51
|
Ogimoto T, Ozasa H, Tsuji T, Funazo T, Yamazoe M, Hashimoto K, Yoshida H, Hosoya K, Ajimizu H, Nomizo T, Yoshida H, Hamaji M, Menju T, Yoshizawa A, Date H, Hirai T. Combination Therapy with EGFR Tyrosine Kinase Inhibitors and TEAD Inhibitor Increases Tumor Suppression Effects in EGFR Mutation-positive Lung Cancer. Mol Cancer Ther 2024; 23:564-576. [PMID: 38052760 DOI: 10.1158/1535-7163.mct-23-0371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/14/2023] [Accepted: 11/28/2023] [Indexed: 12/07/2023]
Abstract
EGFR-tyrosine kinase inhibitors (TKI) are the first-line therapies for EGFR mutation-positive lung cancer. EGFR-TKIs have favorable therapeutic effects. However, a large proportion of patients with EGFR mutation-positive lung cancer subsequently relapse. Some cancer cells survive the initial treatment with EGFR-TKIs, and this initial survival may be associated with subsequent recurrence. Therefore, we aimed to overcome the initial survival against EGFR-TKIs. We hypothesized that yes-associated protein 1 (YAP1) is involved in the initial survival against EGFR-TKIs, and we confirmed the combined effect of EGFR-TKIs and a YAP1-TEAD pathway inhibitor. The KTOR27 (EGFR kinase domain duplication) lung cancer cell lines established from a patient with EGFR mutation-positive lung cancer and commercially available PC-9 and HCC827 (EGFR exon 19 deletions) lung cancer cell lines were used. These cells were used to evaluate the in vitro and in vivo effects of VT104, a TEAD inhibitor. In addition, YAP1 involvement was investigated in pathologic specimens. YAP1 was activated by short-term EGFR-TKI treatment in EGFR mutation-positive lung cancer cells. In addition, inhibiting YAP1 function using siRNA increased the sensitivity to EGFR-TKIs. Combination therapy with VT104 and EGFR-TKIs showed better tumor-suppressive effects than EGFR-TKIs alone, in vitro and in vivo. Moreover, the combined effect of VT104 and EGFR-TKIs was observed regardless of the localization status of YAP1 before EGFR-TKI exposure. These results suggest that combination therapy with the TEAD inhibitor and EGFR-TKIs may improve the prognosis of patients with EGFR mutation-positive lung cancer.
Collapse
Affiliation(s)
- Tatsuya Ogimoto
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroaki Ozasa
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takahiro Tsuji
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Anatomy and Molecular Cell Biology, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Tomoko Funazo
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masatoshi Yamazoe
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kentaro Hashimoto
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroshi Yoshida
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kazutaka Hosoya
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hitomi Ajimizu
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takashi Nomizo
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hironori Yoshida
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masatsugu Hamaji
- Department of Thoracic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Toshi Menju
- Department of Thoracic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akihiko Yoshizawa
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
| | - Hiroshi Date
- Department of Thoracic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Toyohiro Hirai
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
52
|
Kumar R, Hong W. Hippo Signaling at the Hallmarks of Cancer and Drug Resistance. Cells 2024; 13:564. [PMID: 38607003 PMCID: PMC11011035 DOI: 10.3390/cells13070564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/11/2024] [Accepted: 03/20/2024] [Indexed: 04/13/2024] Open
Abstract
Originally identified in Drosophila melanogaster in 1995, the Hippo signaling pathway plays a pivotal role in organ size control and tumor suppression by inhibiting proliferation and promoting apoptosis. Large tumor suppressors 1 and 2 (LATS1/2) directly phosphorylate the Yki orthologs YAP (yes-associated protein) and its paralog TAZ (also known as WW domain-containing transcription regulator 1 [WWTR1]), thereby inhibiting their nuclear localization and pairing with transcriptional coactivators TEAD1-4. Earnest efforts from many research laboratories have established the role of mis-regulated Hippo signaling in tumorigenesis, epithelial mesenchymal transition (EMT), oncogenic stemness, and, more recently, development of drug resistances. Hippo signaling components at the heart of oncogenic adaptations fuel the development of drug resistance in many cancers for targeted therapies including KRAS and EGFR mutants. The first U.S. food and drug administration (US FDA) approval of the imatinib tyrosine kinase inhibitor in 2001 paved the way for nearly 100 small-molecule anti-cancer drugs approved by the US FDA and the national medical products administration (NMPA). However, the low response rate and development of drug resistance have posed a major hurdle to improving the progression-free survival (PFS) and overall survival (OS) of cancer patients. Accumulating evidence has enabled scientists and clinicians to strategize the therapeutic approaches of targeting cancer cells and to navigate the development of drug resistance through the continuous monitoring of tumor evolution and oncogenic adaptations. In this review, we highlight the emerging aspects of Hippo signaling in cross-talk with other oncogenic drivers and how this information can be translated into combination therapy to target a broad range of aggressive tumors and the development of drug resistance.
Collapse
Affiliation(s)
- Ramesh Kumar
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology, and Research), Singapore 138673, Singapore;
| | | |
Collapse
|
53
|
Ibusuki R, Iwama E, Shimauchi A, Tsutsumi H, Yoneshima Y, Tanaka K, Okamoto I. TP53 gain-of-function mutations promote osimertinib resistance via TNF-α-NF-κB signaling in EGFR-mutated lung cancer. NPJ Precis Oncol 2024; 8:60. [PMID: 38431700 PMCID: PMC10908812 DOI: 10.1038/s41698-024-00557-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 02/20/2024] [Indexed: 03/05/2024] Open
Abstract
EGFR tyrosine kinase inhibitors (TKIs) are effective against EGFR-mutated lung cancer, but tumors eventually develop resistance to these drugs. Although TP53 gain-of-function (GOF) mutations promote carcinogenesis, their effect on EGFR-TKI efficacy has remained unclear. We here established EGFR-mutated lung cancer cell lines that express wild-type (WT) or various mutant p53 proteins with CRISPR-Cas9 technology and found that TP53-GOF mutations promote early development of resistance to the EGFR-TKI osimertinib associated with sustained activation of ERK and expression of c-Myc. Gene expression analysis revealed that osimertinib activates TNF-α-NF-κB signaling specifically in TP53-GOF mutant cells. In such cells, osimertinib promoted interaction of p53 with the NF-κB subunit p65, translocation of the resulting complex to the nucleus and its binding to the TNF promoter, and TNF-α production. Concurrent treatment of TP53-GOF mutant cells with the TNF-α inhibitor infliximab suppressed acquisition of osimertinib resistance as well as restored osimertinib sensitivity in resistant cells in association with attenuation of ERK activation and c-Myc expression. Our findings indicate that induction of TNF-α expression by osimertinib in TP53-GOF mutant cells contributes to the early development of osimertinib resistance, and that TNF-α inhibition may therefore be an effective strategy to overcome such resistance in EGFR-mutant lung cancer with TP53-GOF mutations.
Collapse
Affiliation(s)
- Ritsu Ibusuki
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Eiji Iwama
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Atsushi Shimauchi
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hirono Tsutsumi
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yasuto Yoneshima
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kentaro Tanaka
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Isamu Okamoto
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
54
|
Wang P, Ke B, Ma G. Drug-tolerant persister cancer cells. JOURNAL OF THE NATIONAL CANCER CENTER 2024; 4:1-5. [PMID: 39036383 PMCID: PMC11256673 DOI: 10.1016/j.jncc.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 07/23/2024] Open
Affiliation(s)
- Pengliang Wang
- Department of Gastrointestinal Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Bin Ke
- Department of Gastric Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin Key Laboratory of Digestive Cancer, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Gang Ma
- Department of Gastric Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin Key Laboratory of Digestive Cancer, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
55
|
Koba H, Yoneda T, Morita H, Kimura H, Murase Y, Terada N, Tambo Y, Horie M, Kasahara K, Matsumoto I, Yano S. Genomic evolutional analysis of surgical resected specimen to assess osimertinib as a first-line therapy in two patients with lung cancer harboring EGFR mutation: Case series. Thorac Cancer 2024; 15:661-666. [PMID: 38323355 DOI: 10.1111/1759-7714.15241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/20/2024] [Indexed: 02/08/2024] Open
Abstract
Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) is crucial for patients with lung cancer harboring EGFR mutations. However, almost all patients experience disease progression, regardless of their response to the targeted therapy, necessitating the development of additional treatment options. Two patients with lung cancer harboring EGFR-L858R mutations in exon 21 were treated by surgical resection during successful osimertinib treatment. Because the pathological diagnosis was suspected to be pleural metastasis, osimertinib treatment was continued until disease progression. We analyzed the evolution of genomic alterations and the levels of AXL using tumor specimens obtained by repeated biopsies during the course of treatment: initial diagnosis, operation, and disease progression. Genetic alterations detected at the three time points were dramatically changed and showed reductions in numbers, while EGFR-L858R mutations were detected in all samples tested in both patients. Immunohistochemical expression of AXL remained positive from the beginning of analysis to disease progression. Clonal evolution under oncogenesis is related to gradual accumulation of genomic alterations during tumor growth. However, our case series revealed that volume reduction procedures may cause this phenomenon. Therefore, identification of intrinsic drug-resistant cells in tumors may be as important as detection of acquired genetic alterations.
Collapse
Affiliation(s)
- Hayato Koba
- Department of Respiratory Medicine, Kanazawa University Hospital, Kanazawa, Japan
| | - Taro Yoneda
- Respiratory Medicine, Komatsu Municipal Hospital, Komatsu, Japan
| | - Hiroko Morita
- Respiratory and Allergic Medicine, Morita Hospital, Komatsu, Japan
| | - Hideharu Kimura
- Department of Respiratory Medicine, Kanazawa University Hospital, Kanazawa, Japan
| | - Yuya Murase
- Department of Respiratory Medicine, Kanazawa University Hospital, Kanazawa, Japan
| | - Nanao Terada
- Department of Respiratory Medicine, Kanazawa University Hospital, Kanazawa, Japan
| | - Yuichi Tambo
- Department of Respiratory Medicine, Kanazawa University Hospital, Kanazawa, Japan
| | - Masafumi Horie
- Department of Molecular and Cellular Pathology, Graduate school of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Kazuo Kasahara
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Isao Matsumoto
- Department of Thoracic Surgery, Kanazawa University, Kanazawa, Japan
| | - Seiji Yano
- Department of Respiratory Medicine, Kanazawa University Hospital, Kanazawa, Japan
| |
Collapse
|
56
|
Celeste FV, Powers S. Induction of Multiple Alternative Mitogenic Signaling Pathways Accompanies the Emergence of Drug-Tolerant Cancer Cells. Cancers (Basel) 2024; 16:1001. [PMID: 38473364 PMCID: PMC10930612 DOI: 10.3390/cancers16051001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/24/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Drug resistance can evolve from a subpopulation of cancer cells that initially survive drug treatment and then gradually form a pool of drug-tolerant cells. Several studies have pinpointed the activation of a specific bypass pathway that appears to provide the critical therapeutic target for preventing drug tolerance. Here, we take a systems-biology approach, using proteomics and genomics to examine the development of drug tolerance to EGFR inhibitors in EGFR-mutant lung adenocarcinoma cells and BRAF inhibitors in BRAF-mutant melanoma cells. We found that there are numerous alternative mitogenic pathways that become activated in both cases, including YAP, STAT3, IGFR1, and phospholipase C (PLC)/protein kinase C (PKC) pathways. Our results suggest that an effective therapeutic strategy to prevent drug tolerance will need to take multiple alternative mitogenic pathways into account rather than focusing on one specific pathway.
Collapse
Affiliation(s)
- Frank V. Celeste
- Graduate Program in Genetics, Stony Brook University, Stony Brook, NY 11794, USA
- Department of Pathology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Scott Powers
- Graduate Program in Genetics, Stony Brook University, Stony Brook, NY 11794, USA
- Department of Pathology, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
57
|
Sunaga N, Miura Y, Masuda T, Sakurai R. Role of Epiregulin in Lung Tumorigenesis and Therapeutic Resistance. Cancers (Basel) 2024; 16:710. [PMID: 38398101 PMCID: PMC10886815 DOI: 10.3390/cancers16040710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/25/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Epidermal growth factor (EGF) signaling regulates multiple cellular processes and plays an essential role in tumorigenesis. Epiregulin (EREG), a member of the EGF family, binds to the epidermal growth factor receptor (EGFR) and ErbB4, and it stimulates EGFR-related downstream pathways. Increasing evidence indicates that both the aberrant expression and oncogenic function of EREG play pivotal roles in tumor development in many human cancers, including non-small cell lung cancer (NSCLC). EREG overexpression is induced by activating mutations in the EGFR, KRAS, and BRAF and contributes to the aggressive phenotypes of NSCLC with oncogenic drivers. Recent studies have elucidated the roles of EREG in a tumor microenvironment, including the epithelial-mesenchymal transition, angiogenesis, immune evasion, and resistance to anticancer therapy. In this review, we summarized the current understanding of EREG as an oncogene and discussed its oncogenic role in lung tumorigenesis and therapeutic resistance.
Collapse
Affiliation(s)
- Noriaki Sunaga
- Department of Respiratory Medicine, Gunma University Graduate School of Medicine, 3-39-15 Showa-Machi, Maebashi 371-8511, Gunma, Japan; (Y.M.); (T.M.)
| | - Yosuke Miura
- Department of Respiratory Medicine, Gunma University Graduate School of Medicine, 3-39-15 Showa-Machi, Maebashi 371-8511, Gunma, Japan; (Y.M.); (T.M.)
| | - Tomomi Masuda
- Department of Respiratory Medicine, Gunma University Graduate School of Medicine, 3-39-15 Showa-Machi, Maebashi 371-8511, Gunma, Japan; (Y.M.); (T.M.)
| | - Reiko Sakurai
- Oncology Center, Gunma University Hospital, 3-39-15 Showa-Machi, Maebashi 371-8511, Gunma, Japan;
| |
Collapse
|
58
|
Zhuo L, Guo M, Zhang S, Wu J, Wang M, Shen Y, Peng X, Wang Z, Jiang W, Huang W. Structure-activity relationship study of 1,6-naphthyridinone derivatives as selective type II AXL inhibitors with potent antitumor efficacy. Eur J Med Chem 2024; 265:116090. [PMID: 38169272 DOI: 10.1016/j.ejmech.2023.116090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/08/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024]
Abstract
The role of AXL in various oncogenic processes has made it an attractive target for cancer therapy. Currently, kinase selectivity profiles, especially circumventing MET inhibition, remain a scientific issue of great interest in the discovery of selective type II AXL inhibitors. Starting from a dual MET/AXL-targeted lead structure from our previous work, we optimized a 1,6-naphthyridinone series using molecular modeling-assisted compound design to improve AXL potency and selectivity over MET, resulting in the potent and selective type II AXL-targeted compound 25c. This showed excellent AXL inhibitory activity (IC50 = 1.1 nM) and 343-fold selectivity over the highly homologous kinase MET in biochemical assays. Moreover, compound 25c significantly inhibited AXL-driven cell proliferation, dose-dependently suppressed 4T1 cell migration and invasion, and induced apoptosis. Compound 25c also showed noticeable antitumor efficacy in a BaF3/TEL-AXL xenograft model at well-tolerated doses. Overall, this study presented a potent and selective type II AXL-targeted lead compound for further drug discovery.
