51
|
GO-based antibacterial composites: Application and design strategies. Adv Drug Deliv Rev 2021; 178:113967. [PMID: 34509575 DOI: 10.1016/j.addr.2021.113967] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 08/18/2021] [Accepted: 09/05/2021] [Indexed: 12/15/2022]
Abstract
Graphene oxide (GO), for its unique structure with high biocompatibility and designability, is widely used in the antibacterial field. Various strategies have been designed to fabricate GO-based composites with antibacterial properties. This review summarized these strategies, divided them into three types and interpreted their antibacterial mechanisms: (i) "GO*/non-GO" type in which GO acts as the single antibacterial core, (ii) "GO*/non-GO*" type in which GO and non-GO components function synergistically as dual antibacterial cores, (iii) "GO/non-GO*" type in which non-GO acts as the single antibacterial core, while GO component plays a supportive, not a dominant role in antibiosis. Besides, the fields suiting their applications and factors influencing their antibacterial properties were analyzed. Finally, the limitations and prospects in the current researches were discussed. In summary, GO-based composites have revolutionized antibacterial strategies. This review may serve as a reference to inspire further research on GO-based antibacterial composites.
Collapse
|
52
|
Li Y, You X, Li R, Li Y, Yang C, Long M, Zhang R, Su Y, Jiang Z. Loosening ultrathin polyamide nanofilms through alkali hydrolysis for high-permselective nanofiltration. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119623] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
53
|
|
54
|
Chen Y, Zhu Z, Tian Y, Jiang L. Rational ion transport management mediated through membrane structures. EXPLORATION (BEIJING, CHINA) 2021; 1:20210101. [PMID: 37323215 PMCID: PMC10190948 DOI: 10.1002/exp.20210101] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/13/2021] [Indexed: 06/14/2023]
Abstract
Unique membrane structures endow membranes with controlled ion transport properties in both biological and artificial systems, and they have shown broad application prospects from industrial production to biological interfaces. Herein, current advances in nanochannel-structured membranes for manipulating ion transport are reviewed from the perspective of membrane structures. First, the controllability of ion transport through ion selectivity, ion gating, ion rectification, and ion storage is introduced. Second, nanochannel-structured membranes are highlighted according to the nanochannel dimensions, including single-dimensional nanochannels (i.e., 1D, 2D, and 3D) functioning by the controllable geometrical parameters of 1D nanochannels, the adjustable interlayer spacing of 2D nanochannels, and the interconnected ion diffusion pathways of 3D nanochannels, and mixed-dimensional nanochannels (i.e., 1D/1D, 1D/2D, 1D/3D, 2D/2D, 2D/3D, and 3D/3D) tuned through asymmetric factors (e.g., components, geometric parameters, and interface properties). Then, ultrathin membranes with short ion transport distances and sandwich-like membranes with more delicate nanochannels and combination structures are reviewed, and stimulus-responsive nanochannels are discussed. Construction methods for nanochannel-structured membranes are briefly introduced, and a variety of applications of these membranes are summarized. Finally, future perspectives to developing nanochannel-structured membranes with unique structures (e.g., combinations of external macro/micro/nanostructures and the internal nanochannel arrangement) for mediating ion transport are presented.
