51
|
Kirk J, Lee JY, Lee Y, Kang C, Shin S, Lee E, Song JJ, Hohng S. Yeast Chd1p Unwraps the Exit Side DNA upon ATP Binding to Facilitate the Nucleosome Translocation Occurring upon ATP Hydrolysis. Biochemistry 2020; 59:4481-4487. [PMID: 33174727 DOI: 10.1021/acs.biochem.0c00747] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chromodomain-helicase-DNA-binding protein 1 (CHD1) remodels chromatin by translocating nucleosomes along DNA, but its mechanism remains poorly understood. We use single-molecule fluorescence experiments to clarify the mechanism by which yeast CHD1 (Chd1p) remodels nucleosomes. We find that binding of ATP to Chd1p induces transient unwrapping of the DNA on the exit side of the nucleosome, facilitating nucleosome translocation. ATP hydrolysis is required to induce nucleosome translocation. The unwrapped DNA after translocation is then rewrapped after the release of the hydrolyzed nucleotide and phosphate, revealing that each step of the ATP hydrolysis cycle is responsible for a distinct step of nucleosome remodeling. These results show that Chd1p remodels nucleosomes via a mechanism that is unique among the other ATP-dependent chromatin remodelers.
Collapse
Affiliation(s)
- Jaewon Kirk
- Department of Physics and Astronomy, Institute of Applied Physics, Seoul National University, Seoul 08826, Republic of Korea
| | - Ju Yeon Lee
- Department of Physics and Astronomy, Institute of Applied Physics, Seoul National University, Seoul 08826, Republic of Korea
| | - Yejin Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Chanshin Kang
- Department of Physics and Astronomy, Institute of Applied Physics, Seoul National University, Seoul 08826, Republic of Korea
| | - Soochul Shin
- Department of Physics and Astronomy, Institute of Applied Physics, Seoul National University, Seoul 08826, Republic of Korea
| | - Eunhye Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Ji-Joon Song
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Sungchul Hohng
- Department of Physics and Astronomy, Institute of Applied Physics, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
52
|
Markert J, Luger K. Nucleosomes Meet Their Remodeler Match. Trends Biochem Sci 2020; 46:41-50. [PMID: 32917506 DOI: 10.1016/j.tibs.2020.08.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/12/2020] [Accepted: 08/14/2020] [Indexed: 12/12/2022]
Abstract
Over 85% of all genomic DNA in eukaryotes is organized in arrays of nucleosomes, the basic organizational principle of chromatin. The tight interaction of DNA with histones represents a significant barrier for all DNA-dependent machineries. This is in part overcome by enzymes, termed ATP-dependent remodelers, that are recruited to nucleosomes at defined locations and modulate their structure. There are several different classes of remodelers, and all use specific nucleosome features to bind to and alter nucleosomes. This review highlights and summarizes areas of interactions with the nucleosome that allow remodeling to occur.
Collapse
Affiliation(s)
- Jonathan Markert
- Department of Biochemistry, University of Colorado at Boulder, Boulder, CO 80309, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Karolin Luger
- Department of Biochemistry, University of Colorado at Boulder, Boulder, CO 80309, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
53
|
Hada A, Hota SK, Luo J, Lin YC, Kale S, Shaytan AK, Bhardwaj SK, Persinger J, Ranish J, Panchenko AR, Bartholomew B. Histone Octamer Structure Is Altered Early in ISW2 ATP-Dependent Nucleosome Remodeling. Cell Rep 2020; 28:282-294.e6. [PMID: 31269447 DOI: 10.1016/j.celrep.2019.05.106] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 04/24/2019] [Accepted: 05/29/2019] [Indexed: 11/26/2022] Open
Abstract
Nucleosomes are the fundamental building blocks of chromatin that regulate DNA access and are composed of histone octamers. ATP-dependent chromatin remodelers like ISW2 regulate chromatin access by translationally moving nucleosomes to different DNA regions. We find that histone octamers are more pliable than previously assumed and distorted by ISW2 early in remodeling before DNA enters nucleosomes and the ATPase motor moves processively on nucleosomal DNA. Uncoupling the ATPase activity of ISW2 from nucleosome movement with deletion of the SANT domain from the C terminus of the Isw2 catalytic subunit traps remodeling intermediates in which the histone octamer structure is changed. We find restricting histone movement by chemical crosslinking also traps remodeling intermediates resembling those seen early in ISW2 remodeling with loss of the SANT domain. Other evidence shows histone octamers are intrinsically prone to changing their conformation and can be distorted merely by H3-H4 tetramer disulfide crosslinking.
