Route de Narbonne , 31062 Toulouse , France
| |
Collapse
|
58
|
Jana G, Jha R, Pan S, Chattaraj PK. Microsolvation of lithium–phosphorus double helix: a DFT study. Theor Chem Acc 2019. [DOI: 10.1007/s00214-019-2462-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
59
|
Chi XW, Wu QY, Lan JH, Wang CZ, Zhang Q, Chai ZF, Shi WQ. A Theoretical Study on Divalent Heavier Group 14 Complexes as Promising Donor Ligands for Building Uranium–Metal Bonds. Organometallics 2019. [DOI: 10.1021/acs.organomet.9b00059] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Xiao-Wang Chi
- College of Mining, Guizhou University, Guiyang, 550025, China
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Qun-Yan Wu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian-Hui Lan
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Cong-Zhi Wang
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Qin Zhang
- College of Mining, Guizhou University, Guiyang, 550025, China
| | - Zhi-Fang Chai
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, China
| | - Wei-Qun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
60
|
Pan S, Jana G, Merino G, Chattaraj PK. Noble-Noble Strong Union: Gold at Its Best to Make a Bond with a Noble Gas Atom. ChemistryOpen 2019; 8:173-187. [PMID: 30740292 PMCID: PMC6356865 DOI: 10.1002/open.201800257] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/25/2018] [Indexed: 11/29/2022] Open
Abstract
This Review presents the current status of the noble gas (Ng)‐noble metal chemistry, which began in 1977 with the detection of AuNe+ through mass spectroscopy and then grew from 2000 onwards; currently, the field is in a somewhat matured state. On one side, modern quantum chemistry is very effective in providing important insights into the structure, stability, and barrier for the decomposition of Ng compounds and, as a result, a plethora of viable Ng compounds have been predicted. On the other hand. experimental achievement also goes beyond microscopic detection and characterization through spectroscopic techniques and crystal structures at ambient temperature; for example, (AuXe4)2+(Sb2F11−)2 have also been obtained. The bonding between two noble elements of the periodic table can even reach the covalent limit. The relativistic effect makes gold a very special candidate to form a strong bond with Ng in comparison to copper and silver. Insertion compounds, which are metastable in nature, depending on their kinetic stability, display an even more fascinating bonding situation. The degree of covalency in Ng–M (M=noble metal) bonds of insertion compounds is far larger than that in non‐insertion compounds. In fact, in MNgCN (M=Cu, Ag, Au) molecules, the M−Ng and Ng−C bonds might be represented as classical 2c–2e σ bonds. Therefore, noble metals, particularly gold, provide the opportunity for experimental chemists to obtain sufficiently stable complexes with Ng at room temperature in order to characterize them by using experimental techniques and, with the intriguing bonding situation, to explore them with various computational tools from a theoretical perspective. This field is relatively young and, in the coming years, a lot of advancement is expected experimentally as well as theoretically.
Collapse
Affiliation(s)
- Sudip Pan
- Institute of Advanced Synthesis School of Chemistry and Molecular Engineering Jiangsu National Synergetic Innovation Center for Advanced Materials Nanjing Tech University Nanjing 211816 China
| | - Gourhari Jana
- Department of Chemistry and Centre for Theoretical Studies Indian Institute of Technology Kharagpur Kharagpur 721302 India
| | - Gabriel Merino
- Departamento de Física Aplicada Centro de Investigación y de Estudios Avanzados Unidad Mérida. Km 6 Antigua Carretera a Progreso. Apdo. Postal 73 Cordemex 97310 Mérida, Yuc. México
| | - Pratim K Chattaraj
- Department of Chemistry and Centre for Theoretical Studies Indian Institute of Technology Kharagpur Kharagpur 721302 India.,Department of Chemistry Indian Institute of Technology Bombay Mumbai 400076 India
| |
Collapse
|
61
|
Ghara M, Pan S, Chattaraj PK. A theoretical investigation on boron–ligand cooperation to activate molecular hydrogen by a frustrated Lewis pair and subsequent reduction of carbon dioxide. Phys Chem Chem Phys 2019; 21:21267-21277. [DOI: 10.1039/c9cp03756j] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Activation of molecular hydrogen by a B/N frustrated Lewis pair.
Collapse
Affiliation(s)
- Manas Ghara
- Department of Chemistry and Center for Theoretical Studies
- Indian Institute of Technology Kharagpur
- Kharagpur-721302
- India
| | - Sudip Pan
- Fachbereich Chemie
- Philipps-Universität Marburg Hans-Meerwein-Straße
- 35032 Marburg
- Germany
| | - Pratim K. Chattaraj
- Department of Chemistry and Center for Theoretical Studies
- Indian Institute of Technology Kharagpur
- Kharagpur-721302
- India
- Department of Chemistry
| |
Collapse
|