Collapse
Affiliation(s)
- Yupeng Chen
- Key Laboratory of Bio‐Inspired Smart Interfacial Science and Technology of Ministry of Education, School of ChemistryBeihang UniversityBeijingP. R. China
| | - Zhongpeng Zhu
- Key Laboratory of Bio‐Inspired Smart Interfacial Science and Technology of Ministry of Education, School of ChemistryBeihang UniversityBeijingP. R. China
| | - Ye Tian
- CAS Key Laboratory of Bio‐Inspired Materials and Interfacial ScienceCAS Center for Excellence in NanoscienceTechnical Institute of Physics and Chemistry, Chinese Academy of SciencesBeijingP. R. China
- University of Chinese Academy of SciencesBeijingP. R. China
| | - Lei Jiang
- Key Laboratory of Bio‐Inspired Smart Interfacial Science and Technology of Ministry of Education, School of ChemistryBeihang UniversityBeijingP. R. China
- CAS Key Laboratory of Bio‐Inspired Materials and Interfacial ScienceCAS Center for Excellence in NanoscienceTechnical Institute of Physics and Chemistry, Chinese Academy of SciencesBeijingP. R. China
- University of Chinese Academy of SciencesBeijingP. R. China
- School of Future TechnologyUniversity of Chinese Academy of SciencesBeijingP. R. China
| |
Collapse
|
55
|
Zhao Z, Ren H, Yang D, Han Y, Shi J, An K, Chen Y, Shi Y, Wang W, Tan J, Xin X, Zhang Y, Jiang Z. Boosting Nitrogen Activation via Bimetallic Organic Frameworks for Photocatalytic Ammonia Synthesis. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02465] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Zhanfeng Zhao
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, Tianjin 300072, People’s Republic of China
| | - Hanjie Ren
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, Tianjin 300072, People’s Republic of China
| | - Dong Yang
- Key Laboratory of Systems Bioengineering of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, People’s Republic of China
| | - You Han
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
| | - Jiafu Shi
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, Tianjin 300072, People’s Republic of China
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, People’s Republic of China
| | - Ke An
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, Tianjin 300072, People’s Republic of China
| | - Yao Chen
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, Tianjin 300072, People’s Republic of China
| | - Yonghui Shi
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, Tianjin 300072, People’s Republic of China
| | - Wenjing Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, Tianjin 300072, People’s Republic of China
| | - Jiangdan Tan
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, Tianjin 300072, People’s Republic of China
| | - Xin Xin
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, Tianjin 300072, People’s Republic of China
| | - Yue Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
| | - Zhongyi Jiang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, Tianjin 300072, People’s Republic of China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, People’s Republic of China
| |
Collapse
|
56
|
Xu Z, Zhang Y, Zhang X, Meng Q, Zhu Y, Shen C, Lu Y, Zhang G, Gao C. Confined assembly of ultrathin nanoporous nitrogen-doped graphene nanofilms with dual metal coordination chemistry. iScience 2021; 24:102576. [PMID: 34151229 PMCID: PMC8188556 DOI: 10.1016/j.isci.2021.102576] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/10/2021] [Accepted: 05/18/2021] [Indexed: 12/02/2022] Open
Abstract
Graphene oxide (GO) nanosheets with unique structure have received much attention in providing opportunity for high-performance membranes in separation. However, the rational design of ultrathin graphene membranes with controlled structures remains a big challenge. Here, we report a methodology to synthesize dual metal-coordinated ultrathin nanoporous graphene nanofilms by tailoring well-aligned nanocrystals as building blocks on heteroatom-doped GO nanosheets with tunable architectures. Manipulation of metal nitrate as bifunctional dopants realizes N-doping of graphene oxide and preferential growth of α-Mn2O3 nanocrystals. Generation of Mn-O-C bond during cross-linking greatly strengthens the stability of membranes for long-term steady operation. Meanwhile, because of spatial confinement effects and high binding energy, N-doped reduced GO nanosheets are desirable supports to construct numerous Mn-N-C bonds, thus generating artificial nanopores to significantly increase nanochannels for ultrafast mass transport. Moreover, the size-selective permeability of ultrathin nanoporous GO-based nanofilms can be optimized by managing the types of metal source for target coordination. Dual metal-coordinated GO-based nanofilms are achieved by a general and facile method Mn-N-C bonds are constructed in rGO nanosheets with N-containing coordinated links Artificial nanopores are used to increase nanochannels for ultrafast mass transport Generation of Mn-O-C bond greatly strengthens the stability of nanofilms in separation