Collapse
Affiliation(s)
- Arjan Hada
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center - Science Park, Smithville, TX 78957, USA; Catalent Pharma Solutions, 726 Heartland Trail, Madison, WI 53717, USA
| | - Swetansu K Hota
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center - Science Park, Smithville, TX 78957, USA
| | - Jie Luo
- Institute for Systems Biology, Seattle, WA 98109, USA
| | - Yuan-Chi Lin
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center - Science Park, Smithville, TX 78957, USA
| | - Seyit Kale
- Computational Biology Branch, National Center for Biotechnology Information National Library of Medicine, NIH, Bethesda, MD 20894, USA
| | - Alexey K Shaytan
- Computational Biology Branch, National Center for Biotechnology Information National Library of Medicine, NIH, Bethesda, MD 20894, USA; Department of Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Saurabh K Bhardwaj
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center - Science Park, Smithville, TX 78957, USA; BioTherapeutics Pharmaceutical Sciences, Bioprocess Research & Development, Pfizer, 700 Chesterfield Parkway West, Chesterfield, MO 63017, USA
| | - Jim Persinger
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center - Science Park, Smithville, TX 78957, USA
| | - Jeff Ranish
- Institute for Systems Biology, Seattle, WA 98109, USA
| | - Anna R Panchenko
- Computational Biology Branch, National Center for Biotechnology Information National Library of Medicine, NIH, Bethesda, MD 20894, USA
| | - Blaine Bartholomew
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center - Science Park, Smithville, TX 78957, USA.
| |
Collapse
|
54
|
Nucleosome movement analysis based on second-order information entropy and density functional theory. Biophys Chem 2020; 265:106436. [PMID: 32731086 DOI: 10.1016/j.bpc.2020.106436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/14/2020] [Accepted: 07/14/2020] [Indexed: 10/23/2022]
Abstract
Dynamics of +1 and -1 nucleosomes near TSS of yeast chromosome 2 were analyzed by using second-order information entropy and density functional theory method. Second-order information entropy can measure the interaction intensity between nucleosome sequences and nucleosome histones based on the intensity of base association. In addition, density functional theory method can be used to obtain the global interaction intensity between nucleosome sequences and nucleosome histones based on energy state size and active or non-active state of binucleoside pairs. Our results showed asymmetry of interaction intensity on both sides of the nucleosome central site, and that +1 nucleosomes tend to move toward the 5'-end and -1 nucleosomes tend to move toward the 3'-end. Under the dynamic balance of nucleosome movement, in roder to shut down gene transcription, +1 and -1 nucleosomes will cover TSS. If the dynamic balance is destroyed, +1 and -1 nucleosomes stay away from each other to expose TSS to restart gene transcription. The movement trend of +1 and -1 nucleosomes coincides with the biological mechanism of gene transcription and non-transcription, and the nucleosome sequences contain the dynamic information of nucleosome movement, which provides effective technical support for the study of gene transcription regulation mechanism.
Collapse
|
55
|
Bacic L, Sabantsev A, Deindl S. Recent advances in single-molecule fluorescence microscopy render structural biology dynamic. Curr Opin Struct Biol 2020; 65:61-68. [PMID: 32634693 DOI: 10.1016/j.sbi.2020.05.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/21/2020] [Accepted: 05/21/2020] [Indexed: 01/30/2023]
Abstract
Single-molecule fluorescence microscopy has long been appreciated as a powerful tool to study the structural dynamics that enable biological function of macromolecules. Recent years have witnessed the development of more complex single-molecule fluorescence techniques as well as powerful combinations with structural approaches to obtain mechanistic insights into the workings of various molecular machines and protein complexes. In this review, we highlight these developments that together bring us one step closer to a dynamic understanding of biological processes in atomic details.