Collapse
Affiliation(s)
- Linsheng Zhuo
- Postdoctoral Station for Basic Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China; School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Mengqin Guo
- School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, 430071, China
| | - Siyi Zhang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Junbo Wu
- Department of Colorectal Surgery, Hengyang Central Hospital, Hengyang, Hunan, 421001, China
| | - Mingshu Wang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Yang Shen
- Postdoctoral Station for Basic Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Xue Peng
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Zhen Wang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Weifan Jiang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Wei Huang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, China.
| |
Collapse
|
59
|
Zhao S, Ma Y, Liu L, Fang J, Ma H, Feng G, Xie B, Zeng S, Chang J, Ren J, Zhang Y, Xi N, Zhuang Y, Jiang Y, Zhang Q, Kang N, Zhang L, Zhao H. Ningetinib plus gefitinib in EGFR-mutant non-small-cell lung cancer with MET and AXL dysregulations: A phase 1b clinical trial and biomarker analysis. Lung Cancer 2024; 188:107468. [PMID: 38181454 DOI: 10.1016/j.lungcan.2024.107468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/26/2023] [Accepted: 01/01/2024] [Indexed: 01/07/2024]
Abstract
BACKGROUND MET and AXL dysregulations are implicated in acquired resistance to EGFR-TKIs in NSCLC. But consensus on the optimal definition for MET/AXL dysregulations in EGFR-mutant NSCLC is lacking. Here, we investigated the efficacy and tolerability of ningetinib (a MET/AXL inhibitor) plus gefitinib in EGFR-mutant NSCLC, and evaluated the clinical relevance of MET/AXL dysregulations by different definitions. METHODS Patients in this phase 1b dose-escalation/dose-expansion trial received ningetinib 30 mg/40 mg/60 mg plus gefitinib 250 mg once daily. Primary endpoints were tolerability (dose-escalation) and objective response rate (dose-expansion). MET/AXL status were analyzed using FISH and IHC. RESULTS Between March 2017 and January 2021, 108 patients were enrolled. The proportion of MET focal amplification, MET polysomy, MET overexpression, AXL amplification and AXL overexpression is 18.1 %, 5.6 %, 55.8 %, 8.1 % and 45.3 %, respectively. 6.8 % patients have concurrent MET amplification and AXL overexpression. ORR is 30.8 % for tumors with MET amplification, 0 % for MET polysomy, 24.1 % for MET overexpression, 20 % for AXL amplification and 27.6 % for AXL overexpression. For patients with concurrent MET amplification and AXL overexpression, ningetinib plus gefitinib provides an ORR of 80 %, DCR of 100 % and median PFS of 4.7 months. Tumors with higher MET copy number and AXL expression tend to have higher likelihood of response. Biomarker analyses show that MET focal amplification and overexpression are complementary in predicting clinical benefit from MET inhibition, while AXL dysregulations defined by an arbitrary level may dilute the efficacy of AXL blockade. CONCLUSIONS This study demonstrates that combined blockade of MET, AXL and EGFR is a feasible strategy for a subset of EGFR-mutant NSCLC. TRIAL REGISTRATION Chinadrugtrials.org.cn, CTR20160875.
Collapse
Affiliation(s)
- Shen Zhao
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yuxiang Ma
- Department of Clinical Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Lianke Liu
- Department of Oncology, Jiangsu Provincial Hospital, Nanjing, China
| | - Jian Fang
- Department of Thoracic Oncology, Beijing Cancer Hospital, Beijing, China
| | - Haiqing Ma
- Department of Oncology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Guosheng Feng
- Department of Oncology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Bo Xie
- Department of Oncology, General Hospital of the PLA South Military Command, PLA, Guangzhou, China
| | - Shan Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Jianhua Chang
- Department of Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Jun Ren
- Department of Oncology, Beijing Shijitan Hospital, Beijing, China
| | | | - Ning Xi
- Sunshine Lake Pharma Co., Ltd, Dongguan, China; Institute of Drug Discovery Technology, Ningbo University, Ningbo, China
| | | | | | - Qi Zhang
- Sunshine Lake Pharma Co., Ltd, Dongguan, China
| | - Ning Kang
- Sunshine Lake Pharma Co., Ltd, Dongguan, China
| | - Li Zhang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.
| | - Hongyun Zhao
- Department of Clinical Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
60
|
Hirai S, Yamada T, Katayama Y, Ishida M, Kawachi H, Matsui Y, Nakamura R, Morimoto K, Horinaka M, Sakai T, Sekido Y, Tokuda S, Takayama K. Effects of Combined Therapeutic Targeting of AXL and ATR on Pleural Mesothelioma Cells. Mol Cancer Ther 2024; 23:212-222. [PMID: 37802502 PMCID: PMC10831449 DOI: 10.1158/1535-7163.mct-23-0138] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 07/12/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023]
Abstract
Few treatment options exist for pleural mesothelioma (PM), which is a progressive malignant tumor. However, the efficacy of molecular-targeted monotherapy is limited, and further therapeutic strategies are warranted to treat PM. Recently, the cancer cell-cycle checkpoint inhibitors have attracted attention because they disrupt cell-cycle regulation. Here, we aimed to establish a novel combinational therapeutic strategy to inhibit the cell-cycle checkpoint kinase, ATR in PM cells. The siRNA screening assay showed that anexelekto (AXL) knockdown enhanced cell growth inhibition when exposed to ATR inhibitors, demonstrating the synergistic effects of the ATR and AXL combination in some PM cells. The AXL and ATR inhibitor combination increased cell apoptosis via the Bim protein and suppressed cell migration when compared with each monotherapy. The combined therapeutic targeting of AXL and ATR significantly delayed regrowth compared with monotherapy. Thus, optimal AXL and ATR inhibition may potentially improve the PM outcome.
Collapse
Affiliation(s)
- Soichi Hirai
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tadaaki Yamada
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yuki Katayama
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masaki Ishida
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hayato Kawachi
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yohei Matsui
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Ryota Nakamura
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kenji Morimoto
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Mano Horinaka
- Department of Drug Discovery Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Toshiyuki Sakai
- Department of Drug Discovery Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yoshitaka Sekido
- Division of Cancer Biology, Aichi Cancer Center Research Institute, Nagoya, Japan
- Division of Molecular and Cellular Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shinsaku Tokuda
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Koichi Takayama
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
61
|
Sealover NE, Theard PT, Hughes JM, Linke AJ, Daley BR, Kortum RL. In situ modeling of acquired resistance to RTK/RAS-pathway-targeted therapies. iScience 2024; 27:108711. [PMID: 38226159 PMCID: PMC10788224 DOI: 10.1016/j.isci.2023.108711] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/31/2023] [Accepted: 12/08/2023] [Indexed: 01/17/2024] Open
Abstract
Intrinsic and acquired resistance limit the window of effectiveness for oncogene-targeted cancer therapies. Here, we describe an in situ resistance assay (ISRA) that reliably models acquired resistance to RTK/RAS-pathway-targeted therapies across cell lines. Using osimertinib resistance in EGFR-mutated lung adenocarcinoma (LUAD) as a model system, we show that acquired osimertinib resistance can be significantly delayed by inhibition of proximal RTK signaling using SHP2 inhibitors. Isolated osimertinib-resistant populations required SHP2 inhibition to resensitize cells to osimertinib and reduce MAPK signaling to block the effects of enhanced activation of multiple parallel RTKs. We additionally modeled resistance to targeted therapies including the KRASG12C inhibitors adagrasib and sotorasib, the MEK inhibitor trametinib, and the farnesyl transferase inhibitor tipifarnib. These studies highlight the tractability of in situ resistance assays to model acquired resistance to targeted therapies and provide a framework for assessing the extent to which synergistic drug combinations can target acquired drug resistance.
Collapse
Affiliation(s)
- Nancy E. Sealover
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Patricia T. Theard
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Jacob M. Hughes
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Amanda J. Linke
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Brianna R. Daley
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Robert L. Kortum
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| |
Collapse
|
62
|
Apostolo D, Ferreira LL, Vincenzi F, Vercellino N, Minisini R, Latini F, Ferrari B, Burlone ME, Pirisi M, Bellan M. From MASH to HCC: the role of Gas6/TAM receptors. Front Immunol 2024; 15:1332818. [PMID: 38298195 PMCID: PMC10827955 DOI: 10.3389/fimmu.2024.1332818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/02/2024] [Indexed: 02/02/2024] Open
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH) is the replacement term for what used to be called nonalcoholic steatohepatitis (NASH). It is characterized by inflammation and injury of the liver in the presence of cardiometabolic risk factors and may eventually result in the development of hepatocellular carcinoma (HCC), the most common form of primary liver cancer. Several pathogenic mechanisms are involved in the transition from MASH to HCC, encompassing metabolic injury, inflammation, immune dysregulation and fibrosis. In this context, Gas6 (Growth Arrest-Specific 6) and TAM (Tyro3, Axl, and MerTK) receptors may play important roles. The Gas6/TAM family is involved in the modulation of inflammation, lipid metabolism, fibrosis, tumor progression and metastasis, processes which play an important role in the pathophysiology of acute and chronic liver diseases. In this review, we discuss MASH-associated HCC and the potential involvement of the Gas6/TAM system in disease development and progression. In addition, since therapeutic strategies for MASH and HCC are limited, we also speculate regarding possible future treatments involving the targeting of Gas6 or TAM receptors.
Collapse
Affiliation(s)
- Daria Apostolo
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Luciana L. Ferreira
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Federica Vincenzi
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Nicole Vercellino
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Rosalba Minisini
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Federico Latini
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Barbara Ferrari
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Michela E. Burlone
- Department of Internal Medicine, Azienda Ospedaliero-Universitaria Maggiore Della Carità, Novara, Italy
| | - Mario Pirisi
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
- Department of Internal Medicine, Azienda Ospedaliero-Universitaria Maggiore Della Carità, Novara, Italy
- Center on Autoimmune and Allergic Diseases, Università del Piemonte Orientale, Novara, Italy
| | - Mattia Bellan
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
- Department of Internal Medicine, Azienda Ospedaliero-Universitaria Maggiore Della Carità, Novara, Italy
- Center on Autoimmune and Allergic Diseases, Università del Piemonte Orientale, Novara, Italy
| |
Collapse
|
63
|
Mohan S, Hakami MA, Dailah HG, Khalid A, Najmi A, Zoghebi K, Halawi MA. The emerging role of noncoding RNAs in the EGFR signaling pathway in lung cancer. Pathol Res Pract 2024; 253:155016. [PMID: 38070221 DOI: 10.1016/j.prp.2023.155016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/02/2023] [Accepted: 12/02/2023] [Indexed: 01/24/2024]
Abstract
Noncoding ribonucleic acids (ncRNAs) have surfaced as essential orchestrators within the intricate system of neoplastic biology. Specifically, the epidermal growth factor receptor (EGFR) signalling cascade shows a central role in the etiological underpinnings of pulmonary carcinoma. Pulmonary malignancy persists as a preeminent contributor to worldwide mortality attributable to malignant neoplasms, with non-small cell lung carcinoma (NSCLC) emerging as the most predominant histopathological subcategory. EGFR is a key driver of NSCLC, and its dysregulation is frequently associated with tumorigenesis, metastasis, and resistance to therapy. Over the past decade, researchers have unveiled a complex network of ncRNAs, encompassing microRNAs, long noncoding RNAs, and circular RNAs, which intricately regulate EGFR signalling. MicroRNAs, as versatile post-transcriptional regulators, have been shown to target various components of the EGFR pathway, influencing cancer cell proliferation, migration, and apoptosis. Additionally, ncRNAs have emerged as critical modulators of EGFR signalling, with their potential to act as scaffolds, decoys, or guides for EGFR-related proteins. Circular RNAs, a relatively recent addition to the ncRNA family, have also been implicated in EGFR signalling regulation. The clinical implications of ncRNAs in EGFR-driven lung cancer are substantial. These molecules exhibit diagnostic potential as robust biomarkers for early cancer detection and personalized treatment. Furthermore, their predictive value extends to predicting disease progression and therapeutic outcomes. Targeting ncRNAs in the EGFR pathway represents a novel therapeutic approach with promising results in preclinical and early clinical studies. This review explores the increasing evidence supporting the significant role of ncRNAs in modulating EGFR signalling in lung cancer, shedding light on their potential diagnostic, prognostic, and therapeutic implications.
Collapse
Affiliation(s)
- Syam Mohan
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan 45142, Saudi Arabia; School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India; Center for Global health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India.
| | - Mohammed Ageeli Hakami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al-Quwayiyah, Shaqra University, Riyadh, Saudi Arabia
| | - Hamad Ghaleb Dailah
- Research and Scientific Studies Unit, College of Nursing, Jazan University, Jazan 45142, Saudi Arabia
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan 45142, Saudi Arabia
| | - Asim Najmi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Khalid Zoghebi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Maryam A Halawi
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| |
Collapse
|
64
|
Kondo N, Utsumi T, Shimizu Y, Takemoto A, Oh-hara T, Uchibori K, Subat-Motoshi S, Ninomiya H, Takeuchi K, Nishio M, Miyazaki Y, Katayama R. MIG6 loss confers resistance to ALK/ROS1 inhibitors in NSCLC through EGFR activation by low-dose EGF. JCI Insight 2023; 8:e173688. [PMID: 37917191 PMCID: PMC10807714 DOI: 10.1172/jci.insight.173688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/31/2023] [Indexed: 11/04/2023] Open
Abstract
Although tyrosine kinase inhibitor (TKI) therapy shows marked clinical efficacy in patients with anaplastic lymphoma kinase-positive (ALK+) and ROS proto-oncogene 1-positive (ROS1+) non-small cell lung cancer (NSCLC), most of these patients eventually relapse with acquired resistance. Therefore, genome-wide CRISPR/Cas9 knockout screening was performed using an ALK+ NSCLC cell line established from pleural effusion without ALK-TKI treatment. After 9 days of ALK-TKI therapy, sequencing analysis was performed, which identified several tumor suppressor genes, such as NF2 or MED12, and multiple candidate genes. Among them, this study focused on ERRFI1, which is known as MIG6 and negatively regulates EGFR signaling. Interestingly, MIG6 loss induced resistance to ALK-TKIs by treatment with quite a low dose of EGF, which is equivalent to plasma concentration, through the upregulation of MAPK and PI3K/AKT/mTOR pathways. Combination therapy with ALK-TKIs and anti-EGFR antibodies could overcome the acquired resistance in both in vivo and in vitro models. In addition, this verified that MIG6 loss induces resistance to ROS1-TKIs in ROS1+ cell lines. This study found a potentially novel factor that plays a role in ALK and ROS1-TKI resistance by activating the EGFR pathway with low-dose ligands.
Collapse
Affiliation(s)
- Nobuyuki Kondo
- Division of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan
- Department of Respiratory Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takahiro Utsumi
- Division of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuki Shimizu
- Division of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan
- Department of Computational Biology and Medical Science, Graduate School of Frontier Science, The University of Tokyo, Tokyo, Japan
| | - Ai Takemoto
- Division of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan
| | - Tomoko Oh-hara
- Division of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan
| | - Ken Uchibori
- Department of Thoracic Medical Oncology, the Cancer Institute Hospital
| | - Sophia Subat-Motoshi
- Department of Pathology, the Cancer Institute Hospital, and
- Pathology Project for Molecular Targets, Cancer Institute, JFCR, Tokyo, Japan
| | | | - Kengo Takeuchi
- Department of Pathology, the Cancer Institute Hospital, and
- Pathology Project for Molecular Targets, Cancer Institute, JFCR, Tokyo, Japan
| | - Makoto Nishio
- Department of Thoracic Medical Oncology, the Cancer Institute Hospital
| | - Yasunari Miyazaki
- Department of Respiratory Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ryohei Katayama
- Division of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan
- Department of Computational Biology and Medical Science, Graduate School of Frontier Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
65
|
Adam-Artigues A, Arenas EJ, Arribas J, Prat A, Cejalvo JM. AXL - a new player in resistance to HER2 blockade. Cancer Treat Rev 2023; 121:102639. [PMID: 37864955 DOI: 10.1016/j.ctrv.2023.102639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/03/2023] [Accepted: 10/06/2023] [Indexed: 10/23/2023]
Abstract
HER2 is a driver in solid tumors, mainly breast, oesophageal and gastric cancer, through activation of oncogenic signaling pathways such as PI3K or MAPK. HER2 overexpression associates with aggressive disease and poor prognosis. Despite targeted anti-HER2 therapy has improved outcomes and is the current standard of care, resistance emerge in some patients, requiring additional therapeutic strategies. Several mechanisms, including the upregulation of receptors tyrosine kinases such as AXL, are involved in resistance. AXL signaling leads to cancer cell proliferation, survival, migration, invasion and angiogenesis and correlates with poor prognosis. In addition, AXL overexpression accompanied by a mesenchymal phenotype result in resistance to chemotherapy and targeted therapies. Preclinical studies show that AXL drives anti-HER2 resistance and metastasis through dimerization with HER2 and activation of downstream pathways in breast cancer. Moreover, AXL inhibition restores response to HER2 blockade in vitro and in vivo. Limited data in gastric and oesophageal cancer also support these evidences. Furthermore, AXL shows a strong value as a prognostic and predictive biomarker in HER2+ breast cancer patients, adding a remarkable translational relevance. Therefore, current studies enforce the potential of co-targeting AXL and HER2 to overcome resistance and supports the use of AXL inhibitors in the clinic.