Collapse
Affiliation(s)
- Zehai Xu
- Center for Membrane and Water Science, Institute of Oceanic and Environmental Chemical Engineering, State Key Lab Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Yufan Zhang
- College of Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Xu Zhang
- Center for Membrane and Water Science, Institute of Oceanic and Environmental Chemical Engineering, State Key Lab Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Qin Meng
- College of Chemical and Biological Engineering, State Key Laboratory of Chemical Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Yujie Zhu
- Center for Membrane and Water Science, Institute of Oceanic and Environmental Chemical Engineering, State Key Lab Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Chong Shen
- College of Chemical and Biological Engineering, State Key Laboratory of Chemical Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Yinghua Lu
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Guoliang Zhang
- Center for Membrane and Water Science, Institute of Oceanic and Environmental Chemical Engineering, State Key Lab Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- Corresponding author
| | - Congjie Gao
- Center for Membrane and Water Science, Institute of Oceanic and Environmental Chemical Engineering, State Key Lab Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- Hangzhou Water Treatment Technology Development Center, National Engineering Research Center for Liquid Separation Membrane, Hangzhou 310012, China
| |
Collapse
|
57
|
Wang H, Wang M, Liang X, Yuan J, Yang H, Wang S, Ren Y, Wu H, Pan F, Jiang Z. Organic molecular sieve membranes for chemical separations. Chem Soc Rev 2021; 50:5468-5516. [PMID: 33687389 DOI: 10.1039/d0cs01347a] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Molecular separations that enable selective transport of target molecules from gas and liquid molecular mixtures, such as CO2 capture, olefin/paraffin separations, and organic solvent nanofiltration, represent the most energy sensitive and significant demands. Membranes are favored for molecular separations owing to the advantages of energy efficiency, simplicity, scalability, and small environmental footprint. A number of emerging microporous organic materials have displayed great potential as building blocks of molecular separation membranes, which not only integrate the rigid, engineered pore structures and desirable stability of inorganic molecular sieve membranes, but also exhibit a high degree of freedom to create chemically rich combinations/sequences. To gain a deep insight into the intrinsic connections and characteristics of these microporous organic material-based membranes, in this review, for the first time, we propose the concept of organic molecular sieve membranes (OMSMs) with a focus on the precise construction of membrane structures and efficient intensification of membrane processes. The platform chemistries, designing principles, and assembly methods for the precise construction of OMSMs are elaborated. Conventional mass transport mechanisms are analyzed based on the interactions between OMSMs and penetrate(s). Particularly, the 'STEM' guidelines of OMSMs are highlighted to guide the precise construction of OMSM structures and efficient intensification of OMSM processes. Emerging mass transport mechanisms are elucidated inspired by the phenomena and principles of the mass transport processes in the biological realm. The representative applications of OMSMs in gas and liquid molecular mixture separations are highlighted. The major challenges and brief perspectives for the fundamental science and practical applications of OMSMs are tentatively identified.
Collapse
Affiliation(s)
- Hongjian Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China. and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Meidi Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China. and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Xu Liang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China. and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Jinqiu Yuan
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China. and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Hao Yang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China. and Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4 117585, Singapore