Collapse
Affiliation(s)
- Luka Bacic
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Anton Sabantsev
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| | - Sebastian Deindl
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
56
|
Sundaram R, Vasudevan D. Structural Basis of Nucleosome Recognition and Modulation. Bioessays 2020; 42:e1900234. [DOI: 10.1002/bies.201900234] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 05/05/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Rajivgandhi Sundaram
- Laboratory of Macromolecular Crystallography Institute of Life Sciences Bhubaneswar 751023 India
- Manipal Academy of Higher Education Manipal 576104 India
| | - Dileep Vasudevan
- Laboratory of Macromolecular Crystallography Institute of Life Sciences Bhubaneswar 751023 India
| |
Collapse
|
57
|
Farnung L, Ochmann M, Cramer P. Nucleosome-CHD4 chromatin remodeler structure maps human disease mutations. eLife 2020; 9:56178. [PMID: 32543371 PMCID: PMC7338049 DOI: 10.7554/elife.56178] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 06/15/2020] [Indexed: 12/13/2022] Open
Abstract
Chromatin remodeling plays important roles in gene regulation during development, differentiation and in disease. The chromatin remodeling enzyme CHD4 is a component of the NuRD and ChAHP complexes that are involved in gene repression. Here, we report the cryo-electron microscopy (cryo-EM) structure of Homo sapiens CHD4 engaged with a nucleosome core particle in the presence of the non-hydrolysable ATP analogue AMP-PNP at an overall resolution of 3.1 Å. The ATPase motor of CHD4 binds and distorts nucleosomal DNA at superhelical location (SHL) +2, supporting the ‘twist defect’ model of chromatin remodeling. CHD4 does not induce unwrapping of terminal DNA, in contrast to its homologue Chd1, which functions in gene activation. Our structure also maps CHD4 mutations that are associated with human cancer or the intellectual disability disorder Sifrim-Hitz-Weiss syndrome.
Collapse
Affiliation(s)
- Lucas Farnung
- Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, Göttingen, Germany
| | - Moritz Ochmann
- Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, Göttingen, Germany
| | - Patrick Cramer
- Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, Göttingen, Germany
| |
Collapse
|
58
|
Affiliation(s)
- Gregory D Bowman
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD, USA.
| | - Sebastian Deindl
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
59
|
Willhoft O, Wigley DB. INO80 and SWR1 complexes: the non-identical twins of chromatin remodelling. Curr Opin Struct Biol 2020; 61:50-58. [PMID: 31838293 PMCID: PMC7171469 DOI: 10.1016/j.sbi.2019.09.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 09/07/2019] [Indexed: 02/06/2023]
Abstract
The INO80 family of chromatin remodellers are multisubunit complexes that perform a variety of tasks on nucleosomes. Family members are built around a heterohexamer of RuvB-like protein, an ATP-dependent DNA translocase,nuclear actin and actin-related proteins, and a few complex-specific subunits. They modify chromatin in a number of ways including nucleosome sliding and exchange of variant histones. Recent structural information on INO80 and SWR1 complexes has revealed similarities in the basic architecture of the complexes. However, structural and biochemical data on the complexes bound to nucleosomes reveal these similarities to be somewhat superficial and their biochemical activities and mechanisms are very different. Consequently, the INO80 family displays a surprising diversity of function that is based upon a similar structural framework.
Collapse
Affiliation(s)
- Oliver Willhoft
- Section of Structural and Synthetic Biology, Dept. Infectious Disease, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK
| | - Dale B Wigley
- Section of Structural and Synthetic Biology, Dept. Infectious Disease, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK.
| |
Collapse
|
60
|
Abstract
Protein semisynthesis-defined herein as the assembly of a protein from a combination of synthetic and recombinant fragments-is a burgeoning field of chemical biology that has impacted many areas in the life sciences. In this review, we provide a comprehensive survey of this area. We begin by discussing the various chemical and enzymatic methods now available for the manufacture of custom proteins containing noncoded elements. This section begins with a discussion of methods that are more chemical in origin and ends with those that employ biocatalysts. We also illustrate the commonalities that exist between these seemingly disparate methods and show how this is allowing for the development of integrated chemoenzymatic methods. This methodology discussion provides the technical foundation for the second part of the review where we cover the great many biological problems that have now been addressed using these tools. Finally, we end the piece with a short discussion on the frontiers of the field and the opportunities available for the future.