Collapse
Affiliation(s)
| | - Enrique J Arenas
- Josep Carreras Leukaemia Research Institute, Spain; Center for Biomedical Network Research on Cancer (CIBERONC), Spain.
| | - Joaquín Arribas
- Center for Biomedical Network Research on Cancer (CIBERONC), Spain; Preclinical Research Program, Vall d'Hebron Institute of Oncology (VHIO), Spain; Cancer Research Program, IMIM (Hospital del Mar Medical Research Institute), Spain; Department of Biochemistry and Molecular Biology, Universitat Autónoma de Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Spain.
| | - Aleix Prat
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Spain; Department of Medical Oncology, Hospital Clínic de Barcelona, Spain; SOLTI Breast Cancer Research Group, Spain.
| | - Juan Miguel Cejalvo
- INCLIVA Biomedical Research Institute, Spain; Preclinical Research Program, Vall d'Hebron Institute of Oncology (VHIO), Spain; Department of Medical Oncology, Hospital Clínico Universitario de València, Spain.
| |
Collapse
|
66
|
Daley BR, Vieira HM, Rao C, Hughes JM, Beckley ZM, Huisman DH, Chatterjee D, Sealover NE, Cox K, Askew JW, Svoboda RA, Fisher KW, Lewis RE, Kortum RL. SOS1 and KSR1 modulate MEK inhibitor responsiveness to target resistant cell populations based on PI3K and KRAS mutation status. Proc Natl Acad Sci U S A 2023; 120:e2313137120. [PMID: 37972068 PMCID: PMC10666034 DOI: 10.1073/pnas.2313137120] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/20/2023] [Indexed: 11/19/2023] Open
Abstract
KRAS is the most commonly mutated oncogene. Targeted therapies have been developed against mediators of key downstream signaling pathways, predominantly components of the RAF/MEK/ERK kinase cascade. Unfortunately, single-agent efficacy of these agents is limited both by intrinsic and acquired resistance. Survival of drug-tolerant persister cells within the heterogeneous tumor population and/or acquired mutations that reactivate receptor tyrosine kinase (RTK)/RAS signaling can lead to outgrowth of tumor-initiating cells (TICs) and drive therapeutic resistance. Here, we show that targeting the key RTK/RAS pathway signaling intermediates SOS1 (Son of Sevenless 1) or KSR1 (Kinase Suppressor of RAS 1) both enhances the efficacy of, and prevents resistance to, the MEK inhibitor trametinib in KRAS-mutated lung (LUAD) and colorectal (COAD) adenocarcinoma cell lines depending on the specific mutational landscape. The SOS1 inhibitor BI-3406 enhanced the efficacy of trametinib and prevented trametinib resistance by targeting spheroid-initiating cells in KRASG12/G13-mutated LUAD and COAD cell lines that lacked PIK3CA comutations. Cell lines with KRASQ61 and/or PIK3CA mutations were insensitive to trametinib and BI-3406 combination therapy. In contrast, deletion of the RAF/MEK/ERK scaffold protein KSR1 prevented drug-induced SIC upregulation and restored trametinib sensitivity across all tested KRAS mutant cell lines in both PIK3CA-mutated and PIK3CA wild-type cancers. Our findings demonstrate that vertical inhibition of RTK/RAS signaling is an effective strategy to prevent therapeutic resistance in KRAS-mutated cancers, but therapeutic efficacy is dependent on both the specific KRAS mutant and underlying comutations. Thus, selection of optimal therapeutic combinations in KRAS-mutated cancers will require a detailed understanding of functional dependencies imposed by allele-specific KRAS mutations.
Collapse
Affiliation(s)
- Brianna R. Daley
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD20814
| | - Heidi M. Vieira
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE68198
| | - Chaitra Rao
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE68198
| | - Jacob M. Hughes
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD20814
| | - Zaria M. Beckley
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD20814
| | - Dianna H. Huisman
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE68198
| | - Deepan Chatterjee
- Department of Integrative Physiology and Molecular Medicine, University of Nebraska Medical Center, Omaha, NE68198
| | - Nancy E. Sealover
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD20814
| | - Katherine Cox
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD20814
| | - James W. Askew
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE68198
| | - Robert A. Svoboda
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE68198
| | - Kurt W. Fisher
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE68198
| | - Robert E. Lewis
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE68198
| | - Robert L. Kortum
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD20814
| |
Collapse
|
67
|
Ando C, Ichihara E, Nishi T, Morita A, Hara N, Takada K, Nakasuka T, Watanabe H, Kano H, Nishii K, Makimoto G, Kondo T, Ninomiya K, Fujii M, Kubo T, Ohashi K, Matsuoka K, Hotta K, Tabata M, Maeda Y, Kiura K. Efficacy of gilteritinib in comparison with alectinib for the treatment of ALK-rearranged non-small cell lung cancer. Cancer Sci 2023; 114:4343-4354. [PMID: 37715310 PMCID: PMC10637052 DOI: 10.1111/cas.15958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 09/17/2023] Open
Abstract
Gilteritinib is a multitarget tyrosine kinase inhibitor (TKI), approved for the treatment of FLT3-mutant acute myeloid leukemia, with a broad range of activity against several tyrosine kinases including anaplastic lymphoma kinase (ALK). This study investigated the efficacy of gilteritinib against ALK-rearranged non-small cell lung cancers (NSCLC). To this end, we assessed the effects of gilteritinib on cell proliferation, apoptosis, and acquired resistance responses in several ALK-rearranged NSCLC cell lines and mouse xenograft tumor models and compared its efficacy to alectinib, a standard ALK inhibitor. Gilteritinib was significantly more potent than alectinib, as it inhibited cell proliferation at a lower dose, with complete attenuation of growth observed in several ALK-rearranged NSCLC cell lines and no development of drug tolerance. Immunoblotting showed that gilteritinib strongly suppressed phosphorylated ALK and its downstream effectors, as well as mesenchymal-epithelial transition factor (MET) signaling. By comparison, MET signaling was enhanced in alectinib-treated cells. Furthermore, gilteritinib was found to more effectively abolish growth of ALK-rearranged NSCLC xenograft tumors, many of which completely receded. Interleukin-15 (IL-15) mRNA levels were elevated in gilteritinib-treated cells, together with a concomitant increase in the infiltration of tumors by natural killer (NK) cells, as assessed by immunohistochemistry. This suggests that IL-15 production along with NK cell infiltration may constitute components of the gilteritinib-mediated antitumor responses in ALK-rearranged NSCLCs. In conclusion, gilteritinib demonstrated significantly improved antitumor efficacy compared with alectinib against ALK-rearranged NSCLC cells, which can warrant its candidacy for use in anticancer regimens, after further examination in clinical trial settings.
Collapse
Affiliation(s)
- Chihiro Ando
- Department of Hematology, Oncology and Respiratory MedicineOkayama University Graduate School of Medicine, Dentistry, and Pharmaceutical SciencesOkayamaJapan
| | - Eiki Ichihara
- Department of Allergy and Respiratory MedicineOkayama University HospitalOkayamaJapan
| | - Tatsuya Nishi
- Department of Hematology, Oncology and Respiratory MedicineOkayama University Graduate School of Medicine, Dentistry, and Pharmaceutical SciencesOkayamaJapan
| | - Ayako Morita
- Department of Hematology, Oncology and Respiratory MedicineOkayama University Graduate School of Medicine, Dentistry, and Pharmaceutical SciencesOkayamaJapan
| | - Naofumi Hara
- Department of Hematology, Oncology and Respiratory MedicineOkayama University Graduate School of Medicine, Dentistry, and Pharmaceutical SciencesOkayamaJapan
| | - Kenji Takada
- Department of Hematology, Oncology and Respiratory MedicineOkayama University Graduate School of Medicine, Dentistry, and Pharmaceutical SciencesOkayamaJapan
| | - Takamasa Nakasuka
- Department of Hematology, Oncology and Respiratory MedicineOkayama University Graduate School of Medicine, Dentistry, and Pharmaceutical SciencesOkayamaJapan
| | - Hiromi Watanabe
- Department of Hematology, Oncology and Respiratory MedicineOkayama University Graduate School of Medicine, Dentistry, and Pharmaceutical SciencesOkayamaJapan
| | - Hirohisa Kano
- Department of Hematology, Oncology and Respiratory MedicineOkayama University Graduate School of Medicine, Dentistry, and Pharmaceutical SciencesOkayamaJapan
| | - Kazuya Nishii
- Department of Hematology, Oncology and Respiratory MedicineOkayama University Graduate School of Medicine, Dentistry, and Pharmaceutical SciencesOkayamaJapan
| | - Go Makimoto
- Center for Clinical OncologyOkayama University HospitalOkayamaJapan
| | - Takumi Kondo
- Department of Hematology and OncologyOkayama University HospitalOkayamaJapan
| | - Kiichiro Ninomiya
- Department of Allergy and Respiratory MedicineOkayama University HospitalOkayamaJapan
| | - Masanori Fujii
- Department of Allergy and Respiratory MedicineOkayama University HospitalOkayamaJapan
| | - Toshio Kubo
- Department of Allergy and Respiratory MedicineOkayama University HospitalOkayamaJapan
| | - Kadoaki Ohashi
- Department of Allergy and Respiratory MedicineOkayama University HospitalOkayamaJapan
| | - Ken‐ichi Matsuoka
- Department of Hematology, Oncology and Respiratory MedicineOkayama University Graduate School of Medicine, Dentistry, and Pharmaceutical SciencesOkayamaJapan
| | - Katsuyuki Hotta
- Center for Innovative Clinical MedicineOkayama University HospitalOkayamaJapan
| | - Masahiro Tabata
- Center for Clinical OncologyOkayama University HospitalOkayamaJapan
| | - Yoshinobu Maeda
- Department of Hematology, Oncology and Respiratory MedicineOkayama University Graduate School of Medicine, Dentistry, and Pharmaceutical SciencesOkayamaJapan
| | - Katsuyuki Kiura
- Department of Allergy and Respiratory MedicineOkayama University HospitalOkayamaJapan
| |
Collapse
|
68
|
Qiu H, Shao Z, Wen X, Liu Z, Chen Z, Qu D, Ding X, Zhang L. Efferocytosis: An accomplice of cancer immune escape. Biomed Pharmacother 2023; 167:115540. [PMID: 37741255 DOI: 10.1016/j.biopha.2023.115540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/13/2023] [Accepted: 09/17/2023] [Indexed: 09/25/2023] Open
Abstract
The clearance of apoptotic cells by efferocytes such as macrophages and dendritic cells is termed as "efferocytosis", it plays critical roles in maintaining tissue homeostasis in multicellular organisms. Currently, available studies indicate that efferocytosis-related molecules and pathways are tightly associated with cancer development, metastasis and treatment resistance, efferocytosis also induces an immunosuppressive tumor microenvironment and assists cancer cells escape from immune surveillance. In this study, we reviewed the underlying mechanisms of efferocytosis in mediating the occurrence of cancer immune escape, and then emphatically summarized the strategies of using efferocytosis as therapeutic target to enhance the anti-tumor efficacies of immune checkpoint inhibitors, hoping to provide powerful evidences for more effective therapeutic regimens of malignant tumors.
Collapse
Affiliation(s)
- Hui Qiu
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhiying Shao
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xin Wen
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhengyang Liu
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ziqin Chen
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Debao Qu
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xin Ding
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Longzhen Zhang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
69
|
Peters TL, Chen N, Tyler LC, Le AT, Dimou A, Doebele RC. Intrinsic resistance to ROS1 inhibition in a patient with CD74-ROS1 mediated by AXL overexpression. Thorac Cancer 2023; 14:3259-3265. [PMID: 37727007 PMCID: PMC10665781 DOI: 10.1111/1759-7714.15116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/21/2023] Open
Abstract
BACKGROUND The vast majority of patients with ROS1 positive non-small cell lung cancer (NSCLC) derive clinical benefit from currently approved ROS1 therapies, including crizotinib and entrectinib. However, a small proportion of patients treated with ROS1 inhibitors fail to derive any clinical benefit and demonstrate rapid disease progression. The biological mechanisms underpinning intrinsic resistance remain poorly understood for oncogene-driven cancers. METHODS We generated a patient-derived cell line, CUTO33, from a ROS1 therapy naive patient with CD74-ROS1+ NSCLC, who ultimately did not respond to a ROS1 inhibitor. We evaluated a panel of ROS1+ patient-derived NSCLC cell lines and used cell-based assays to determine the mechanism of intrinsic resistance to ROS1 therapy. RESULTS The CUTO33 cell line expressed the CD74-ROS1 gene fusion at the RNA and protein level. The ROS1 fusion protein was phosphorylated at baseline consistent with the known intrinsic activity of this oncogene. ROS1 phosphorylation could be inhibited using a wide array of ROS1 inhibitors, however these inhibitors did not block cell proliferation, confirming intrinsic resistance in this model and consistent with the patient's lack of response to a ROS1 inhibitor. CUTO33 expressed high levels of AXL, which has been associated with drug resistance. Combination of an AXL inhibitor or AXL knockdown with a ROS1 inhibitor partially reversed resistance. CONCLUSIONS In summary, we demonstrate that AXL overexpression is a mechanism of intrinsic resistance to ROS1 inhibitors.
Collapse
Affiliation(s)
| | - Nan Chen
- Division of Medical OncologyUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | | | - Anh T. Le
- Cell Technologies Shared ResourcesUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Anastasios Dimou
- Division of Medical OncologyMayo Clinic College of MedicineRochesterMinnesotaUSA
| | - Robert C. Doebele
- Division of Medical OncologyUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| |
Collapse
|
70
|
Zhang Y. Targeting Epidermal Growth Factor Receptor for Cancer Treatment: Abolishing Both Kinase-Dependent and Kinase-Independent Functions of the Receptor. Pharmacol Rev 2023; 75:1218-1232. [PMID: 37339882 PMCID: PMC10595022 DOI: 10.1124/pharmrev.123.000906] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/11/2023] [Accepted: 06/13/2023] [Indexed: 06/22/2023] Open
Abstract
Epidermal growth factor receptor (EGFR), a receptor tyrosine kinase, is activated by ligand binding, overexpression, or mutation. It is well known for its tyrosine kinase-dependent oncogenic activities in a variety of human cancers. A large number of EGFR inhibitors have been developed for cancer treatment, including monoclonal antibodies, tyrosine kinase inhibitors, and a vaccine. The EGFR inhibitors are aimed at inhibiting the activation or the activity of EGFR tyrosine kinase. However, these agents have shown efficacy in only a few types of cancers. Drug resistance, both intrinsic and acquired, is common even in cancers where the inhibitors have shown efficacy. The drug resistance mechanism is complex and not fully known. The key vulnerability of cancer cells that are resistant to EGFR inhibitors has not been identified. Nevertheless, it has been increasingly recognized in recent years that EGFR also possesses kinase-independent oncogenic functions and that these noncanonical functions may play a crucial role in cancer resistance to EGFR inhibitors. In this review, both kinase-dependent and -independent activities of EGFR are discussed. Also discussed are the mechanisms of actions and therapeutic activities of clinically used EGFR inhibitors and sustained EGFR overexpression and EGFR interaction with other receptor tyrosine kinases to counter the EGFR inhibitors. Moreover, this review discusses emerging experimental therapeutics that have shown potential for overcoming the limitation of the current EGFR inhibitors in preclinical studies. The findings underscore the importance and feasibility of targeting both kinase-dependent and -independent functions of EGFR to enhance therapeutic efficacy and minimize drug resistance. SIGNIFICANCE STATEMENT: EGFR is a major oncogenic driver and therapeutic target, but cancer resistance to current EGFR inhibitors remains a significant unmet clinical problem. This article reviews the cancer biology of EGFR as well as the mechanisms of actions and the therapeutic efficacies of current and emerging EGFR inhibitors. The findings could potentially lead to development of more effective treatments for EGFR-positive cancers.