| | - Shaoyu Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China. and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Yanxiong Ren
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China. and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Hong Wu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China. and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Fusheng Pan
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China. and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Zhongyi Jiang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China. and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China and Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| |
Collapse
|
58
|
Wang Q, Wei X, Wang GR, Lu TD, Shi Q, Sun SP. Inner-selective coordination nanofiltration hollow fiber membranes from assist-pressure modified substrate. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119186] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
59
|
Electrostatic-modulated interfacial polymerization toward ultra-permselective nanofiltration membranes. iScience 2021; 24:102369. [PMID: 33898951 PMCID: PMC8059057 DOI: 10.1016/j.isci.2021.102369] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/08/2021] [Accepted: 03/23/2021] [Indexed: 01/31/2023] Open
Abstract
Interfacial polymerization (IP) is a platform technology for ultrathin membranes. However, most efforts in regulating the IP process have been focused on short-range H-bond interaction, often leading to low-permselective membranes. Herein, we report an electrostatic-modulated interfacial polymerization (eIP) via supercharged phosphate-rich substrates toward ultra-permselective polyamide membranes. Phytate, a natural strongly charged organophosphate, confers high-density long-range electrostatic attraction to aqueous monomers and affords tunable charge density by flexible metal-organophosphate coordination. The electrostatic attraction spatially enriches amine monomers and temporally decelerates their diffusion into organic phase to be polymerized with acyl chloride monomers, triggering membrane sealing and inhibiting membrane growth, thus generating polyamide membranes with reduced thickness and enhanced cross-linking. The optimized nearly 10-nm-thick and highly cross-linked polyamide membrane displays superior water permeance and ionic selectivity. This eIP approach is applicable to the majority of conventional IP processes and can be extended to fabricate a variety of advanced membranes from polymers, supermolecules, and organic framework materials. Electrostatic-modulated interfacial polymerization is proposed for the first time Electrostatic attraction regulates the spatial-temporal distribution of amine monomers Monomer regulation leads to reduced thickness and enhanced cross-linking of membrane Ultrathin and highly cross-linked polyamide membrane displays superior permselectivity
Collapse
|
60
|
Wang D, Yang J, Xue F, Wang J, Hu W. Experimental and computational study of zinc coordinated 1-hydroxyethylidene-1,1-diphosphonic acid self-assembled film on steel surface. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.126009] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
61
|
Zhang Y, Guo J, Han G, Bai Y, Ge Q, Ma J, Lau CH, Shao L. Molecularly soldered covalent organic frameworks for ultrafast precision sieving. SCIENCE ADVANCES 2021; 7:eabe8706. [PMID: 33762342 PMCID: PMC7990329 DOI: 10.1126/sciadv.abe8706] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 02/04/2021] [Indexed: 05/25/2023]
Abstract
The weak interlamellar interaction of covalent organic framework (COF) nanocrystals inhibit the construction of highly efficient ion/molecular sieving membranes owing to the inferior contaminant selectivity induced by defects in stacked COF membranes and stability issues. Here, a facile in situ molecularly soldered strategy was developed to fabricate defect-free ultrathin COF membranes with precise sieving abilities using the typical chemical environment for COF condensation polymerization and dopamine self-polymerization. The experimental data and density functional theory simulations proved that the reactive oxygen species generated during dopamine polymerization catalyze the nucleophilic reactions of the COF, thus facilitating the counter-diffusion growth of thin COF layers. Notably, dopamine can eliminate the defects in the stacked COF by soldering the COF crystals, fortifying the mechanical properties of the ultrathin COF membranes. The COF membranes exhibited ultrafast precision sieving for molecular separation and ion removal in both aqueous and organic solvents, which surpasses that of state-of-the-art membranes.