Collapse
Affiliation(s)
| | - Tom W. Muir
- Department of Chemistry, Princeton University, Frick Laboratory, Princeton, New Jersey 08544, United States
| |
Collapse
|
61
|
Zhong Y, Paudel BP, Ryan DP, Low JKK, Franck C, Patel K, Bedward MJ, Torrado M, Payne RJ, van Oijen AM, Mackay JP. CHD4 slides nucleosomes by decoupling entry- and exit-side DNA translocation. Nat Commun 2020; 11:1519. [PMID: 32251276 PMCID: PMC7090039 DOI: 10.1038/s41467-020-15183-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 02/21/2020] [Indexed: 11/09/2022] Open
Abstract
Chromatin remodellers hydrolyse ATP to move nucleosomal DNA against histone octamers. The mechanism, however, is only partially resolved, and it is unclear if it is conserved among the four remodeller families. Here we use single-molecule assays to examine the mechanism of action of CHD4, which is part of the least well understood family. We demonstrate that the binding energy for CHD4-nucleosome complex formation-even in the absence of nucleotide-triggers significant conformational changes in DNA at the entry side, effectively priming the system for remodelling. During remodelling, flanking DNA enters the nucleosome in a continuous, gradual manner but exits in concerted 4-6 base-pair steps. This decoupling of entry- and exit-side translocation suggests that ATP-driven movement of entry-side DNA builds up strain inside the nucleosome that is subsequently released at the exit side by DNA expulsion. Based on our work and previous studies, we propose a mechanism for nucleosome sliding.
Collapse
Affiliation(s)
- Yichen Zhong
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - Bishnu P Paudel
- Molecular Horizons, School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, 2522, Australia.,Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia
| | - Daniel P Ryan
- Department of Genome Sciences, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, 2601, Australia
| | - Jason K K Low
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - Charlotte Franck
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia.,School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Karishma Patel
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - Max J Bedward
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - Mario Torrado
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - Richard J Payne
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Antoine M van Oijen
- Molecular Horizons, School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, 2522, Australia. .,Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia.
| | - Joel P Mackay
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
62
|
Neipel J, Brandani G, Schiessel H. Translational nucleosome positioning: A computational study. Phys Rev E 2020; 101:022405. [PMID: 32168683 DOI: 10.1103/physreve.101.022405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 11/25/2019] [Indexed: 01/26/2023]
Abstract
About three-quarters of eukaryotic DNA is wrapped into nucleosomes; DNA spools with a protein core. The affinity of a given DNA stretch to be incorporated into a nucleosome is known to depend on the base-pair sequence-dependent geometry and elasticity of the DNA double helix. This causes the rotational and translational positioning of nucleosomes. In this study we ask the question whether the latter can be predicted by a simple coarse-grained DNA model with sequence-dependent elasticity, the rigid base-pair model. Whereas this model is known to be rather robust in predicting rotational nucleosome positioning, we show that the translational positioning is a rather subtle effect that is dominated by the guanine-cytosine content dependence of entropy rather than energy. A correct qualitative prediction within the rigid base-pair framework can only be achieved by assuming that DNA elasticity effectively changes on complexation into the nucleosome complex. With that extra assumption we arrive at a model which gives an excellent quantitative agreement to experimental in vitro nucleosome maps, under the additional assumption that nucleosomes equilibrate their positions only locally.
Collapse
Affiliation(s)
- J Neipel
- Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany.,Faculty of Physics, Ludwig-Maximilians-Universität München, 80333 München, Germany.,Instituut-Lorentz, Universiteit Leiden, Postbus 9506, 2300 RA Leiden, The Netherlands
| | - G Brandani
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - H Schiessel
- Instituut-Lorentz, Universiteit Leiden, Postbus 9506, 2300 RA Leiden, The Netherlands
| |
Collapse
|
63
|
Dao HT, Dul BE, Dann GP, Liszczak GP, Muir TW. A basic motif anchoring ISWI to nucleosome acidic patch regulates nucleosome spacing. Nat Chem Biol 2020; 16:134-142. [PMID: 31819269 PMCID: PMC6982587 DOI: 10.1038/s41589-019-0413-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 10/22/2019] [Indexed: 12/15/2022]
Abstract
Recent studies have implicated the nucleosome acidic patch in the activity of ATP-dependent chromatin remodeling machines. We used a photocrosslinking-based nucleosome profiling technology (photoscanning) to identify a conserved basic motif within the catalytic subunit of ISWI remodelers, SNF2h, which engages this nucleosomal epitope. This region of SNF2h is essential for chromatin remodeling activity in a reconstituted biochemical system and in cells. Our studies suggest that the basic motif in SNF2h plays a critical role in anchoring the remodeler to the nucleosomal surface. We also examine the functional consequences of several cancer-associated histone mutations that map to the nucleosome acidic patch. Kinetic studies using physiologically relevant heterotypic nucleosomal substrates ('Janus' nucleosomes) indicate that these cancer-associated mutations can disrupt regularly spaced chromatin structure by inducing ISWI-mediated unidirectional nucleosome sliding. These results indicate a potential mechanistic link between oncogenic histones and alterations to the chromatin landscape.