Collapse
Affiliation(s)
- Yuesheng Zhang
- Department of Pharmacology and Toxicology, School of Medicine, and Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
71
|
Furugaki K, Fujimura T, Mizuta H, Yoshimoto T, Asakawa T, Yoshimura Y, Yoshiura S. FGFR blockade inhibits targeted therapy-tolerant persister in basal FGFR1- and FGF2-high cancers with driver oncogenes. NPJ Precis Oncol 2023; 7:107. [PMID: 37880373 PMCID: PMC10600219 DOI: 10.1038/s41698-023-00462-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 10/06/2023] [Indexed: 10/27/2023] Open
Abstract
Cancer cell resistance arises when tyrosine kinase inhibitor (TKI)-targeted therapies induce a drug-tolerant persister (DTP) state with growth via genetic aberrations, making DTP cells potential therapeutic targets. We screened an anti-cancer compound library and identified fibroblast growth factor receptor 1 (FGFR1) promoting alectinib-induced anaplastic lymphoma kinase (ALK) fusion-positive DTP cell's survival. FGFR1 signaling promoted DTP cell survival generated from basal FGFR1- and fibroblast growth factor 2 (FGF2)-high protein expressing cells, following alectinib treatment, which is blocked by FGFR inhibition. The hazard ratio for progression-free survival of ALK-TKIs increased in patients with ALK fusion-positive non-small cell lung cancer with FGFR1- and FGF2-high mRNA expression at baseline. The combination of FGFR and targeted TKIs enhanced cell growth inhibition and apoptosis induction in basal FGFR1- and FGF2-high protein expressing cells with ALK-rearranged and epidermal growth factor receptor (EGFR)-mutated NSCLC, human epidermal growth factor receptor 2 (HER2)-amplified breast cancer, or v-raf murine sarcoma viral oncogene homolog B1 (BRAF)-mutated melanoma by preventing compensatory extracellular signal-regulated kinase (ERK) reactivation. These results suggest that a targeted TKI-induced DTP state results from an oncogenic switch from activated oncogenic driver signaling to the FGFR1 pathway in basal FGFR1- and FGF2-high expressing cancers and initial dual blockade of FGFR and driver oncogenes based on FGFR1 and FGF2 expression levels at baseline is a potent treatment strategy to prevent acquired drug resistance to targeted TKIs through DTP cells regardless of types of driver oncogenes.
Collapse
Affiliation(s)
- Koh Furugaki
- Product Research Department, Chugai Pharmaceutical Co., Ltd., 216 Totsuka-cho, Totsuka-ku, Kanagawa, 244-8602, Japan
| | - Takaaki Fujimura
- Product Research Department, Chugai Pharmaceutical Co., Ltd., 216 Totsuka-cho, Totsuka-ku, Kanagawa, 244-8602, Japan
| | - Hayato Mizuta
- Product Research Department, Chugai Pharmaceutical Co., Ltd., 216 Totsuka-cho, Totsuka-ku, Kanagawa, 244-8602, Japan
| | - Takuya Yoshimoto
- Biometrics Department, Chugai Pharmaceutical Co., Ltd., 2-1-1 Nihonbashi-muromachi, Chuo-ku, Tokyo, 103-8324, Japan
| | - Takashi Asakawa
- Biometrics Department, Chugai Pharmaceutical Co., Ltd., 2-1-1 Nihonbashi-muromachi, Chuo-ku, Tokyo, 103-8324, Japan
| | - Yasushi Yoshimura
- Product Research Department, Chugai Pharmaceutical Co., Ltd., 216 Totsuka-cho, Totsuka-ku, Kanagawa, 244-8602, Japan
| | - Shigeki Yoshiura
- Product Research Department, Chugai Pharmaceutical Co., Ltd., 216 Totsuka-cho, Totsuka-ku, Kanagawa, 244-8602, Japan.
| |
Collapse
|
72
|
Marrocco I, Yarden Y. Resistance of Lung Cancer to EGFR-Specific Kinase Inhibitors: Activation of Bypass Pathways and Endogenous Mutators. Cancers (Basel) 2023; 15:5009. [PMID: 37894376 PMCID: PMC10605519 DOI: 10.3390/cancers15205009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/03/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Epidermal growth factor receptor (EGFR)-specific tyrosine kinase inhibitors (TKIs) have changed the landscape of lung cancer therapy. For patients who are treated with the new TKIs, the current median survival exceeds 3 years, substantially better than the average 20 month survival rate only a decade ago. Unfortunately, despite initial efficacy, nearly all treated patients evolve drug resistance due to the emergence of either new mutations or rewired signaling pathways that engage other receptor tyrosine kinases (RTKs), such as MET, HER3 and AXL. Apparently, the emergence of mutations is preceded by a phase of epigenetic alterations that finely regulate the cell cycle, bias a mesenchymal phenotype and activate antioxidants. Concomitantly, cells that evade TKI-induced apoptosis (i.e., drug-tolerant persister cells) activate an intrinsic mutagenic program reminiscent of the SOS system deployed when bacteria are exposed to antibiotics. This mammalian system imbalances the purine-to-pyrimidine ratio, inhibits DNA repair and boosts expression of mutation-prone DNA polymerases. Thus, the net outcome of the SOS response is a greater probability to evolve new mutations. Deeper understanding of the persister-to-resister transformation, along with the development of next-generation TKIs, EGFR-specific proteolysis targeting chimeras (PROTACs), as well as bispecific antibodies, will permit delaying the onset of relapses and prolonging survival of patients with EGFR+ lung cancer.
Collapse
Affiliation(s)
- Ilaria Marrocco
- Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Yosef Yarden
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
73
|
Yang YY, Lin SC, Lay JD, Cho CY, Jang TH, Ku HY, Yao CJ, Chuang SE. Intervention of AXL in EGFR Signaling via Phosphorylation and Stabilization of MIG6 in Non-Small Cell Lung Cancer. Int J Mol Sci 2023; 24:14879. [PMID: 37834326 PMCID: PMC10573631 DOI: 10.3390/ijms241914879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/26/2023] [Accepted: 10/01/2023] [Indexed: 10/15/2023] Open
Abstract
About 80% of lung cancer patients are diagnosed with non-small cell lung cancer (NSCLC). EGFR mutation and overexpression are common in NSCLC, thus making EGFR signaling a key target for therapy. While EGFR kinase inhibitors (EGFR-TKIs) are widely used and efficacious in treatment, increases in resistance and tumor recurrence with alternative survival pathway activation, such as that of AXL and MET, occur frequently. AXL is one of the EMT (epithelial-mesenchymal transition) signature genes, and EMT morphological changes are also responsible for EGFR-TKI resistance. MIG6 is a negative regulator of ERBB signaling and has been reported to be positively correlated with EGFR-TKI resistance, and downregulation of MIG6 by miR-200 enhances EMT transition. While MIG6 and AXL are both correlated with EMT and EGFR signaling pathways, how AXL, MIG6 and EGFR interplay in lung cancer remains elusive. Correlations between AXL and MIG6 expression were analyzed using Oncomine or the CCLE. A luciferase reporter assay was used for determining MIG6 promoter activity. Ectopic overexpression, RNA interference, Western blot analysis, qRT-PCR, a proximity ligation assay and a coimmunoprecipitation assay were performed to analyze the effects of certain gene expressions on protein-protein interaction and to explore the underlying mechanisms. An in vitro kinase assay and LC-MS/MS were utilized to determine the phosphorylation sites of AXL. In this study, we demonstrate that MIG6 is a novel substrate of AXL and is stabilized upon phosphorylation at Y310 and Y394/395 by AXL. This study reveals a connection between MIG6 and AXL in lung cancer. AXL phosphorylates and stabilizes MIG6 protein, and in this way EGFR signaling may be modulated. This study may provide new insights into the EGFR regulatory network and may help to advance cancer treatment.
Collapse
Affiliation(s)
- Ya-Yu Yang
- National Institute of Cancer Research, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli 35053, Taiwan; (Y.-Y.Y.); (S.-C.L.); (C.-Y.C.); (T.-H.J.); (H.-Y.K.)
| | - Sheng-Chieh Lin
- National Institute of Cancer Research, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli 35053, Taiwan; (Y.-Y.Y.); (S.-C.L.); (C.-Y.C.); (T.-H.J.); (H.-Y.K.)
| | - Jong-Ding Lay
- Department of Nursing, National Taichung University of Science and Technology, Taichung 40343, Taiwan;
| | - Chun-Yu Cho
- National Institute of Cancer Research, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli 35053, Taiwan; (Y.-Y.Y.); (S.-C.L.); (C.-Y.C.); (T.-H.J.); (H.-Y.K.)
| | - Te-Hsuan Jang
- National Institute of Cancer Research, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli 35053, Taiwan; (Y.-Y.Y.); (S.-C.L.); (C.-Y.C.); (T.-H.J.); (H.-Y.K.)
- Institute of Molecular Medicine, College of Life Science, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Hsiu-Ying Ku
- National Institute of Cancer Research, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli 35053, Taiwan; (Y.-Y.Y.); (S.-C.L.); (C.-Y.C.); (T.-H.J.); (H.-Y.K.)
| | - Chih-Jung Yao
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
- Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
| | - Shuang-En Chuang
- National Institute of Cancer Research, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli 35053, Taiwan; (Y.-Y.Y.); (S.-C.L.); (C.-Y.C.); (T.-H.J.); (H.-Y.K.)
| |
Collapse
|
74
|
Hoe HJ, Balasubramanian A, John T. LASERing FLAURAL Arrangements in Asian EGFR Subsets. J Thorac Oncol 2023; 18:1261-1264. [PMID: 37702632 DOI: 10.1016/j.jtho.2023.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 07/10/2023] [Indexed: 09/14/2023]
Affiliation(s)
- Hui Jing Hoe
- Department of Thoracic Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Adithya Balasubramanian
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Thomas John
- Department of Thoracic Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia.
| |
Collapse
|
75
|
Gohlke L, Alahdab A, Oberhofer A, Worf K, Holdenrieder S, Michaelis M, Cinatl J, Ritter CA. Loss of Key EMT-Regulating miRNAs Highlight the Role of ZEB1 in EGFR Tyrosine Kinase Inhibitor-Resistant NSCLC. Int J Mol Sci 2023; 24:14742. [PMID: 37834189 PMCID: PMC10573279 DOI: 10.3390/ijms241914742] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Despite recent advances in the treatment of non-small cell lung cancer (NSCLC), acquired drug resistance to targeted therapy remains a major obstacle. Epithelial-mesenchymal transition (EMT) has been identified as a key resistance mechanism in NSCLC. Here, we investigated the mechanistic role of key EMT-regulating small non-coding microRNAs (miRNAs) in sublines of the NSCLC cell line HCC4006 adapted to afatinib, erlotinib, gefitinib, or osimertinib. The most differentially expressed miRNAs derived from extracellular vesicles were associated with EMT, and their predicted target ZEB1 was significantly overexpressed in all resistant cell lines. Transfection of a miR-205-5p mimic partially reversed EMT by inhibiting ZEB1, restoring CDH1 expression, and inhibiting migration in erlotinib-resistant cells. Gene expression of EMT-markers, transcription factors, and miRNAs were correlated during stepwise osimertinib adaptation of HCC4006 cells. Temporally relieving cells of osimertinib reversed transition trends, suggesting that the implementation of treatment pauses could provide prolonged benefits for patients. Our results provide new insights into the contribution of miRNAs to drug-resistant NSCLC harboring EGFR-activating mutations and highlight their role as potential biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Linus Gohlke
- Institute of Pharmacy, Clinical Pharmacy, University Greifswald, Friedrich-Ludwig-Jahn-Str. 17, 17489 Greifswald, Germany;
| | - Ahmad Alahdab
- Institute of Pharmacy, Clinical Pharmacy, University Greifswald, Friedrich-Ludwig-Jahn-Str. 17, 17489 Greifswald, Germany;
| | - Angela Oberhofer
- Munich Biomarker Research Center, Institute of Laboratory Medicine, German Heart Center, Technical University Munich, 80636 Munich, Germany; (A.O.); (K.W.); (S.H.)
| | - Karolina Worf
- Munich Biomarker Research Center, Institute of Laboratory Medicine, German Heart Center, Technical University Munich, 80636 Munich, Germany; (A.O.); (K.W.); (S.H.)
| | - Stefan Holdenrieder
- Munich Biomarker Research Center, Institute of Laboratory Medicine, German Heart Center, Technical University Munich, 80636 Munich, Germany; (A.O.); (K.W.); (S.H.)
| | - Martin Michaelis
- School of Biosciences, Division of Natural Sciences, University of Kent, Canterbury, Kent CT2 7NJ, UK;
| | - Jindrich Cinatl
- Institute of Medical Virology, University Hospital Frankfurt, Goethe University, 60596 Frankfurt am Main, Germany;
| | - Christoph A Ritter
- Institute of Pharmacy, Clinical Pharmacy, University Greifswald, Friedrich-Ludwig-Jahn-Str. 17, 17489 Greifswald, Germany;
| |
Collapse
|
76
|
Blaquier JB, Ortiz-Cuaran S, Ricciuti B, Mezquita L, Cardona AF, Recondo G. Tackling Osimertinib Resistance in EGFR-Mutant Non-Small Cell Lung Cancer. Clin Cancer Res 2023; 29:3579-3591. [PMID: 37093192 DOI: 10.1158/1078-0432.ccr-22-1912] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/11/2023] [Accepted: 04/12/2023] [Indexed: 04/25/2023]
Abstract
The current landscape of targeted therapies directed against oncogenic driver alterations in non-small cell lung cancer (NSCLC) is expanding. Patients with EGFR-mutant NSCLC can derive significant benefit from EGFR tyrosine kinase inhibitor (TKI) therapy, including the third-generation EGFR TKI osimertinib. However, invariably, all patients will experience disease progression with this therapy mainly due to the adaptation of cancer cells through primary or secondary molecular mechanisms of resistance. The comprehension and access to tissue and cell-free DNA next-generation sequencing have fueled the development of innovative therapeutic strategies to prevent and overcome resistance to osimertinib in the clinical setting. Herein, we review the biological and clinical implications of molecular mechanisms of osimertinib resistance and the ongoing development of therapeutic strategies to overcome or prevent resistance.
Collapse
Affiliation(s)
- Juan Bautista Blaquier
- Thoracic Oncology Unit, Medical Oncology, Center for Medical Education and Clinical Research (CEMIC), Buenos Aires, Argentina
| | - Sandra Ortiz-Cuaran
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, Lyon, France
| | - Biagio Ricciuti
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Laura Mezquita
- Laboratory of Translational Genomics and Targeted Therapies in Solid Tumors, Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Barcelona, Spain
- Medical Oncology Department, Hospital Clinic of Barcelona, Barcelona, Spain
- Department of Medicine, University of Barcelona, Barcelona, Spain
| | - Andrés Felipe Cardona
- Foundation for Clinical and Applied Cancer Research-FICMAC, Bogotá, Colombia
- Molecular Oncology and Biology Systems Research Group (Fox-G), Universidad el Bosque, Bogotá, Colombia
- Direction of Research and Education, Luis Carlos Sarmiento Angulo Cancer Treatment and Research Cancer-CTIC, Bogotá, Colombia
| | - Gonzalo Recondo
- Thoracic Oncology Unit, Medical Oncology, Center for Medical Education and Clinical Research (CEMIC), Buenos Aires, Argentina
- Medical Oncology Department, Bradford Hill Clinical Research Center, Santiago, Chile
| |
Collapse
|
77
|
Breitenecker K, Hedrich V, Pupp F, Chen D, Řezníčková E, Ortmayr G, Huber H, Weber G, Balcar L, Pinter M, Mikulits W. Synergism of the receptor tyrosine kinase Axl with ErbB receptors mediates resistance to regorafenib in hepatocellular carcinoma. Front Oncol 2023; 13:1238883. [PMID: 37746265 PMCID: PMC10514905 DOI: 10.3389/fonc.2023.1238883] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/22/2023] [Indexed: 09/26/2023] Open
Abstract
Introduction Hepatocellular carcinoma (HCC) patients at advanced stages receive immunotherapy or treatment with tyrosine kinase inhibitors (TKIs) such as Sorafenib (Sora) or Lenvatinib in frontline as well as Regorafenib (Rego) or Cabozantinib in second-line. A major hindrance of TKI therapies is the development of resistance, which renders drug treatment futile and results in HCC progression. Methods In this study, we addressed the impact of the receptor tyrosine kinase Axl binding to its ligand Gas6 in acquiring refractoriness to TKIs. The initial responses of Axl-positive and Axl-negative cell lines to different TKIs were assessed. Upon inducing resistance, RNA-Seq, gain- and loss-of-function studies were applied to understand and intervene with the molecular basis of refractoriness. Secretome analysis was performed to identify potential biomarkers of resistance. Results We show that HCC cells exhibiting a mesenchymal-like phenotype were less sensitive to drug treatment, linking TKI resistance to changes in epithelial plasticity. Gas6/Axl expression and activation were upregulated in Rego-resistant HCC cells together with the induction of ErbB receptors, whereas HCC cells lacking Axl failed to stimulate ErbBs. Treatment of Rego-insensitive HCC cells with the pan-ErbB family inhibitor Afatinib rather than with Erlotinib blocking ErbB1 reduced cell viability and clonogenicity. Genetic intervention with ErbB2-4 but not ErbB1 confirmed their crucial involvement in refractoriness to Rego. Furthermore, Rego-resistant HCC cells secreted basic fibroblast growth factor (bFGF) depending on Axl expression. HCC patients treated with Sora in first-line and with Rego in second-line displayed elevated serum levels of bFGF, emphasizing bFGF as a predictive biomarker of TKI treatment. Discussion Together, these data suggest that the inhibition of ErbBs is synthetic lethal with Rego in Axl-expressing HCC cells, showing a novel vulnerability of HCC.