Collapse
Affiliation(s)
- Yanqiu Zhang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Laboratory of Urban Water Resource and Environment, and School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
- School of Environment, Harbin Institute of Technology, Harbin 150009, China
| | - Jing Guo
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Laboratory of Urban Water Resource and Environment, and School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Gang Han
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yongping Bai
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Laboratory of Urban Water Resource and Environment, and School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Qingchun Ge
- College of Environment and Resources, Fuzhou University, No. 2 Xueyuan Road, Fujian 350116, China
| | - Jun Ma
- School of Environment, Harbin Institute of Technology, Harbin 150009, China
| | - Cher Hon Lau
- School of Engineering, The University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh EH9 3JL, UK
| | - Lu Shao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Laboratory of Urban Water Resource and Environment, and School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
| |
Collapse
|
62
|
Wang Q, Wu X, Chen J, Li W, Zhang H, Wang J. Ultrathin and stable organic-inorganic lamellar composite membrane for high-performance organic solvent nanofiltration. Chem Eng Sci 2020. [DOI: 10.1016/j.ces.2020.116002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
63
|
In situ metal-polyphenol interfacial assembly tailored superwetting PES/SPES/MPN membranes for oil-in-water emulsion separation. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118566] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
64
|
Chu G, Zhang C, Liu Y, Cao Z, Wang L, Chen Y, Zhou W, Gao G, Wang K, Cui D. A Gold Nanocluster Constructed Mixed-Metal Metal-Organic Network Film for Combating Implant-Associated Infections. ACS NANO 2020; 14:15633-15645. [PMID: 33166138 DOI: 10.1021/acsnano.0c06446] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The development of modular strategies for programming self-assembled supramolecular architectures with distinct structural and functional features is of immense scientific interest. We reported on the intrinsic antibacterial capability of anionic amphiphilic gold nanoclusters (GNCs) capped by para-mercaptobenzoic acid, which was closely related to the protonation level of terminal carboxylate groups. By using of the metal-ligand coordination-driven and solvent evaporation-induced self-assembly, we constructed GNCs-based mixed-metal metal-organic network (MM-MON) films on titanium disks as antibacterial nanocoatings. Taking the reasonable utilization of tetravalent metal ions M4+ (Ti, Zr, Hf; hard Lewis acid) and bactericidal divalent metal ions M2+ (Cu, Zn; borderline acid) co-incorporated metal-carboxylate coordination bonds, the MM-MON films exhibited superior stability due to the robust M4+-O bonds and M2+ releasing behavior resulting from the labile M2+-O coordinating. Together, the MM-MON films integrated the bacteria-responsive character of GNCs, exceptional chemical stability, and greatly enhanced antibacterial activity, ultimately killing adherent bacteria and initiating a self-defensive function. In a rat model for subcutaneous implant-associated infection, the MM-MON nanocoating showed an approximately 2 and 1 log lower multidrug-resistant Staphylococcus aureus implant and tissue colonization, respectively. The generalizable modular strategy of the GNC-metal networks is amenable to facilitate the functionalization of metal surfaces for combating implant-associated infections.
Collapse
Affiliation(s)
- Guangyu Chu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Chunlei Zhang
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science & Engineering, School of Electronic Information and Electrical Engineering Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yifei Liu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Zanxia Cao
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| | - Lirui Wang
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science & Engineering, School of Electronic Information and Electrical Engineering Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yunfeng Chen
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Wenjie Zhou
- Second Dental Clinic, Ninth People's Hospital Affiliated with Shanghai Jiao Tong University, School of Medicine, 280 Mohe Road, Shanghai 200001, China
| | - Guo Gao
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science & Engineering, School of Electronic Information and Electrical Engineering Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Kan Wang