Collapse
Affiliation(s)
- Hai T Dao
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Barbara E Dul
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Geoffrey P Dann
- Department of Chemistry, Princeton University, Princeton, NJ, USA
- Department of Biochemistry and Biophysics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Glen P Liszczak
- Department of Chemistry, Princeton University, Princeton, NJ, USA
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX, USA
| | - Tom W Muir
- Department of Chemistry, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
64
|
Kaczmarczyk A, Meng H, Ordu O, Noort JV, Dekker NH. Chromatin fibers stabilize nucleosomes under torsional stress. Nat Commun 2020; 11:126. [PMID: 31913285 PMCID: PMC6949304 DOI: 10.1038/s41467-019-13891-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 11/25/2019] [Indexed: 01/11/2023] Open
Abstract
Torsional stress generated during DNA replication and transcription has been suggested to facilitate nucleosome unwrapping and thereby the progression of polymerases. However, the propagation of twist in condensed chromatin remains yet unresolved. Here, we measure how force and torque impact chromatin fibers with a nucleosome repeat length of 167 and 197. We find that both types of fibers fold into a left-handed superhelix that can be stabilized by positive torsion. We observe that the structural changes induced by twist were reversible, indicating that chromatin has a large degree of elasticity. Our direct measurements of torque confirmed the hypothesis of chromatin fibers as a twist buffer. Using a statistical mechanics-based torsional spring model, we extracted values of the chromatin twist modulus and the linking number per stacked nucleosome that were in good agreement with values measured here experimentally. Overall, our findings indicate that the supercoiling generated by DNA-processing enzymes, predicted by the twin-supercoiled domain model, can be largely accommodated by the higher-order structure of chromatin.
Collapse
Affiliation(s)
- Artur Kaczmarczyk
- Huygens-Kamerlingh Onnes Laboratory, Leiden University, Niels Bohrweg 2, 2333 CA, Leiden, The Netherlands
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, van der Maasweg 9, 2629 HZ, Delft, The Netherlands
- Faculty of Medicine, Imperial College London, Du Cane Road, W12 0NN, London, United Kingdom
| | - He Meng
- Huygens-Kamerlingh Onnes Laboratory, Leiden University, Niels Bohrweg 2, 2333 CA, Leiden, The Netherlands
| | - Orkide Ordu
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - John van Noort
- Huygens-Kamerlingh Onnes Laboratory, Leiden University, Niels Bohrweg 2, 2333 CA, Leiden, The Netherlands.
| | - Nynke H Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, van der Maasweg 9, 2629 HZ, Delft, The Netherlands.
| |
Collapse
|
65
|
Takada S, Brandani GB, Tan C. Nucleosomes as allosteric scaffolds for genetic regulation. Curr Opin Struct Biol 2020; 62:93-101. [PMID: 31901887 DOI: 10.1016/j.sbi.2019.11.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 12/11/2022]
Abstract
Nucleosomes are stable yet highly dynamic complexes exhibiting diverse types of motions, such as sliding, DNA unwrapping, and disassembly, encoding a landscape with a large number of metastable states. In this review, describing recent studies on these nucleosome structure changes, we propose that the nucleosome can be viewed as an ideal allosteric scaffold: regulated by effector molecules such as transcription factors and chromatin remodelers, the nucleosome controls the downstream gene activity. Binding of transcription factors to the nucleosome can enhance DNA unwrapping or slide the DNA, altering either the binding or the unbinding of other transcription factors to nearby sites. ATP-dependent chromatin remodelers induce a series of DNA deformations, which allosterically propagate throughout the nucleosome to induce DNA sliding or histone exchange.
Collapse
Affiliation(s)
- Shoji Takada
- Department of Biophysics, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake, Sakyo Kyoto, 606-8502, Japan.