Collapse
Affiliation(s)
- Kristina Breitenecker
- Center for Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Viola Hedrich
- Center for Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Franziska Pupp
- Center for Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Doris Chen
- Department of Chromosome Biology, Max Perutz Labs Vienna, University of Vienna, Vienna, Austria
| | - Eva Řezníčková
- Center for Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- Department of Experimental Biology, Faculty of Science, Palacký University Olomouc, Olomouc, Czechia
| | - Gregor Ortmayr
- Center for Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Heidemarie Huber
- Center for Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Gerhard Weber
- Center for Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Lorenz Balcar
- Department of Internal Medicine III, Division of Gastroenterology & Hepatology, Medical University of Vienna, Vienna, Austria
| | - Matthias Pinter
- Department of Internal Medicine III, Division of Gastroenterology & Hepatology, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Mikulits
- Center for Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
78
|
Li W, Li M, Huang Q, He X, Shen C, Hou X, Xue F, Deng Z, Luo Y. Advancement of regulating cellular signaling pathways in NSCLC target therapy via nanodrug. Front Chem 2023; 11:1251986. [PMID: 37744063 PMCID: PMC10512551 DOI: 10.3389/fchem.2023.1251986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/29/2023] [Indexed: 09/26/2023] Open
Abstract
Lung cancer (LC) is one of the leading causes of high cancer-associated mortality worldwide. Non-small cell lung cancer (NSCLC) is the most common type of LC. The mechanisms of NSCLC evolution involve the alterations of multiple complex signaling pathways. Even with advances in biological understanding, early diagnosis, therapy, and mechanisms of drug resistance, many dilemmas still need to face in NSCLC treatments. However, many efforts have been made to explore the pathological changes of tumor cells based on specific molecular signals for drug therapy and targeted delivery. Nano-delivery has great potential in the diagnosis and treatment of tumors. In recent years, many studies have focused on different combinations of drugs and nanoparticles (NPs) to constitute nano-based drug delivery systems (NDDS), which deliver drugs regulating specific molecular signaling pathways in tumor cells, and most of them have positive implications. This review summarized the recent advances of therapeutic targets discovered in signaling pathways in NSCLC as well as the related NDDS, and presented the future prospects and challenges.
Collapse
Affiliation(s)
- Wenqiang Li
- Zigong First People’s Hospital, Zigong, Sichuan, China
| | - Mei Li
- West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qian Huang
- Sichuan North Medical College, Nanchong, Sichuan, China
| | - Xiaoyu He
- Sichuan North Medical College, Nanchong, Sichuan, China
| | - Chen Shen
- West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiaoming Hou
- West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Fulai Xue
- West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhiping Deng
- Zigong First People’s Hospital, Zigong, Sichuan, China
| | - Yao Luo
- Zigong First People’s Hospital, Zigong, Sichuan, China
- West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
79
|
Chen R, Hao X, Chen J, Zhang C, Fan H, Lian F, Chen X, Wang C, Xia Y. Integrated multi-omics analyses reveal Jorunnamycin A as a novel suppressor for muscle-invasive bladder cancer by targeting FASN and TOP1. J Transl Med 2023; 21:549. [PMID: 37587470 PMCID: PMC10428641 DOI: 10.1186/s12967-023-04400-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/29/2023] [Indexed: 08/18/2023] Open
Abstract
BACKGROUND Bladder cancer is a urological carcinoma with high incidence, among which muscle invasive bladder cancer (MIBC) is a malignant carcinoma with high mortality. There is an urgent need to develop new drugs with low toxicity and high efficiency for MIBC because existing medication has defects, such as high toxicity, poor efficacy, and side effects. Jorunnamycin A (JorA), a natural marine compound, has been found to have a high efficiency anticancer effect, but its anticancer function and mechanism on bladder cancer have not been studied. METHODS To examine the anticancer effect of JorA on MIBC, Cell Counting Kit 8, EdU staining, and colony formation analyses were performed. Moreover, a xenograft mouse model was used to verify the anticancer effect in vivo. To investigate the pharmacological mechanism of JorA, high-throughput quantitative proteomics, transcriptomics, RT-qPCR, western blotting, immunofluorescence staining, flow cytometry, pulldown assays, and molecular docking were performed. RESULTS JorA inhibited the proliferation of MIBC cells, and the IC50 of T24 and UM-UC-3 was 0.054 and 0.084 μM, respectively. JorA-induced significantly changed proteins were enriched in "cancer-related pathways" and "EGFR-related signaling pathways", which mainly manifested by inhibiting cell proliferation and promoting cell apoptosis. Specifically, JorA dampened the DNA synthesis rate, induced phosphatidylserine eversion, and inhibited cell migration. Furthermore, it was discovered that fatty acid synthase (FASN) and topoisomerase 1 (TOP1) are the JorA interaction proteins. Using DockThor software, the 3D docking structures of JorA binding to FASN and TOP1 were obtained (the binding affinities were - 8.153 and - 7.264 kcal/mol, respectively). CONCLUSIONS The marine compound JorA was discovered to have a specific inhibitory effect on MIBC, and its potential pharmacological mechanism was revealed for the first time. This discovery makes an important contribution to the development of new high efficiency and low toxicity drugs for bladder cancer therapy.
Collapse
Affiliation(s)
- Ruijiao Chen
- Medical Laboratory of Jining Medical University, Jining Medical University, Jining, 272067, Shandong, China
| | - Xiaopeng Hao
- Institute of Precision Medicine, Jining Medical University, No. 133 Hehua Road, Taibaihu District, Jining, 272067, Shandong, China
| | - Jingyuan Chen
- Institute of Precision Medicine, Jining Medical University, No. 133 Hehua Road, Taibaihu District, Jining, 272067, Shandong, China
| | - Changyue Zhang
- Medical Laboratory of Jining Medical University, Jining Medical University, Jining, 272067, Shandong, China
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Huixia Fan
- Institute of Precision Medicine, Jining Medical University, No. 133 Hehua Road, Taibaihu District, Jining, 272067, Shandong, China
| | - Fuming Lian
- Institute of Precision Medicine, Jining Medical University, No. 133 Hehua Road, Taibaihu District, Jining, 272067, Shandong, China
| | - Xiaochuan Chen
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Chao Wang
- Department of Urology, Jining No. 1 People's Hospital, Jining, 272106, Shandong, China.
| | - Yong Xia
- Medical Laboratory of Jining Medical University, Jining Medical University, Jining, 272067, Shandong, China.
- Institute of Precision Medicine, Jining Medical University, No. 133 Hehua Road, Taibaihu District, Jining, 272067, Shandong, China.
| |
Collapse
|
80
|
Marrocco I, Giri S, Simoni-Nieves A, Gupta N, Rudnitsky A, Haga Y, Romaniello D, Sekar A, Zerbib M, Oren R, Lindzen M, Fard D, Tsutsumi Y, Lauriola M, Tamagnone L, Yarden Y. L858R emerges as a potential biomarker predicting response of lung cancer models to anti-EGFR antibodies: Comparison of osimertinib vs. cetuximab. Cell Rep Med 2023; 4:101142. [PMID: 37557179 PMCID: PMC10439256 DOI: 10.1016/j.xcrm.2023.101142] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 04/21/2023] [Accepted: 07/14/2023] [Indexed: 08/11/2023]
Abstract
EGFR-specific tyrosine kinase inhibitors (TKIs), especially osimertinib, have changed lung cancer therapy, but secondary mutations confer drug resistance. Because other EGFR mutations promote dimerization-independent active conformations but L858R strictly depends on receptor dimerization, we herein evaluate the therapeutic potential of dimerization-inhibitory monoclonal antibodies (mAbs), including cetuximab. This mAb reduces viability of cells expressing L858R-EGFR and blocks the FOXM1-aurora survival pathway, but other mutants show no responses. Unlike TKI-treated patient-derived xenografts, which relapse post osimertinib treatment, cetuximab completely prevents relapses of L858R+ tumors. We report that osimertinib's inferiority associates with induction of mutagenic reactive oxygen species, whereas cetuximab's superiority is due to downregulation of adaptive survival pathways (e.g., HER2) and avoidance of mutation-prone mechanisms that engage AXL, RAD18, and the proliferating cell nuclear antigen. These results identify L858R as a predictive biomarker, which may pave the way for relapse-free mAb monotherapy relevant to a large fraction of patients with lung cancer.
Collapse
Affiliation(s)
- Ilaria Marrocco
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 76100, Israel; Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Suvendu Giri
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Arturo Simoni-Nieves
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Nitin Gupta
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Anna Rudnitsky
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yuya Haga
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| | - Donatella Romaniello
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy
| | - Arunachalam Sekar
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Mirie Zerbib
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Roni Oren
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Moshit Lindzen
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Damon Fard
- Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Yasuo Tsutsumi
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan; Global Center for Medical Engineering and Informatics, Osaka University, Osaka 565-0871, Japan; Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka 565-0871, Japan
| | - Mattia Lauriola
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy
| | - Luca Tamagnone
- Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; Fondazione Policlinico Gemelli - IRCCS, 00168 Rome, Italy
| | - Yosef Yarden
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
81
|
Bhalla S, Fattah FJ, Ahn C, Williams J, Macchiaroli A, Padro J, Pogue M, Dowell JE, Putnam WC, McCracken N, Micklem D, Brekken RA, Gerber DE. Phase 1 trial of bemcentinib (BGB324), a first-in-class, selective AXL inhibitor, with docetaxel in patients with previously treated advanced non-small cell lung cancer. Lung Cancer 2023; 182:107291. [PMID: 37423058 PMCID: PMC11161199 DOI: 10.1016/j.lungcan.2023.107291] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/29/2023] [Accepted: 07/01/2023] [Indexed: 07/11/2023]
Abstract
OBJECTIVES AXL, a transmembrane receptor tyrosine kinase, is highly expressed and associated with poor prognosis in non-small cell lung cancer (NSCLC). Bemcentinib (BGB324), a selective orally bioavailable small molecule AXL inhibitor, synergizes with docetaxel in preclinical models. We performed a phase I trial of bemcentinib plus docetaxel in previously treated advanced NSCLC. MATERIALS AND METHODS Escalation of two dose levels of bemcentinib (200 mg load × 3 days then 100 mg daily, or 400 mg load × 3 days then 200 mg daily) in combination with docetaxel (60 or 75 mg/m2 every 3 weeks) followed a 3+3 study design. Due to hematologic toxicity, prophylactic G-CSF was added. Bemcentinib monotherapy was administered for one week prior to docetaxel initiation to assess pharmacodynamic and pharmacokinetic effects alone and in combination. Plasma protein biomarker levels were measured. RESULTS 21 patients were enrolled (median age 62 years, 67% male). Median treatment duration was 2.8 months (range 0.7-10.9 months). The main treatment-related adverse events were neutropenia (86%, 76% ≥G3), diarrhea (57%, 0% ≥G3), fatigue (57%, 5% ≥G3), and nausea (52%, 0% ≥G3). Neutropenic fever occurred in 8 (38%) patients. The maximum tolerated dose was docetaxel 60 mg/m2 with prophylactic G-CSF support plus bemcentinib 400 mg load × 3 days followed by 200 mg daily thereafter. Bemcentinib and docetaxel pharmacokinetics resembled prior monotherapy data. Among 17 patients evaluable for radiographic response, 6 (35%) patients had partial response and 8 (47%) patients had stable disease as best response. Bemcentinib administration was associated with modulation of proteins involved in protein kinase B signaling, reactive oxygen species metabolism, and other processes. CONCLUSION Bemcentinib plus docetaxel with G-CSF support demonstrates anti-tumor activity in previously treated, advanced NSCLC. The role of AXL inhibition in the treatment of NSCLC remains under investigation.
Collapse
Affiliation(s)
- Sheena Bhalla
- Department of Internal Medicine (Division of Hematology-Oncology), UT Southwestern Medical Center, Dallas, TX, USA; Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA.
| | - Farjana J Fattah
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA
| | - Chul Ahn
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA; Peter O'Donnell Jr. School of Public Health, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jessica Williams
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA
| | - Alyssa Macchiaroli
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jonathan Padro
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA
| | - Meredith Pogue
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jonathan E Dowell
- Department of Internal Medicine (Division of Hematology-Oncology), UT Southwestern Medical Center, Dallas, TX, USA; Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA
| | - William C Putnam
- Texas Tech University Health Sciences Center School of Pharmacy, Dallas, TX, USA
| | | | | | - Rolf A Brekken
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA; Department of Surgery (Division of Surgical Oncology), UT Southwestern Medical Center, Dallas, TX, USA
| | - David E Gerber
- Department of Internal Medicine (Division of Hematology-Oncology), UT Southwestern Medical Center, Dallas, TX, USA; Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA; Peter O'Donnell Jr. School of Public Health, UT Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
82
|
Inomata M, Kawashima Y, Saito R, Morinaga D, Nogawa H, Sato M, Suzuki Y, Yanagisawa S, Kikuchi T, Jingu D, Yoshimura N, Harada T, Miyauchi E. A retrospective study of the efficacy of combined EGFR‑TKI plus VEGF inhibitor/cytotoxic therapy vs. EGFR‑TKI monotherapy for PD‑L1‑positive EGFR‑mutant non‑small cell lung cancer: North Japan Lung Cancer Study Group 2202. Oncol Lett 2023; 26:334. [PMID: 37427337 PMCID: PMC10326654 DOI: 10.3892/ol.2023.13920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/13/2023] [Indexed: 07/11/2023] Open
Abstract
The present multicenter study was performed to compare the efficacy of epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) monotherapy with that of combined EGFR-TKI plus vascular endothelial growth factor receptor (VEGF) inhibitor/cytotoxic therapy in patients with programmed death-ligand 1 (PD-L1)-positive EGFR-mutant non-small cell lung cancer (NSCLC). Data from patients with PD-L1-positive EGFR-mutant NSCLC were collected from 12 institutes. Survival in patients treated with first- and second-generation EGFR-TKIs, osimertinib (third-generation EGFR-TKI), and combined EGFR-TKI plus VEGF inhibitor/cytotoxic therapy was analyzed by multiple regression analysis with adjustments for sex, performance status, EGFR mutation status, PD-L1 expression level, and the presence or absence of brain metastasis using a Cox proportional hazards model. Data from a total of 263 patients were analyzed, including 111 (42.2%) patients who had received monotherapy with a first- or second-generation EGFR-TKI, 132 (50.2%) patients who had received osimertinib monotherapy, and 20 (7.6%) patients who had received combined EGFR-TKI plus VEGF inhibitor/cytotoxic therapy (hereafter referred to as combined therapy). Multiple regression analysis using the Cox proportional hazards model showed that the hazard ratio (95% confidence interval) for progression-free survival was 0.73 (0.54-1.00) in the patients who had received osimertinib monotherapy and 0.47 (0.25-0.90) in patients who had received combined therapy. The hazard ratio for overall survival was 0.98 (0.65-1.48) in the patients who had received osimertinib monotherapy and 0.52 (0.21-1.31) in patients who had received combined therapy. In conclusion, combined therapy was associated with a significant reduction in the risk of progression compared with first- and second-generation EGFR-TKI monotherapy, and therefore, may be promising for the treatment of patients of NSCLC.