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science & Engineering, School of Electronic Information and Electrical Engineering Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Daxiang Cui
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science & Engineering, School of Electronic Information and Electrical Engineering Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
65
|
Meng Y, Shu L, Xie LH, Zhao M, Liu T, Li JR. High performance nanofiltration in BUT-8(A)/PDDA mixed matrix membrane fabricated by spin-assisted layer-by-layer assembly. J Taiwan Inst Chem Eng 2020. [DOI: 10.1016/j.jtice.2020.10.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
66
|
Chen M, Peng C, Su Y, Chen X, Zhang Y, Wang Y, Peng J, Sun Q, Liu X, Huang W. A General Strategy for Hollow Metal‐Phytate Coordination Complex Micropolyhedra Enabled by Cation Exchange. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005892] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Meiling Chen
- Frontiers Science Center for Flexible Electronics (FSCFE) MIIT Key Laboratory of Flexible Electronics (KLoFE) Shaanxi Key Laboratory of Flexible Electronics Xi'an Key Laboratory of Flexible Electronics Xi'an Key Laboratory of Biomedical Materials & Engineering Xi'an Institute of Flexible Electronics Institute of Flexible Electronics (IFE) Northwestern Polytechnical University Xi'an 710072 Shaanxi China
| | - Chenxi Peng
- Frontiers Science Center for Flexible Electronics (FSCFE) MIIT Key Laboratory of Flexible Electronics (KLoFE) Shaanxi Key Laboratory of Flexible Electronics Xi'an Key Laboratory of Flexible Electronics Xi'an Key Laboratory of Biomedical Materials & Engineering Xi'an Institute of Flexible Electronics Institute of Flexible Electronics (IFE) Northwestern Polytechnical University Xi'an 710072 Shaanxi China
| | - Yaoquan Su
- State Key Laboratory of Natural Medicines School of Basic Medical Sciences and Clinical Pharmacy China Pharmaceutical University Nanjing Jiangsu 211198 China
| | - Xue Chen
- Frontiers Science Center for Flexible Electronics (FSCFE) MIIT Key Laboratory of Flexible Electronics (KLoFE) Shaanxi Key Laboratory of Flexible Electronics Xi'an Key Laboratory of Flexible Electronics Xi'an Key Laboratory of Biomedical Materials & Engineering Xi'an Institute of Flexible Electronics Institute of Flexible Electronics (IFE) Northwestern Polytechnical University Xi'an 710072 Shaanxi China
| | - Yuezhou Zhang
- Frontiers Science Center for Flexible Electronics (FSCFE) MIIT Key Laboratory of Flexible Electronics (KLoFE) Shaanxi Key Laboratory of Flexible Electronics Xi'an Key Laboratory of Flexible Electronics Xi'an Key Laboratory of Biomedical Materials & Engineering Xi'an Institute of Flexible Electronics Institute of Flexible Electronics (IFE) Northwestern Polytechnical University Xi'an 710072 Shaanxi China
| | - Yu Wang
- SZU-NUS Collaborative Innovation Center ICL-2DMOST Institute of Microscale Optoelectronics Shenzhen University Shenzhen 518060 China
| | - Juanjuan Peng
- State Key Laboratory of Natural Medicines School of Basic Medical Sciences and Clinical Pharmacy China Pharmaceutical University Nanjing Jiangsu 211198 China
| | - Qiang Sun
- Center for Functional Materials NUS (Suzhou) Research Institute Suzhou Jiangsu 215123 China
| | - Xiaowang Liu
- Frontiers Science Center for Flexible Electronics (FSCFE) MIIT Key Laboratory of Flexible Electronics (KLoFE) Shaanxi Key Laboratory of Flexible Electronics Xi'an Key Laboratory of Flexible Electronics Xi'an Key Laboratory of Biomedical Materials & Engineering Xi'an Institute of Flexible Electronics Institute of Flexible Electronics (IFE) Northwestern Polytechnical University Xi'an 710072 Shaanxi China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE) MIIT Key Laboratory of Flexible Electronics (KLoFE) Shaanxi Key Laboratory of Flexible Electronics Xi'an Key Laboratory of Flexible Electronics Xi'an Key Laboratory of Biomedical Materials & Engineering Xi'an Institute of Flexible Electronics Institute of Flexible Electronics (IFE) Northwestern Polytechnical University Xi'an 710072 Shaanxi China
| |
Collapse
|
67
|
Chen M, Peng C, Su Y, Chen X, Zhang Y, Wang Y, Peng J, Sun Q, Liu X, Huang W. A General Strategy for Hollow Metal‐Phytate Coordination Complex Micropolyhedra Enabled by Cation Exchange. Angew Chem Int Ed Engl 2020; 59:20988-20995. [DOI: 10.1002/anie.202005892] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Indexed: 01/17/2023]
Affiliation(s)
- Meiling Chen