| | - Giovanni B Brandani
- Department of Biophysics, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake, Sakyo Kyoto, 606-8502, Japan
| | - Cheng Tan
- RIKEN Center for Computational Science, 7-1-26 Minatojima-minamimachi, Chuo, Kobe, 650-0047 Japan
| |
Collapse
|
66
|
Chittori S, Hong J, Bai Y, Subramaniam S. Structure of the primed state of the ATPase domain of chromatin remodeling factor ISWI bound to the nucleosome. Nucleic Acids Res 2019; 47:9400-9409. [PMID: 31402386 PMCID: PMC6755096 DOI: 10.1093/nar/gkz670] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/11/2019] [Accepted: 08/03/2019] [Indexed: 12/15/2022] Open
Abstract
ATP-dependent chromatin remodeling factors of SWI/SNF2 family including ISWI, SNF2, CHD1 and INO80 subfamilies share a conserved but functionally non-interchangeable ATPase domain. Here we report cryo-electron microscopy (cryo-EM) structures of the nucleosome bound to an ISWI fragment with deletion of the AutoN and HSS regions in nucleotide-free conditions and the free nucleosome at ∼ 4 Å resolution. In the bound conformation, the ATPase domain interacts with the super helical location 2 (SHL 2) of the nucleosomal DNA, with the N-terminal tail of H4 and with the α1 helix of H3. Density for other regions of ISWI is not observed, presumably due to disorder. Comparison with the structure of the free nucleosome reveals that although the histone core remains largely unchanged, remodeler binding causes perturbations in the nucleosomal DNA resulting in a bulge near the SHL2 site. Overall, the structure of the nucleotide-free ISWI-nucleosome complex is similar to the corresponding regions of the recently reported ADP bound ISWI-nucleosome structures, which are significantly different from that observed for the ADP-BeFx bound structure. Our findings are relevant to the initial step of ISWI binding to the nucleosome and provide additional insights into the nucleosome remodeling process driven by ISWI.
Collapse
Affiliation(s)
- Sagar Chittori
- Laboratory of Cell Biology, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD 20892, USA.,University of British Columbia, Vancouver, British Columbia, Canada
| | - Jingjun Hong
- Laboratory of Biochemistry and Molecular Biology, CCR, NCI, NIH, Bethesda, MD 20892, USA
| | - Yawen Bai
- Laboratory of Biochemistry and Molecular Biology, CCR, NCI, NIH, Bethesda, MD 20892, USA
| | - Sriram Subramaniam
- University of British Columbia, Vancouver, British Columbia, Canada.,Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| |
Collapse
|
67
|
Ye Y, Wu H, Chen K, Clapier CR, Verma N, Zhang W, Deng H, Cairns BR, Gao N, Chen Z. Structure of the RSC complex bound to the nucleosome. Science 2019; 366:838-843. [PMID: 31672915 DOI: 10.1126/science.aay0033] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 10/20/2019] [Indexed: 12/12/2022]
Abstract
The RSC complex remodels chromatin structure and regulates gene transcription. We used cryo-electron microscopy to determine the structure of yeast RSC bound to the nucleosome. RSC is delineated into the adenosine triphosphatase motor, the actin-related protein module, and the substrate recruitment module (SRM). RSC binds the nucleosome mainly through the motor, with the auxiliary subunit Sfh1 engaging the H2A-H2B acidic patch to enable nucleosome ejection. SRM is organized into three substrate-binding lobes poised to bind their respective nucleosomal epitopes. The relative orientations of the SRM and the motor on the nucleosome explain the directionality of DNA translocation and promoter nucleosome repositioning by RSC. Our findings shed light on RSC assembly and functionality, and they provide a framework to understand the mammalian homologs BAF/PBAF and the Sfh1 ortholog INI1/BAF47, which are frequently mutated in cancers.
Collapse
Affiliation(s)
- Youpi Ye
- MOE Key Laboratory of Protein Science, Tsinghua University, Beijing 100084, P.R. China.,School of Life Science, Tsinghua University, Beijing 100084, P.R. China
| | - Hao Wu
- School of Life Science, Tsinghua University, Beijing 100084, P.R. China.,Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, Beijing 100084, China
| | - Kangjing Chen
- MOE Key Laboratory of Protein Science, Tsinghua University, Beijing 100084, P.R. China.,School of Life Science, Tsinghua University, Beijing 100084, P.R. China
| | - Cedric R Clapier
- Howard Hughes Medical Institute and Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Naveen Verma
- Howard Hughes Medical Institute and Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Wenhao Zhang
- School of Life Science, Tsinghua University, Beijing 100084, P.R. China
| | - Haiteng Deng
- School of Life Science, Tsinghua University, Beijing 100084, P.R. China
| | - Bradley R Cairns
- Howard Hughes Medical Institute and Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
| | - Ning Gao
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Joint Center for Life Sciences, School of Life Sciences, Peking University, Beijing 100871, China.