Collapse
Affiliation(s)
- Minehiko Inomata
- First Department of Internal Medicine, Toyama University Hospital, Toyama 930-0194, Japan
| | - Yosuke Kawashima
- Department of Pulmonary Medicine, Sendai Kousei Hospital, Sendai, Miyagi 980-0873, Japan
| | - Ryota Saito
- Department of Respiratory Medicine, Tohoku University Hospital, Sendai, Miyagi 980-8574, Japan
| | - Daisuke Morinaga
- Department of Respiratory Medicine, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido 060-8648, Japan
| | - Hitomi Nogawa
- Department of Respiratory Medicine, Yamagata Prefectural Central Hospital, Yamagata 990-2292, Japan
| | - Masamichi Sato
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University Faculty of Medicine, Yamagata 990-9585, Japan
| | - Yohei Suzuki
- Department of Thoracic Surgery, Omagari Kosei Medical Center, Daisen, Akita 014-0027, Japan
| | - Satoru Yanagisawa
- Department of Respiratory Medicine, Saku Central Hospital Advanced Care Center, Saku, Nagano 385-0051, Japan
| | - Takashi Kikuchi
- Department of Respiratory Medicine, Iwate Prefectural Isawa Hospital, Ohshu, Iwate 023-0864, Japan
| | - Daisuke Jingu
- Department of Respiratory Medicine, Saka General Hospital, Shiogama, Miyagi 985-8506, Japan
| | - Naruo Yoshimura
- Department of Respiratory Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi 983-8512, Japan
| | - Toshiyuki Harada
- Department of Respiratory Medicine, Japan Community Health Care Organization Hokkaido Hospital, Sapporo, Hokkaido 062-0921, Japan
| | - Eisaku Miyauchi
- Department of Respiratory Medicine, Tohoku University Hospital, Sendai, Miyagi 980-8574, Japan
| |
Collapse
|
83
|
Han R, Lin C, Zhang C, Kang J, Lu C, Zhang Y, Wang Y, Hu C, He Y. The potential therapeutic regimen for overcoming resistance to osimertinib due to rare mutations in NSCLC. iScience 2023; 26:107105. [PMID: 37416479 PMCID: PMC10320197 DOI: 10.1016/j.isci.2023.107105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 05/07/2023] [Accepted: 06/08/2023] [Indexed: 07/08/2023] Open
Abstract
The mechanisms of osimertinib resistance have not been well characterized. We conducted next-generation sequencing to recognize novel resistance mechanism and used cell line-derived xenograft (CDX) and patient-derived xenograft (PDX) models to evaluate the anti-proliferative effects of aspirin in vivo and in vitro. We observed that PIK3CG mutations led to acquired resistance to osimertinib in a patient and further confirmed that both PIK3CG and PIK3CA mutations caused osimertinib resistance. Mechanistically, the expression of PI3Kγ or PI3Kα was up-regulated after PIK3CG or PIK3CA lentivirus transfection, respectively, and which can be effectively suppressed by aspirin. Lastly, our results from in vivo studies indicate that aspirin can reverse osimertinib resistance caused by PIK3CG or PIK3CA mutations in both CDX and PDX models. Herein, we first confirmed that mutations in PIK3CG can lead to resistance to osimertinib, and the combined therapy may be a strategy to reverse PIK3CG/PIK3CA mutation-induced osimertinib resistance.
Collapse
Affiliation(s)
- Rui Han
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China
| | - Caiyu Lin
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China
| | - Chong Zhang
- Department of Ultrasound, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jun Kang
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China
| | - Conghua Lu
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China
| | - Yiming Zhang
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China
| | - Yubo Wang
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China
| | - Chen Hu
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China
| | - Yong He
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
84
|
Liang XW, Liu B, Chen JC, Cao Z, Chu FR, Lin X, Wang SZ, Wu JC. Characteristics and molecular mechanism of drug-tolerant cells in cancer: a review. Front Oncol 2023; 13:1177466. [PMID: 37483492 PMCID: PMC10360399 DOI: 10.3389/fonc.2023.1177466] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/23/2023] [Indexed: 07/25/2023] Open
Abstract
Drug resistance in tumours has seriously hindered the therapeutic effect. Tumour drug resistance is divided into primary resistance and acquired resistance, and the recent study has found that a significant proportion of cancer cells can acquire stable drug resistance from scratch. This group of cells first enters the drug tolerance state (DT state) under drug pressure, and gradually acquires stable drug resistance through adaptive mutations in this state. Although the specific mechanisms underlying the formation of drug tolerant cells (DTCs) remain unclear, various proteins and signalling pathways have been identified as being involved in the formation of DTCs. In the current review, we summarize the characteristics, molecular mechanisms and therapeutic strategies of DTCs in detail.
Collapse
Affiliation(s)
- Xian-Wen Liang
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Bing- Liu
- Department of Gastrointestinal Surgery, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, China
| | - Jia-Cheng Chen
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Zhi Cao
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Feng-ran Chu
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Xiong Lin
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Sheng-Zhong Wang
- Department of Gastrointestinal Surgery, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, China
| | - Jin-Cai Wu
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| |
Collapse
|
85
|
Fang G, Chen H, Cheng Z, Tang Z, Wan Y. Azaindole derivatives as potential kinase inhibitors and their SARs elucidation. Eur J Med Chem 2023; 258:115621. [PMID: 37423125 DOI: 10.1016/j.ejmech.2023.115621] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/19/2023] [Accepted: 06/30/2023] [Indexed: 07/11/2023]
Abstract
Currently, heterocycles have occupied an important position in the fields of drug design. Among them, azaindole moiety is regarded as one privileged scaffold to develop therapeutic agents. Since two nitrogen atoms of azaindole increase the possibility to form hydrogen bonds in the adenosine triphosphate (ATP)-binding site, azaindole derivatives are important sources of kinase inhibitors. Moreover, some of them have been on the market or in clinical trials for the treatment of some kinase-related diseases (e.g., vemurafenib, pexidartinib, decernotinib). In this review, we focused on the recent development of azaindole derivatives as potential kinase inhibitors based on kinase targets, such as adaptor-associated kinase 1 (AAK1), anaplastic lymphoma kinase (ALK), AXL, cell division cycle 7 (Cdc7), cyclin-dependent kinases (CDKs), dual-specificity tyrosine (Y)-phosphorylation regulated kinase 1A (DYRK1A), fibroblast growth factor receptor 4 (FGFR4), phosphatidylinositol 3-kinase (PI3K) and proviral insertion site in moloney murine leukemia virus (PIM) kinases. Meanwhile, the structure-activity relationships (SARs) of most azaindole derivatives were also elucidated. In addition, the binding modes of some azaindoles complexed with kinases were also investigated during the SARs elucidation. This review may offer an insight for medicinal chemists to rationally design more potent kinase inhibitors bearing the azaindole scaffold.
Collapse
Affiliation(s)
- Guoqing Fang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan, 411201, PR China
| | - Hongjuan Chen
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan, 411201, PR China
| | - Zhiyun Cheng
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan, 411201, PR China
| | - Zilong Tang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan, 411201, PR China
| | - Yichao Wan
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan, 411201, PR China.
| |
Collapse
|
86
|
Sealover NE, Theard PL, Hughes JM, Linke AJ, Daley BR, Kortum RL. In situ modeling of acquired resistance to RTK/RAS pathway targeted therapies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.27.525958. [PMID: 36747633 PMCID: PMC9901014 DOI: 10.1101/2023.01.27.525958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Intrinsic and acquired resistance limit the window of effectiveness for oncogene-targeted cancer therapies. Preclinical studies that identify synergistic combinations enhance therapeutic efficacy to target intrinsic resistance, however, methods to study acquired resistance in cell culture are lacking. Here, we describe a novel in situ resistance assay (ISRA), performed in a 96-well culture format, that models acquired resistance to RTK/RAS pathway targeted therapies. Using osimertinib resistance in EGFR-mutated lung adenocarcinoma (LUAD) as a model system, we show acquired resistance can be reliably modeled across cell lines using objectively defined osimertinib doses. Similar to patient populations, isolated osimertinib-resistant populations showed resistance via enhanced activation of multiple parallel RTKs so that individual RTK inhibitors did not re-sensitize cells to osimertinib. In contrast, inhibition of proximal RTK signaling using the SHP2 inhibitor RMC-4550 both re-sensitized resistant populations to osimertinib and prevented the development of osimertinib resistance as a primary therapy. Similar, objectively defined drug doses were used to model resistance to additional RTK/RAS pathway targeted therapies including the KRASG12C inhibitors adagrasib and sotorasib, the MEK inhibitor trametinib, and the farnesyl transferase inhibitor tipifarnib. These studies highlight the tractability of in situ resistance assays to model acquired resistance to targeted therapies and provide a framework for assessing the extent to which synergistic drug combinations can target acquired drug resistance.
Collapse
|
87
|
Tang Y, Zang H, Wen Q, Fan S. AXL in cancer: a modulator of drug resistance and therapeutic target. J Exp Clin Cancer Res 2023; 42:148. [PMID: 37328828 DOI: 10.1186/s13046-023-02726-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 05/31/2023] [Indexed: 06/18/2023] Open
Abstract
AXL is a member of the TAM (TYRO3, AXL, and MERTK) receptor tyrosine kinases family (RTKs), and its abnormal expression has been linked to clinicopathological features and poor prognosis of cancer patients. There is mounting evidence supporting AXL's role in the occurrence and progression of cancer, as well as drug resistance and treatment tolerance. Recent studies revealed that reducing AXL expression can weaken cancer cells' drug resistance, indicating that AXL may be a promising target for anti-cancer drug treatment. This review aims to summarize the AXL's structure, the mechanisms regulating and activating it, and its expression pattern, especially in drug-resistant cancers. Additionally, we will discuss the diverse functions of AXL in mediating cancer drug resistance and the potential of AXL inhibitors in cancer treatment.
Collapse
Affiliation(s)
- Yaoxiang Tang
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Hongjing Zang
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Qiuyuan Wen
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
| | - Songqing Fan
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
88
|
Han S, Tian Z, Tian H, Han H, Zhao J, Jiao Y, Wang C, Hao H, Wang S, Fu J, Xue D, Sun H, Li P. HDGF promotes gefitinib resistance by activating the PI3K/AKT and MEK/ERK signaling pathways in non-small cell lung cancer. Cell Death Discov 2023; 9:181. [PMID: 37301856 DOI: 10.1038/s41420-023-01476-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 04/29/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Hepatoma-derived growth factor (HDGF) expression is associated with poor prognosis in non-small cell lung cancer (NSCLC); however, whether HDGF affects gefitinib resistance in NSCLC remains unknown. This study aimed to explore the role of HDGF in gefitinib resistance in NSCLC and to discover the underlying mechanisms. Stable HDGF knockout or overexpression cell lines were generated to perform experiments in vitro and in vivo. HDGF concentrations were determined using an ELISA kit. HDGF overexpression exacerbated the malignant phenotype of NSCLC cells, while HDGF knockdown exerted the opposite effects. Furthermore, PC-9 cells, which were initially gefitinib-sensitive, became resistant to gefitinib treatment after HDGF overexpression, whereas HDGF knockdown enhanced gefitinib sensitivity in H1975 cells, which were initially gefitinib-resistant. Higher levels of HDGF in plasma or tumor tissue also indicated gefitinib resistance. The effects of HDGF on promoting the gefitinib resistance were largely attenuated by MK2206 (Akt inhibitor) or U0126 (ERK inhibitor). Mechanistically, gefitinib treatment provoked HDGF expression and activated the Akt and ERK pathways, which were independent of EGFR phosphorylation. In summary, HDGF contributes to gefitinib resistance by activating the Akt and ERK signaling pathways. The higher HDGF levels may predict poor efficacy for TKI treatment, thus it has the potential to serve as a new target for overcoming tyrosine kinase inhibitor resistance in combating NSCLC.
Collapse
Affiliation(s)
- Shuyan Han
- Department of Integration of Chinese and Western Medicine, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| | - Zhihua Tian
- Central Laboratory, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Huifang Tian
- Central Laboratory, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Haibo Han
- The Tissue Bank, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Jun Zhao
- Department of Thoracic Medical Oncology, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Yanna Jiao
- Department of Integration of Chinese and Western Medicine, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Chunli Wang
- Department of Oncology, Infectious Disease Hospital of Heilongjiang Province, Harbin, 150030, China
| | - Huifeng Hao
- Department of Integration of Chinese and Western Medicine, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Shan Wang
- Department of Integration of Chinese and Western Medicine, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Jialei Fu
- Department of Integration of Chinese and Western Medicine, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Dong Xue
- Department of Integration of Chinese and Western Medicine, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Hong Sun
- Department of Integration of Chinese and Western Medicine, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| | - Pingping Li
- Department of Integration of Chinese and Western Medicine, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| |
Collapse
|
89
|
Nakamura R, Fujii H, Yamada T, Matsui Y, Yaoi T, Honda M, Tanaka N, Miyagawa-Hayashino A, Yoshimura A, Morimoto K, Iwasaku M, Tokuda S, Kim YH, Konishi E, Itoh K, Takayama K. Analysis of Tumor Heterogeneity Through AXL Activation in Primary Resistance to EGFR Tyrosine Kinase Inhibitors. JTO Clin Res Rep 2023; 4:100525. [PMID: 37426308 PMCID: PMC10329144 DOI: 10.1016/j.jtocrr.2023.100525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/24/2023] [Accepted: 05/08/2023] [Indexed: 07/11/2023] Open
Abstract
Introduction EGFR tyrosine kinase inhibitors are standard therapeutic agents for patients with advanced NSCLC harboring EGFR mutations. Nevertheless, some patients exhibit primary resistance to EGFR tyrosine kinase inhibitors in the first-line treatment setting. AXL, a member of the TYRO3, AXL, and MERTK family of receptor tyrosine kinases, is involved in primary resistance to EGFR tyrosine kinase inhibitors in EGFR-mutated NSCLC. Methods We investigated spatial tumor heterogeneity using autopsy specimens and a patient-derived cell line from a patient with EGFR-mutated NSCLC having primary resistance to erlotinib plus ramucirumab. Results Quantitative polymerase chain reaction analysis revealed that AXL mRNA expression differed at each metastatic site. In addition, AXL expression levels were likely to be negatively correlated with the effectiveness of erlotinib plus ramucirumab therapy. Analysis of a patient-derived cell line established from the left pleural effusion before initiation of treatment revealed that the combination of EGFR tyrosine kinase inhibitors and an AXL inhibitor remarkably inhibited cell viability and increased cell apoptosis in comparison with EGFR tyrosine kinase inhibitor monotherapy or combination therapy of these inhibitors with ramucirumab. Conclusions Our observations suggest that AXL expression may play a critical role in the progression of spatial tumor heterogeneity and primary resistance to EGFR tyrosine kinase inhibitors in patients with EGFR-mutated NSCLC.
Collapse
Affiliation(s)
- Ryota Nakamura
- Department of Pulmonary Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hiroyuki Fujii
- Department of Pulmonary Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tadaaki Yamada
- Department of Pulmonary Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yohei Matsui
- Department of Pulmonary Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takeshi Yaoi
- Department of Pathology and Applied Neurobiology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Mizuki Honda
- Department of Surgical Pathology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Noriyuki Tanaka
- Department of Surgical Pathology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Aya Miyagawa-Hayashino
- Department of Surgical Pathology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Akihiro Yoshimura
- Department of Pulmonary Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kenji Morimoto
- Department of Pulmonary Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masahiro Iwasaku
- Department of Pulmonary Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Shinsaku Tokuda
- Department of Pulmonary Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Young Hak Kim
- Department of Pulmonary Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Eiichi Konishi
- Department of Surgical Pathology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kyoko Itoh
- Department of Pathology and Applied Neurobiology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Koichi Takayama
- Department of Pulmonary Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
90
|
Pei JP, Wang Y, Ma LP, Wang X, Liu L, Zhang Y, Jin R, Ren ZQ, Deng Y, Shen JK, Meng T, Yu K. AXL antibody and AXL-ADC mediate antitumor efficacy via targeting AXL in tumor-intrinsic epithelial-mesenchymal transition and tumor-associated M2-like macrophage. Acta Pharmacol Sin 2023; 44:1290-1303. [PMID: 36650292 PMCID: PMC10203350 DOI: 10.1038/s41401-022-01047-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 12/27/2022] [Indexed: 01/19/2023]
Abstract
The receptor tyrosine kinase AXL is an emerging driver of cancer recurrence, while its molecular mechanism remains unclear. In this study we investigated how AXL regulated the disease progression and poor prognosis in non-small cell lung cancer (NSCLC) and triple negative breast cancer (TNBC). We performed AXL transcriptome analysis from TCGA datasets, and found that AXL expression was significantly elevated in NSCLC and TNBC correlating with poor prognosis, epithelial-mesenchymal transition (EMT) and immune-tolerant tumor microenvironment (TME). Knockdown of AXL or treatment with two independent AXL antibodies (named anti-AXL and AXL02) all diminished cell migration and EMT in AXL-high expressing NSCLC and TNBC cell lines. In a mouse model of 4T1 TNBC, administration of anti-AXL antibody substantially inhibited lung metastases formation and growth, accompanied by reduced downstream signaling activation, EMT and proliferation index, as well as an increased apoptosis and activated anti-tumor immunity. We found that AXL was abundantly activated in tumor nodule-infiltrated M2-macrophages. A specific anti-AXL antibody blocked bone marrow-derived macrophage (BMDM) M2-polarization in vitro. Targeting of AXL in M2-macrophage in addition to tumor cell substantially suppressed CSF-1 production and eliminated M2-macrophage in TME, leading to a coordinated enhancement in both the innate and adaptive immunity reflecting M1-like macrophages, mature dendritic cells, cytotoxic T cells and B cells. We generated a novel and humanized AXL-ADC (AXL02-MMAE) employing a site-specific conjugation platform. AXL02-MMAE exerted potent cytotoxicity against a panel of AXL-high expressing tumor cell lines (IC50 < 0.1 nmol/L) and suppressed in vivo growth of multiple NSCLC and glioma tumors (a minimum efficacy dose<1 mg/kg). Compared to chemotherapy, AXL02-MMAE achieved a superior efficacy in regressing large sized tumors, eliminated AXL-H tumor cell-dependent M2-macrophage infiltration with a robust accumulation of inflammatory macrophages and mature dendritic cells. Our results support AXL-targeted therapy for treatment of advanced NSCLC and TNBC.