- Frontiers Science Center for Flexible Electronics (FSCFE) MIIT Key Laboratory of Flexible Electronics (KLoFE) Shaanxi Key Laboratory of Flexible Electronics Xi'an Key Laboratory of Flexible Electronics Xi'an Key Laboratory of Biomedical Materials & Engineering Xi'an Institute of Flexible Electronics Institute of Flexible Electronics (IFE) Northwestern Polytechnical University Xi'an 710072 Shaanxi China
| | - Chenxi Peng
- Frontiers Science Center for Flexible Electronics (FSCFE) MIIT Key Laboratory of Flexible Electronics (KLoFE) Shaanxi Key Laboratory of Flexible Electronics Xi'an Key Laboratory of Flexible Electronics Xi'an Key Laboratory of Biomedical Materials & Engineering Xi'an Institute of Flexible Electronics Institute of Flexible Electronics (IFE) Northwestern Polytechnical University Xi'an 710072 Shaanxi China
| | - Yaoquan Su
- State Key Laboratory of Natural Medicines School of Basic Medical Sciences and Clinical Pharmacy China Pharmaceutical University Nanjing Jiangsu 211198 China
| | - Xue Chen
- Frontiers Science Center for Flexible Electronics (FSCFE) MIIT Key Laboratory of Flexible Electronics (KLoFE) Shaanxi Key Laboratory of Flexible Electronics Xi'an Key Laboratory of Flexible Electronics Xi'an Key Laboratory of Biomedical Materials & Engineering Xi'an Institute of Flexible Electronics Institute of Flexible Electronics (IFE) Northwestern Polytechnical University Xi'an 710072 Shaanxi China
| | - Yuezhou Zhang
- Frontiers Science Center for Flexible Electronics (FSCFE) MIIT Key Laboratory of Flexible Electronics (KLoFE) Shaanxi Key Laboratory of Flexible Electronics Xi'an Key Laboratory of Flexible Electronics Xi'an Key Laboratory of Biomedical Materials & Engineering Xi'an Institute of Flexible Electronics Institute of Flexible Electronics (IFE) Northwestern Polytechnical University Xi'an 710072 Shaanxi China
| | - Yu Wang
- SZU-NUS Collaborative Innovation Center ICL-2DMOST Institute of Microscale Optoelectronics Shenzhen University Shenzhen 518060 China
| | - Juanjuan Peng
- State Key Laboratory of Natural Medicines School of Basic Medical Sciences and Clinical Pharmacy China Pharmaceutical University Nanjing Jiangsu 211198 China
| | - Qiang Sun
- Center for Functional Materials NUS (Suzhou) Research Institute Suzhou Jiangsu 215123 China
| | - Xiaowang Liu
- Frontiers Science Center for Flexible Electronics (FSCFE) MIIT Key Laboratory of Flexible Electronics (KLoFE) Shaanxi Key Laboratory of Flexible Electronics Xi'an Key Laboratory of Flexible Electronics Xi'an Key Laboratory of Biomedical Materials & Engineering Xi'an Institute of Flexible Electronics Institute of Flexible Electronics (IFE) Northwestern Polytechnical University Xi'an 710072 Shaanxi China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE) MIIT Key Laboratory of Flexible Electronics (KLoFE) Shaanxi Key Laboratory of Flexible Electronics Xi'an Key Laboratory of Flexible Electronics Xi'an Key Laboratory of Biomedical Materials & Engineering Xi'an Institute of Flexible Electronics Institute of Flexible Electronics (IFE) Northwestern Polytechnical University Xi'an 710072 Shaanxi China
| |
Collapse
|
68
|
Fiedler J, Boström M, Persson C, Brevik I, Corkery R, Buhmann SY, Parsons DF. Full-Spectrum High-Resolution Modeling of the Dielectric Function of Water. J Phys Chem B 2020; 124:3103-3113. [DOI: 10.1021/acs.jpcb.0c00410] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Johannes Fiedler
- Centre for Materials Science and Nanotechnology, Department of Physics, University of Oslo, P. O. Box 1048 Blindern, NO-0316 Oslo, Norway
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Str. 3, 79104 Freiburg, Germany
| | - Mathias Boström
- Centre for Materials Science and Nanotechnology, Department of Physics, University of Oslo, P. O. Box 1048 Blindern, NO-0316 Oslo, Norway
- Department of Energy and Process Engineering, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Clas Persson
- Centre for Materials Science and Nanotechnology, Department of Physics, University of Oslo, P. O. Box 1048 Blindern, NO-0316 Oslo, Norway
| | - Iver Brevik
- Department of Energy and Process Engineering, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Robert Corkery
- Applied Physical Chemistry, KTH Royal Institute of Technology, SE 100 44 Stockholm, Sweden
| | - Stefan Yoshi Buhmann
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Str. 3, 79104 Freiburg, Germany
| | - Drew F. Parsons
- Discipline of Chemistry & Physics, Murdoch University, 90 South St, Murdoch, WA 6150, Australia
| |
Collapse
|
69
|
Zhan ZM, Xu ZL, Zhu KK, Tang YJ. How to understand the effects of heat curing conditions on the morphology and performance of polypiperazine-amide NF membrane. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117640] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|