| | - Zhucheng Chen
- MOE Key Laboratory of Protein Science, Tsinghua University, Beijing 100084, P.R. China. .,School of Life Science, Tsinghua University, Beijing 100084, P.R. China.,Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, Beijing 100084, China
| |
Collapse
|
68
|
Mohapatra S, Lin CT, Feng XA, Basu A, Ha T. Single-Molecule Analysis and Engineering of DNA Motors. Chem Rev 2019; 120:36-78. [DOI: 10.1021/acs.chemrev.9b00361] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
| | | | | | | | - Taekjip Ha
- Howard Hughes Medical Institute, Baltimore, Maryland 21205, United States
| |
Collapse
|
69
|
Yan L, Chen Z. A Unifying Mechanism of DNA Translocation Underlying Chromatin Remodeling. Trends Biochem Sci 2019; 45:217-227. [PMID: 31623923 DOI: 10.1016/j.tibs.2019.09.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 09/01/2019] [Accepted: 09/06/2019] [Indexed: 12/18/2022]
Abstract
Chromatin remodelers alter the position and composition of nucleosomes, and play key roles in the regulation of chromatin structure and various chromatin-based transactions. Recent cryo-electron microscopy (cryo-EM) and single-molecule fluorescence resonance energy transfer (smFRET) studies have shed mechanistic light on the fundamental question of how the remodeling enzymes couple with ATP hydrolysis to slide nucleosomes. Structures of the chromatin remodeler Snf2 bound to the nucleosome reveal the conformational cycle of the enzyme and the induced DNA distortion. Investigations on ISWI, Chd1, and INO80 support a unifying fundamental mechanism of DNA translocation. Finally, studies of the SWR1 complex suggest that the enzyme distorts the DNA abnormally to achieve histone exchange without net DNA translocation.
Collapse
Affiliation(s)
- Lijuan Yan
- Ministry of Education (MOE) Key Laboratory of Protein Science, Tsinghua University, Beijing 100084, PRC; School of Life Science, Tsinghua University, Beijing 100084, PRC
| | - Zhucheng Chen
- Ministry of Education (MOE) Key Laboratory of Protein Science, Tsinghua University, Beijing 100084, PRC; School of Life Science, Tsinghua University, Beijing 100084, PRC; Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, Beijing 100084, PRC.
| |
Collapse
|
70
|
ZCMM: A Novel Method Using Z-Curve Theory- Based and Position Weight Matrix for Predicting Nucleosome Positioning. Genes (Basel) 2019; 10:genes10100765. [PMID: 31569414 PMCID: PMC6827144 DOI: 10.3390/genes10100765] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 09/25/2019] [Accepted: 09/26/2019] [Indexed: 02/04/2023] Open
Abstract
Nucleosomes are the basic units of eukaryotes. The accurate positioning of nucleosomes plays a significant role in understanding many biological processes such as transcriptional regulation mechanisms and DNA replication and repair. Here, we describe the development of a novel method, termed ZCMM, based on Z-curve theory and position weight matrix (PWM). The ZCMM was trained and tested using the nucleosomal and linker sequences determined by support vector machine (SVM) in Saccharomyces cerevisiae (S. cerevisiae), and experimental results showed that the sensitivity (Sn), specificity (Sp), accuracy (Acc), and Matthews correlation coefficient (MCC) values for ZCMM were 91.40%, 96.56%, 96.75%, and 0.88, respectively, and the average area under the receiver operating characteristic curve (AUC) value was 0.972. A ZCMM predictor was developed to predict nucleosome positioning in Homo sapiens (H. sapiens), Caenorhabditis elegans (C. elegans), and Drosophila melanogaster (D. melanogaster) genomes, and the accuracy (Acc) values were 77.72%, 85.34%, and 93.62%, respectively. The maximum AUC values of the four species were 0.982, 0.861, 0.912 and 0.911, respectively. Another independent dataset for S. cerevisiae was used to predict nucleosome positioning. Compared with the results of Wu's method, it was found that the Sn, Sp, Acc, and MCC of ZCMM results for S. cerevisiae were all higher, reaching 96.72%, 96.54%, 94.10%, and 0.88. Compared with the Guo's method 'iNuc-PseKNC', the results of ZCMM for D. melanogaster were better. Meanwhile, the ZCMM was compared with some experimental data in vitro and in vivo for S. cerevisiae, and the results showed that the nucleosomes predicted by ZCMM were highly consistent with those confirmed by these experiments. Therefore, it was further confirmed that the ZCMM method has good accuracy and reliability in predicting nucleosome positioning.