Collapse
Affiliation(s)
- Jin-Peng Pei
- Department of Pharmacology, Fudan University School of Pharmacy, Shanghai, 201203, China
| | - Yue Wang
- Department of Pharmacology, Fudan University School of Pharmacy, Shanghai, 201203, China
| | - Lan-Ping Ma
- Department of Medicinal Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xin Wang
- Department of Medicinal Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Liang Liu
- Department of Pharmacology, Fudan University School of Pharmacy, Shanghai, 201203, China
| | - Yu Zhang
- Department of Pharmacology, Fudan University School of Pharmacy, Shanghai, 201203, China
| | - Rui Jin
- Department of Pharmacology, Fudan University School of Pharmacy, Shanghai, 201203, China
| | - Zhi-Qiang Ren
- Department of Pharmacology, Fudan University School of Pharmacy, Shanghai, 201203, China
| | - Yan Deng
- Department of Pharmacology, Fudan University School of Pharmacy, Shanghai, 201203, China
| | - Jing-Kang Shen
- Department of Medicinal Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Tao Meng
- Department of Medicinal Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Ker Yu
- Department of Pharmacology, Fudan University School of Pharmacy, Shanghai, 201203, China.
| |
Collapse
|
91
|
Zhai X, Pu D, Wang R, Zhang J, Lin Y, Wang Y, Zhai N, Peng X, Zhou Q, Li L. Gas6/AXL pathway: immunological landscape and therapeutic potential. Front Oncol 2023; 13:1121130. [PMID: 37265798 PMCID: PMC10231434 DOI: 10.3389/fonc.2023.1121130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 04/10/2023] [Indexed: 06/03/2023] Open
Abstract
Cancer is a disease with ecological and evolutionary unity, which seriously affects the survival and quality of human beings. Currently, many reports have suggested Gas6 plays an important role in cancer. Binding of gas6 to TAM receptors is associated with the carcinogenetic mechanisms of multiple malignancies, such as in breast cancer, chronic lymphocytic leukemia, non-small cell lung cancer, melanoma, prostate cancer, etc., and shortened overall survival. It is accepted that the Gas6/TAM pathway can promote the malignant transformation of various types of cancer cells. Gas6 has the highest affinity for Axl, an important member of the TAM receptor family. Knockdown of the TAM receptors Axl significantly affects cell cycle progression in tumor cells. Interestingly, Gas6 also has an essential function in the tumor microenvironment. The Gas6/AXL pathway regulates angiogenesis, immune-related molecular markers and the secretion of certain cytokines in the tumor microenvironment, and also modulates the functions of a variety of immune cells. In addition, evidence suggests that the Gas6/AXL pathway is involved in tumor therapy resistance. Recently, multiple studies have begun to explore in depth the importance of the Gas6/AXL pathway as a potential tumor therapeutic target as well as its broad promise in immunotherapy; therefore, a timely review of the characteristics of the Gas6/AXL pathway and its value in tumor treatment strategies is warranted. This comprehensive review assessed the roles of Gas6 and AXL receptors and their associated pathways in carcinogenesis and cancer progression, summarized the impact of Gas6/AXL on the tumor microenvironment, and highlighted the recent research progress on the relationship between Gas6/AXL and cancer drug resistance.
Collapse
Affiliation(s)
- Xiaoqian Zhai
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Dan Pu
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Rulan Wang
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jiabi Zhang
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, UT, United States
| | - Yiyun Lin
- Graduate School of Biomedical Sciences, MD Anderson Cancer Center UT Health, Houston, TX, United States
| | - Yuqing Wang
- Graduate School of Biomedical Sciences, Baylor College of Medicine, Houston, TX, United States
| | - Ni Zhai
- Neurosurgery Intensive Care Unit, The 987th Hospital of the Joint Logistics Support Force of the Chinese People's Liberation Army, Baoji, Shanxi, China
| | - Xuan Peng
- Department of Pathophysiology, Hubei Minzu University, Enshi, Hubei, China
| | - Qinghua Zhou
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lu Li
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
92
|
Abstract
PURPOSE OF REVIEW The AXL signaling pathway is associated with tumor growth as well as poor prognosis in cancer. Here, we highlight recent strategies for targeting AXL in the treatment of solid and hematological malignancies. RECENT FINDINGS AXL is a key player in survival, metastasis, and therapeutic resistance in many cancers. A range of AXL-targeted therapies, including tyrosine kinase inhibitors, monoclonal antibodies, antibody-drug conjugates, and soluble receptors, have entered clinical development. Notably, AXL inhibitors in combination with immune checkpoint inhibitors demonstrate early promise; however, further understanding of predictive biomarkers and treatment sequencing is necessary. Based on its role in tumor growth and drug resistance, AXL represents a promising therapeutic target in oncology. Results from ongoing clinical trials will provide valuable insights into the role of AXL inhibitors, both as single agents and in combination with other therapies.
Collapse
Affiliation(s)
- Sheena Bhalla
- Department of Internal Medicine (Division of Hematology-Oncology), UT Southwestern Medical Center, Dallas, TX, USA.
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA.
- Division of Hematology-Oncology, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - David E Gerber
- Department of Internal Medicine (Division of Hematology-Oncology), UT Southwestern Medical Center, Dallas, TX, USA
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA
- Peter O'Donnell Jr. School of Public Health, UT Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
93
|
Chamorro DF, Cardona AF, Rodríguez J, Ruiz-Patiño A, Arrieta O, Moreno-Pérez DA, Rojas L, Zatarain-Barrón ZL, Ardila DV, Viola L, Recondo G, Blaquier JB, Martín C, Raez L, Samtani S, Ordóñez-Reyes C, Garcia-Robledo JE, Corrales L, Sotelo C, Ricaurte L, Cuello M, Mejía S, Jaller E, Vargas C, Carranza H, Otero J, Archila P, Bermudez M, Gamez T, Russo A, Malapelle U, de Miguel Perez D, de Lima VCC, Freitas H, Saldahna E, Rolfo C, Rosell R. Genomic Landscape of Primary Resistance to Osimertinib Among Hispanic Patients with EGFR-Mutant Non-Small Cell Lung Cancer (NSCLC): Results of an Observational Longitudinal Cohort Study. Target Oncol 2023; 18:425-440. [PMID: 37017806 DOI: 10.1007/s11523-023-00955-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2023] [Indexed: 04/06/2023]
Abstract
BACKGROUND Epidermal growth factor receptor (EGFR) mutations (EGFRm) represent one of the most common genomic alterations identified among patients with non-small cell lung cancer (NSCLC). Several targeted agents for patients with EGFRm have been proven safe and effective, including the third-generation tyrosine kinase inhibitor (TKI) osimertinib. Nonetheless, some patients will present with or develop EGFR-TKI resistance mechanisms. OBJECTIVE We characterized the genomic landscape of primary resistance to osimertinib among Hispanic patients with EGFR-mutant NSCLC. METHODS An observational longitudinal cohort study was conducted with two groups of patients, those with intrinsic resistance (cohort A) and those with long-term survival (cohort B). All patients were treated and followed between January 2018 and May 2022. All patients were assessed for Programmed Cell Death Ligand 1 (PD-L1) expression and Bcl-2-like protein 11 (BIM)/AXL mRNA expression before starting TKI. After 8 weeks of treatment, a liquid biopsy was performed to determine the presence of circulating free DNA (cfDNA), and next-generation sequencing (NGS) was used to identify mutations at the time of progression. In both cohorts, overall response rate (ORR), progression-free survival (PFS), and overall survival (OS) were evaluated. RESULTS We found a homogeneous distribution of EGFR-sensitizing mutations in both cohorts. For cohort A, exon 21 mutations were more common than exon 19 deletions (ex19dels) for cohort B (P = 0.0001). The reported ORR for osimertinib was 6.3% and 100% for cohorts A and B, respectively (P = 0.0001). PFS was significantly higher in cohort B (27.4 months vs. 3.1 months; P = 0.0001) and ex19del patients versus L858R (24.5 months, 95% confidence interval [CI] 18.2-NR), vs. 7.6 months, 95% CI 4.8-21.1; P = 0.001). OS was considerably lower for cohort A (20.1 months vs. 36.0 months; P = 0.0001) and was better for patients with ex19del, no brain metastasis, and low tumor mutation burden. At the time of progression, more mutations were found in cohort A, identifying off-target alterations more frequently, including TP53, RAS, and RB1. CONCLUSION EGFR-independent alterations are common among patients with primary resistance to osimertinib and significantly impact PFS and OS. Our results suggest that among Hispanic patients, other variables associated with intrinsic resistance include the number of commutations, high levels AXL mRNA, and low levels of BIM mRNA, T790M de novo, EGFR p.L858R presence, and a high tumoral mutational burden.
Collapse
Affiliation(s)
- Diego F Chamorro
- Foundation for Clinical and Applied Cancer Research-FICMAC, Bogotá, Colombia
- Molecular Oncology and Biology Systems Research Group (Fox-G), Universidad el Bosque, Bogotá, Colombia
| | - Andrés F Cardona
- Direction of Research, Science, and Education, Luis Carlos Sarmiento Angulo Cancer Treatment and Research Center (CTIC), Calle 168 # 14, 110221, Bogotá, Colombia.
- Thoracic Oncology Unit, Luis Carlos Sarmiento Angulo Cancer Treatment and Research Center (CTIC), Bogotá, Colombia.
| | - July Rodríguez
- Foundation for Clinical and Applied Cancer Research-FICMAC, Bogotá, Colombia
- Molecular Oncology and Biology Systems Research Group (Fox-G), Universidad el Bosque, Bogotá, Colombia
| | - Alejandro Ruiz-Patiño
- Foundation for Clinical and Applied Cancer Research-FICMAC, Bogotá, Colombia
- Molecular Oncology and Biology Systems Research Group (Fox-G), Universidad el Bosque, Bogotá, Colombia
| | - Oscar Arrieta
- Thoracic Oncology Unit and Personalized Oncology Laboratory, National Cancer Institute (INCan), México City, Mexico
| | - Darwin A Moreno-Pérez
- Foundation for Clinical and Applied Cancer Research-FICMAC, Bogotá, Colombia
- Molecular Oncology and Biology Systems Research Group (Fox-G), Universidad el Bosque, Bogotá, Colombia
| | - Leonardo Rojas
- Thoracic Oncology Unit and Personalized Oncology Laboratory, National Cancer Institute (INCan), México City, Mexico
| | - Zyanya Lucia Zatarain-Barrón
- Thoracic Oncology Unit and Personalized Oncology Laboratory, National Cancer Institute (INCan), México City, Mexico
| | - Dora V Ardila
- Foundation for Clinical and Applied Cancer Research-FICMAC, Bogotá, Colombia
- Molecular Oncology and Biology Systems Research Group (Fox-G), Universidad el Bosque, Bogotá, Colombia
| | - Lucia Viola
- Thoracic Oncology Unit, Fundación Neumológica Colombiana-FNC, Bogotá, Colombia
| | - Gonzalo Recondo
- Thoracic Oncology Unit, Centro de Educación Médica e Investigaciones Clinicas (CEMIC), Buenos Aires, Argentina
| | - Juan B Blaquier
- Thoracic Oncology Unit, Centro de Educación Médica e Investigaciones Clinicas (CEMIC), Buenos Aires, Argentina
| | - Claudio Martín
- Thoracic Oncology Unit, Alexander Fleming Institute, Buenos Aires, Argentina
| | - Luis Raez
- Thoracic Oncology Program, Memorial Cancer Institute, Florida Atlantic University (FAU), Miami, FL, USA
| | - Suraj Samtani
- Medical Oncology Department, Bradford Hill Institute, Santiago, Chile
| | - Camila Ordóñez-Reyes
- Foundation for Clinical and Applied Cancer Research-FICMAC, Bogotá, Colombia
- Molecular Oncology and Biology Systems Research Group (Fox-G), Universidad el Bosque, Bogotá, Colombia
| | | | - Luis Corrales
- Thoracic Oncology Unit, Centro de Investigación y Manejo del Cáncer-CIMCA, San José, Costa Rica
| | - Carolina Sotelo
- Foundation for Clinical and Applied Cancer Research-FICMAC, Bogotá, Colombia
- Molecular Oncology and Biology Systems Research Group (Fox-G), Universidad el Bosque, Bogotá, Colombia
| | | | - Mauricio Cuello
- Medical Oncology Department, Hospital de Clínicas, Universidad de la Republica-UdeLAR, Montevideo, Uruguay
| | - Sergio Mejía
- Toracic Oncology Unit, Oncology Department, Cancer Institute, Clínica de las Américas, Medellín, Colombia
| | - Elvira Jaller
- Foundation for Clinical and Applied Cancer Research-FICMAC, Bogotá, Colombia
- Molecular Oncology and Biology Systems Research Group (Fox-G), Universidad el Bosque, Bogotá, Colombia
| | - Carlos Vargas
- Foundation for Clinical and Applied Cancer Research-FICMAC, Bogotá, Colombia
- Molecular Oncology and Biology Systems Research Group (Fox-G), Universidad el Bosque, Bogotá, Colombia
| | - Hernán Carranza
- Foundation for Clinical and Applied Cancer Research-FICMAC, Bogotá, Colombia
- Molecular Oncology and Biology Systems Research Group (Fox-G), Universidad el Bosque, Bogotá, Colombia
| | - Jorge Otero
- Foundation for Clinical and Applied Cancer Research-FICMAC, Bogotá, Colombia
- Molecular Oncology and Biology Systems Research Group (Fox-G), Universidad el Bosque, Bogotá, Colombia
| | - Pilar Archila
- Foundation for Clinical and Applied Cancer Research-FICMAC, Bogotá, Colombia
- Molecular Oncology and Biology Systems Research Group (Fox-G), Universidad el Bosque, Bogotá, Colombia
| | - Maritza Bermudez
- Foundation for Clinical and Applied Cancer Research-FICMAC, Bogotá, Colombia
- Molecular Oncology and Biology Systems Research Group (Fox-G), Universidad el Bosque, Bogotá, Colombia
| | - Tatiana Gamez
- Foundation for Clinical and Applied Cancer Research-FICMAC, Bogotá, Colombia
- Molecular Oncology and Biology Systems Research Group (Fox-G), Universidad el Bosque, Bogotá, Colombia
| | - Alessandro Russo
- Medical Oncology Department, Azienda Ospedaliera Papardo, Messina, Sicilia, Italy
| | - Umberto Malapelle
- Predictive Molecular Pathology Laboratory, Department of Public Health, University Federico II of Naples, Naples, Italy
| | - Diego de Miguel Perez
- Thoracic Oncology Center, Tisch Cáncer Center, Mount Sinai Hospital System & Icahn School of Medicine, Mount Sinai, New York, NY, USA
| | | | - Helano Freitas
- Thoracic Oncology Unit, A.C. Camargo Cancer Center, Sao Paulo, Brazil
| | - Erick Saldahna
- Thoracic Oncology Unit, A.C. Camargo Cancer Center, Sao Paulo, Brazil
| | - Christian Rolfo
- Thoracic Oncology Center, Tisch Cáncer Center, Mount Sinai Hospital System & Icahn School of Medicine, Mount Sinai, New York, NY, USA
| | - Rafael Rosell
- Cancer Biology and Precision Medicine Program, Germans Trias i Pujol Research Institute (IGTP)/Dr. Rosell Oncology Institute (IOR) Quirón-Dexeus University Institute, Barcelona, Spain
| |
Collapse
|
94
|
Moghal N, Li Q, Stewart EL, Navab R, Mikubo M, D'Arcangelo E, Martins-Filho SN, Raghavan V, Pham NA, Li M, Shepherd FA, Liu G, Tsao MS. Single-Cell Analysis Reveals Transcriptomic Features of Drug-Tolerant Persisters and Stromal Adaptation in a Patient-Derived EGFR-Mutated Lung Adenocarcinoma Xenograft Model. J Thorac Oncol 2023; 18:499-515. [PMID: 36535627 DOI: 10.1016/j.jtho.2022.12.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 11/11/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Targeted therapies require life-long treatment, as drug discontinuation invariably leads to tumor recurrence. Recurrence is mainly driven by minor subpopulations of drug-tolerant persister (DTP) cells that survive the cytotoxic drug effect. In lung cancer, DTP studies have mainly been conducted with cell line models. METHODS We conducted an in vivo DTP study using a lung adenocarcinoma patient-derived xenograft tumor driven by an EGFR mutation. Daily treatment of tumor-bearing mice for 5 to 6 weeks with the EGFR inhibitor erlotinib markedly shrunk tumors and generated DTPs, which were analyzed by whole exome, bulk population transcriptome, and single-cell RNA sequencing. RESULTS The DTP tumors maintained the genomic clonal architecture of untreated baseline (BL) tumors but had reduced proliferation. Single-cell RNA sequencing identified a rare (approximately 4%) subpopulation of BL cells (DTP-like) with transcriptomic similarity to DTP cells and intermediate activity of pathways that are up-regulated in DTPs. Furthermore, the predominant transforming growth factor-β activated cancer-associated fibroblast (CAF) population in BL tumors was replaced by a CAF population enriched for IL6 production. In vitro experiments indicate that these populations interconvert depending on the levels of transforming growth factor-β versus NF-κB signaling, which is modulated by tyrosine kinase inhibitor presence. The DTPs had signs of increased NF-κB and STAT3 signaling, which may promote their survival. CONCLUSIONS The DTPs may arise from a specific preexisting subpopulation of cancer cells with partial activation of specific drug resistance pathways. Tyrosine kinase inhibitor treatment induces DTPs revealing greater activation of these pathways while converting the major preexisting CAF population into a new state that may further promote DTP survival.