Collapse
|
71
|
Wilson MD, Renault L, Maskell DP, Ghoneim M, Pye VE, Nans A, Rueda DS, Cherepanov P, Costa A. Retroviral integration into nucleosomes through DNA looping and sliding along the histone octamer. Nat Commun 2019; 10:4189. [PMID: 31519882 PMCID: PMC6744463 DOI: 10.1038/s41467-019-12007-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 08/08/2019] [Indexed: 01/02/2023] Open
Abstract
Retroviral integrase can efficiently utilise nucleosomes for insertion of the reverse-transcribed viral DNA. In face of the structural constraints imposed by the nucleosomal structure, integrase gains access to the scissile phosphodiester bonds by lifting DNA off the histone octamer at the site of integration. To clarify the mechanism of DNA looping by integrase, we determined a 3.9 Å resolution structure of the prototype foamy virus intasome engaged with a nucleosome core particle. The structural data along with complementary single-molecule Förster resonance energy transfer measurements reveal twisting and sliding of the nucleosomal DNA arm proximal to the integration site. Sliding the nucleosomal DNA by approximately two base pairs along the histone octamer accommodates the necessary DNA lifting from the histone H2A-H2B subunits to allow engagement with the intasome. Thus, retroviral integration into nucleosomes involves the looping-and-sliding mechanism for nucleosomal DNA repositioning, bearing unexpected similarities to chromatin remodelers. Retroviral integrases catalyze the insertion of viral DNA into the host cell DNA and can use nucleosomes as substrates for integration. Here the authors present the 3.9 Å cryo-EM structure of prototype foamy virus integrase after strand transfer into nucleosomal DNA, which together with single-molecule FRET measurements provides evidence for a DNA looping and sliding mechanism of integrases.
Collapse
Affiliation(s)
- Marcus D Wilson
- Macromolecular Machines Laboratory, The Francis Crick Institute, NW1 1AT, London, UK.,Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, EH9 3JR, UK
| | - Ludovic Renault
- Macromolecular Machines Laboratory, The Francis Crick Institute, NW1 1AT, London, UK.,NeCEN, University of Leiden, 2333CC, Leiden, Netherlands
| | - Daniel P Maskell
- Chromatin structure and mobile DNA Laboratory, The Francis Crick Institute, London, NW1 1AT, UK.,Faculty of Biological Sciences, Leeds, LS2 9JT, UK
| | - Mohamed Ghoneim
- Single Molecule Imaging Group, MRC London Institute for Medical Science, London, W12 0NN, UK.,Molecular Virology, Department of Medicine, Imperial College London, London, W12 0NN, UK
| | - Valerie E Pye
- Chromatin structure and mobile DNA Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Andrea Nans
- Structural Biology Science Technology Platform, The Francis Crick Institute, London, NW1 1AT, UK
| | - David S Rueda
- Single Molecule Imaging Group, MRC London Institute for Medical Science, London, W12 0NN, UK. .,Molecular Virology, Department of Medicine, Imperial College London, London, W12 0NN, UK.
| | - Peter Cherepanov
- Chromatin structure and mobile DNA Laboratory, The Francis Crick Institute, London, NW1 1AT, UK. .,Department of Medicine, Imperial College London, St-Mary's Campus, Norfolk Place, London, W2 1PG, UK.
| | - Alessandro Costa
- Macromolecular Machines Laboratory, The Francis Crick Institute, NW1 1AT, London, UK.
| |
Collapse
|
72
|
Densham RM, Morris JR. Moving Mountains-The BRCA1 Promotion of DNA Resection. Front Mol Biosci 2019; 6:79. [PMID: 31552267 PMCID: PMC6733915 DOI: 10.3389/fmolb.2019.00079] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 08/20/2019] [Indexed: 12/26/2022] Open
Abstract
DNA double-strand breaks (DSBs) occur in our cells in the context of chromatin. This type of lesion is toxic, entirely preventing genome continuity and causing cell death or terminal arrest. Several repair mechanisms can act on DNA surrounding a DSB, only some of which carry a low risk of mutation, so that which repair process is utilized is critical to the stability of genetic material of cells. A key component of repair outcome is the degree of DNA resection directed to either side of the break site. This in turn determines the subsequent forms of repair in which DNA homology plays a part. Here we will focus on chromatin and chromatin-bound complexes which constitute the "mountains" that block resection, with a particular focus on how the breast and ovarian cancer predisposition protein-1 (BRCA1) contributes to repair outcomes through overcoming these blocks.
Collapse
Affiliation(s)
| | - Joanna R. Morris
- Birmingham Centre for Genome Biology, Institute of Cancer and Genomic Sciences, Medical and Dental Schools, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|