Collapse
Affiliation(s)
- Nadeem Moghal
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Quan Li
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Erin L Stewart
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Ontario, Canada
| | - Roya Navab
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Masashi Mikubo
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Department of Thoracic Surgery, Kitasato University School of Medicine, Kanagawa, Japan
| | - Elisa D'Arcangelo
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Sebastiao N Martins-Filho
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Vibha Raghavan
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Nhu-An Pham
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Ming Li
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Frances A Shepherd
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Geoffrey Liu
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Ontario, Canada; Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Ming-Sound Tsao
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
95
|
Zhang D, Zhao Y, You X, He S, Li E. Repurposing Axl Kinase Inhibitors for the Treatment of Respiratory Syncytial Virus Infection. Antimicrob Agents Chemother 2023; 67:e0148722. [PMID: 36853000 PMCID: PMC10019287 DOI: 10.1128/aac.01487-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 02/01/2023] [Indexed: 03/01/2023] Open
Abstract
Respiratory syncytial virus (RSV) infection persists as a common pathogen of pulmonary infection in infants and in the elderly with high morbidity and mortality. However, no specific therapeutics are available. Axl, a member of the TAM (Tyro3, Axl, and Mertk) family receptor kinases, is a pleiotropic inhibitor of the innate immune response and functions as a negative regulator of interferon pathway activation. In this report, we investigated Axl inhibitors for their effects against RSV infection. Axl inhibition with kinase inhibitors, including BMS-777607, R428, and TP-0903, or Axl ablation resulted in a significant reduction of RSV infection in cell-based assays. In an animal model of pulmonary RSV infection, treatment with BMS-777607, R428, or TP-0903 ameliorated pulmonary pathology with a significant reduction of RSV titers in the lung tissues and, consequently, decreased the expression of proinflammatory genes. The host promotes ISG expression for the antiviral response and for viral clearance. We found that Axl inhibition led to more robust IFN-β expression and antiviral gene induction. Thus, the results of this study imply that Axl kinase inhibitors may possess a broad spectrum of antiviral effects by promoting ISG expression.
Collapse
Affiliation(s)
- Dan Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Yuanhui Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu, China
- Yancheng Medical Research Center, The Affiliated Yancheng People's 1st Hospital of Nanjing University Medical School, Yancheng, Jiangsu, China
| | - Xiaoxin You
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Susu He
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu, China
- Yancheng Medical Research Center, The Affiliated Yancheng People's 1st Hospital of Nanjing University Medical School, Yancheng, Jiangsu, China
| | - Erguang Li
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu, China
- Institute of Medical Virology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu, China
- Shenzhen Research Institute of Nanjing University, Shenzhen, China
| |
Collapse
|
96
|
Takumi Y, Arai S, Suzuki C, Fukuda K, Nishiyama A, Takeuchi S, Sato H, Matsumoto K, Sugio K, Yano S. MET kinase inhibitor reverses resistance to entrectinib induced by hepatocyte growth factor in tumors with NTRK1 or ROS1 rearrangements. Cancer Med 2023; 12:5809-5820. [PMID: 36416133 PMCID: PMC10028024 DOI: 10.1002/cam4.5342] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 07/06/2022] [Accepted: 08/08/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Entrectinib is an effective drug for treating solid tumors with NTRK gene rearrangement and non-small cell lung cancer (NSCLC) with ROS1 gene rearrangement. However, its efficacy is limited by tolerance and acquired resistance, the mechanisms of which are not fully understood. The growth factors produced by the tumor microenvironment, including hepatocyte growth factor (HGF) produced by tumor-associated fibroblasts, critically affect the sensitivity to targeted drugs. METHODS We investigated whether growth factors that can be produced by the microenvironment affect sensitivity of NTRK1-rearranged colon cancer KM12SM cells and ROS1-rearranged NSCLC HCC78 cells to entrectinib both in vitro and in vivo. RESULTS Among the growth factors assessed, HGF most potently induced entrectinib resistance in KM12SM and HCC78 cells by activating its receptor MET. HGF-induced entrectinib resistance was reversed by the active-HGF-specific macrocyclic peptide HiP-8 and the MET kinase inhibitor capmatinib in vitro. In addition, HGF-producing fibroblasts promoted entrectinib resistance in vitro (culture model) and in vivo (subcutaneous tumor model). The use of capmatinib circumvented entrectinib resistance in a subcutaneous tumor model inoculated with KM12SM and HGF-producing fibroblasts. CONCLUSION Our findings suggest that growth factors in the tumor microenvironment, such as HGF, may induce resistance to entrectinib in tumors with NTRK1 or ROS1 rearrangements. Our results further suggest that optimally co-administering inhibitors of resistance-inducing growth factors may maximize the therapeutic efficacy of entrectinib.
Collapse
Affiliation(s)
- Yohei Takumi
- Division of Medical OncologyCancer Research Institute, Kanazawa UniversityKanazawaJapan
- Department of Thoracic and Breast SurgeryFaculty of MedicineOita UniversityYufuJapan
| | - Sachiko Arai
- Division of Medical OncologyCancer Research Institute, Kanazawa UniversityKanazawaJapan
| | - Chiaki Suzuki
- Division of Medical OncologyCancer Research Institute, Kanazawa UniversityKanazawaJapan
| | - Koji Fukuda
- Division of Medical OncologyCancer Research Institute, Kanazawa UniversityKanazawaJapan
| | - Akihiro Nishiyama
- Division of Medical OncologyCancer Research Institute, Kanazawa UniversityKanazawaJapan
| | - Shinji Takeuchi
- Division of Medical OncologyCancer Research Institute, Kanazawa UniversityKanazawaJapan
| | - Hiroki Sato
- Division of Tumor Dynamics and RegulationCancer Research Institute, Kanazawa UniversityKanazawaJapan
| | - Kunio Matsumoto
- Division of Tumor Dynamics and RegulationCancer Research Institute, Kanazawa UniversityKanazawaJapan
| | - Kenji Sugio
- Department of Thoracic and Breast SurgeryFaculty of MedicineOita UniversityYufuJapan
| | - Seiji Yano
- Division of Medical OncologyCancer Research Institute, Kanazawa UniversityKanazawaJapan
- Department of Respiratory MedicineFaculty of MedicineInstitute of Medical, Pharmaceutical, and Health SciencesKanazawaJapan
- WPI‐Nano Life Science Institute (WPI‐Nano LSI)Kanazawa UniversityKanazawaJapan
| |
Collapse
|
97
|
Jin H, Wang L, Bernards R. Rational combinations of targeted cancer therapies: background, advances and challenges. Nat Rev Drug Discov 2023; 22:213-234. [PMID: 36509911 DOI: 10.1038/s41573-022-00615-z] [Citation(s) in RCA: 172] [Impact Index Per Article: 86.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2022] [Indexed: 12/15/2022]
Abstract
Over the past two decades, elucidation of the genetic defects that underlie cancer has resulted in a plethora of novel targeted cancer drugs. Although these agents can initially be highly effective, resistance to single-agent therapies remains a major challenge. Combining drugs can help avoid resistance, but the number of possible drug combinations vastly exceeds what can be tested clinically, both financially and in terms of patient availability. Rational drug combinations based on a deep understanding of the underlying molecular mechanisms associated with therapy resistance are potentially powerful in the treatment of cancer. Here, we discuss the mechanisms of resistance to targeted therapies and how effective drug combinations can be identified to combat resistance. The challenges in clinically developing these combinations and future perspectives are considered.
Collapse
Affiliation(s)
- Haojie Jin
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Liqin Wang
- Division of Molecular Carcinogenesis, Oncode Institute, Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - René Bernards
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Division of Molecular Carcinogenesis, Oncode Institute, Netherlands Cancer Institute, Amsterdam, the Netherlands.
| |
Collapse
|
98
|
Larsen ME, Lyu H, Liu B. HER3-targeted therapeutic antibodies and antibody-drug conjugates in non-small cell lung cancer refractory to EGFR-tyrosine kinase inhibitors. CHINESE MEDICAL JOURNAL PULMONARY AND CRITICAL CARE MEDICINE 2023; 1:11-17. [PMID: 39170873 PMCID: PMC11332908 DOI: 10.1016/j.pccm.2022.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/29/2022] [Accepted: 12/23/2022] [Indexed: 08/23/2024]
Abstract
Human epidermal growth factor receptor 3 (HER3) is a unique member of the human epidermal growth factor receptor (HER/EGFR) family, since it has negligible kinase activity. Therefore, HER3 must interact with a kinase-proficient receptor to form a heterodimer, leading to the activation of signaling cascades. Overexpression of HER3 is observed in various human cancers, including non-small cell lung cancer (NSCLC), and correlates with poor clinical outcomes in patients. Studies on the underlying mechanism demonstrate that HER3-initiated signaling promotes tumor metastasis and causes treatment failure in human cancers. Upregulation of HER3 is frequently observed in EGFR-mutant NSCLC treated with EGFR-tyrosine kinase inhibitors (TKIs). Increased expression of HER3 triggers the so-called EGFR-independent mechanism via interactions with other receptors to activate "bypass signaling pathways", thereby resulting in resistance to EGFR-TKIs. To date, no HER3-targeted therapy has been approved for cancer treatment. In both preclinical and clinical studies, targeting HER3 with a blocking antibody (Ab) is the only strategy being examined. Recent evaluations of an anti-HER3 Ab-drug conjugate (ADC) show promising results in patients with EGFR-TKI-resistant NSCLC. Herein, we summarize our understanding of the unique biology of HER3 in NSCLC refractory to EGFR-TKIs, with a focus on its dimerization partners and subsequent activation of signaling pathways. We also discuss the latest development of the therapeutic Abs and ADCs targeting HER3 to abrogate EGFR-TKI resistance in NSCLC.
Collapse
Affiliation(s)
- Margaret E. Larsen
- Departments of Interdisciplinary Oncology and Genetics, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University (LSU) Health Sciences Center, New Orleans, LA 70112, USA
| | - Hui Lyu
- Departments of Interdisciplinary Oncology and Genetics, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University (LSU) Health Sciences Center, New Orleans, LA 70112, USA
| | - Bolin Liu
- Departments of Interdisciplinary Oncology and Genetics, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University (LSU) Health Sciences Center, New Orleans, LA 70112, USA
| |
Collapse
|
99
|
Sun SY. Taking early preventive interventions to manage the challenging issue of acquired resistance to third-generation EGFR inhibitors. CHINESE MEDICAL JOURNAL PULMONARY AND CRITICAL CARE MEDICINE 2023; 1:3-10. [PMID: 37609474 PMCID: PMC10442612 DOI: 10.1016/j.pccm.2022.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 09/17/2022] [Accepted: 10/31/2022] [Indexed: 08/24/2023]
Abstract
Although the clinical efficacies of third-generation epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKIs) such as osimertinib in the treatment of non-small cell lung cancer (NSCLC) with EGFR-activating mutations are promising, drug-acquired resistance inevitably occurs whether they are used as first-line or second-line treatment. Therefore, managing the acquired resistance to third-generation EGFR-TKIs is crucial in the clinic for improving patient survival. Great efforts have been made to develop potentially effective strategies or regimens for the treatment of EGFR-mutant NSCLC patients after relapse following these TKIs therapies with the hope that patients will continue to benefit from treatment through overcoming acquired resistance. Although this approach, which aims to overcome drug-acquired resistance, is necessary and important, it is a passive practice. Taking preventive action early before disease progression to manage the unavoidable development of acquired resistance offers an equally important and efficient approach. We strongly believe that early preventive interventions using effective and tolerable combination regimens that interfere with the process of developing acquired resistance may substantially improve the outcomes of EGFR-mutant NSCLC treatment with third-generation EGFR-TKIs. Thus, this review focuses on discussing the scientific rationale and mechanism-driven strategies for delaying and even preventing the emergence of acquired resistance to third-generation EGFR-TKIs, particularly osimertinib.
Collapse
Affiliation(s)
- Shi-Yong Sun
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
100
|
Ferrara MG, Belluomini L, Smimmo A, Sposito M, Avancini A, Giannarelli D, Milella M, Pilotto S, Bria E. Meta-analysis of the prognostic impact of TP53 co-mutations in EGFR-mutant advanced non-small-cell lung cancer treated with tyrosine kinase inhibitors. Crit Rev Oncol Hematol 2023; 184:103929. [PMID: 36773668 DOI: 10.1016/j.critrevonc.2023.103929] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 01/24/2023] [Accepted: 01/24/2023] [Indexed: 02/12/2023] Open
Abstract
PURPOSE To assess the prognostic impact of TP53 mutations in EGFR-mutant advanced NSCLC patients treated with TKIs. METHODS Studies exploring the clinical outcomes of EGFR mutant/TP53 wild-type versus EGFR/TP53 co-mutant patients treated with TKIs were selected. Data were cumulated by adopting a fixed and random-effect model. RESULTS Overall, 29 trials were eligible. The PFS analysis showed that TP53 co-mutant group has shorter PFS versus EGFR mutant/TP53 wild-type group (HR = 1.67, 95% CI 1.51-1.83, heterogeneity I2 =20%, p = 0.18). Patients affected by EGFR/TP53 co-mutant NSCLC have a higher chance of shorter OS versus EGFR mutant/TP53 wild type (HR= 1.89, 95% CI 1.67-2.14, heterogeneity I2 = 21%; p = 0.19). The subgroup analysis showed no significant difference between first-second versus third-generation TKIs in both PFS and OS (p = 0.31, p = 0.08). CONCLUSIONS TP53 mutations represent a clinically relevant mechanism of resistance to EGFR-TKIs, regardless of their generation. A personalized therapeutical approach should be explored in dedicated clinical trials.
Collapse
Affiliation(s)
- Miriam Grazia Ferrara
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy; Medical Oncology, Università Cattolica del Sacro Cuore, Roma, Italy.
| | - Lorenzo Belluomini
- Section of Oncology, Department of Medicine, University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy.
| | - Annafrancesca Smimmo
- Biostatistical Unit, Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.
| | - Marco Sposito
- Section of Oncology, Department of Medicine, University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy.
| | - Alice Avancini
- Section of Oncology, Department of Medicine, University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy; Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.
| | - Diana Giannarelli
- Biostatistical Unit, Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.
| | - Michele Milella
- Section of Oncology, Department of Medicine, University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy.
| | - Sara Pilotto
- Section of Oncology, Department of Medicine, University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy.
| | - Emilio Bria
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy.
| |
Collapse
|