51
|
An Intraocular Pressure Measurement Technique Based on Acoustic Radiation Force Using an Ultrasound Transducer: A Feasibility Study. SENSORS 2021; 21:s21051857. [PMID: 33799942 PMCID: PMC7961774 DOI: 10.3390/s21051857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 11/16/2022]
Abstract
High intraocular pressure (IOP) is one of the major risk factors for glaucoma, and thus accurate IOP measurements should be performed to diagnose and treat glaucoma early. In this study, a novel technique for measuring the IOP based on acoustic radiation force was proposed, and its potential was experimentally demonstrated. The proposed technique uses the acoustic radiation force to generate axial displacement on the ocular surface while simultaneously measuring the degree of deformation. In order to verify that the ocular displacement induced by the acoustic radiation force is related to the IOP, the experiment was conducted by fabricating a 5 MHz single element transducer and gelatin phantoms with different stiffness values. Our experimental results show that there is a close relationship between the ocular displacement by the acoustic radiation force and the IOP obtained by a commercial tonometer. Therefore, the proposed acoustic radiation force technique can be a promising candidate for measuring the IOP.
Collapse
|
52
|
Liu HC, Kijanka P, Urban MW. Two-dimensional (2D) dynamic vibration optical coherence elastography (DV-OCE) for evaluating mechanical properties: a potential application in tissue engineering. BIOMEDICAL OPTICS EXPRESS 2021; 12:1217-1235. [PMID: 33796348 PMCID: PMC7984779 DOI: 10.1364/boe.416661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 05/12/2023]
Abstract
Mechanical properties in tissues are an important indicator because they are associated with disease states. One of the well-known excitation sources in optical coherence elastography (OCE) to determine mechanical properties is acoustic radiation force (ARF); however, a complicated focusing alignment cannot be avoided. Another excitation source is a piezoelectric (PZT) stack to obtain strain images via compression, which can affect the intrinsic mechanical properties of tissues in tissue engineering. In this study, we report a new technique called two-dimensional (2D) dynamic vibration OCE (DV-OCE) to evaluate 2D wave velocities without tedious focusing alignment procedures and is a non-contact method with respect to the samples. The three-dimensional (3D) Fourier transform was utilized to transfer the traveling waves (x, y, t) into 3D k-space (kx, ky, f). A spatial 2D wavenumber filter and multi-angle directional filter were employed to decompose the waves with omni-directional components into four individual traveling directions. The 2D local wave velocity algorithm was used to calculate a 2D wave velocity map. Six materials, two homogeneous phantoms with 10 mm thickness, two homogeneous phantoms with 2 mm thickness, one heterogeneous phantom with 2 mm diameter inclusion and an ex vivo porcine kidney, were examined in this study. In addition, the ARF-OCE was used to evaluate wave velocities for comparison. Numerical simulations were performed to validate the proposed 2D dynamic vibration OCE technique. We demonstrate that the experimental results were in a good agreement with the results from ARF-OCE (transient OCE) and numerical simulations. Our proposed 2D dynamic vibration OCE could potentially pave the way for mechanical evaluation in tissue engineering and for laboratory translation with easy-to-setup and contactless advantages.
Collapse
Affiliation(s)
- Hsiao-Chuan Liu
- Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| | - Piotr Kijanka
- Department of Robotics and Mechatronics, AGH University of Science and Technology, Al. Mickiewicza 30, Krakow 30-059, Poland
| | - Matthew W. Urban
- Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| |
Collapse
|
53
|
Lan G, Aglyamov SR, Larin KV, Twa MD. In Vivo Human Corneal Shear-wave Optical Coherence Elastography. Optom Vis Sci 2021; 98:58-63. [PMID: 33394932 PMCID: PMC7774819 DOI: 10.1097/opx.0000000000001633] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/24/2020] [Indexed: 01/01/2023] Open
Abstract
SIGNIFICANCE A novel imaging technology, dynamic optical coherence elastography (OCE), was adapted for clinical noninvasive measurements of corneal biomechanics. PURPOSE Determining corneal biomechanical properties is a long-standing challenge. Elasticity imaging methods have recently been developed and applied for clinical evaluation of soft tissues in cancer detection, atherosclerotic plaque evaluation, surgical guidance, and more. Here, we describe the use of dynamic OCE to characterize mechanical wave propagation in the human cornea in vivo, thus providing a method for clinical determination of corneal biomechanical properties. METHODS High-resolution phase-sensitive optical coherence tomography imaging was combined with microliter air-pulse tissue stimulation to perform dynamic elasticity measurements in 18 eyes of nine participants. Low-pressure (0.1 mmHg), spatiotemporally discreet (150 μm, 800 μs) tissue stimulation produced submicron-scale tissue deformations that were measured at multiple positions over a 1-mm2 area. Surface wave velocity was measured and used to determine tissue stiffness. Elastic wave propagation velocity was measured and evaluated as a function of IOP and central corneal thickness. RESULTS Submicron corneal surface displacement amplitude (range, 0.005 to 0.5 μm) responses were measured with high sensitivity (0.24 nm). Corneal elastic wave velocity ranged from 2.4 to 4.2 m/s (mean, 3.5; 95% confidence interval, 3.2 to 3.8 m/s) and was correlated with central corneal thickness (r = 0.64, P < .001) and IOP (r = 0.52, P = .02). CONCLUSIONS Phase-sensitive optical coherence tomography imaging combined with microliter air-pulse mechanical tissue stimulation has sufficient detection sensitivity to observe submicron elastic wave propagation in corneal tissue. These measurements enable in vivo corneal stiffness determinations that will be further studied for use with disease detection and for monitoring clinical interventions.
Collapse
Affiliation(s)
- Gongpu Lan
- School of Physics and Optoelectronic Engineering, Foshan University, Foshan, Guangdong, China
- University of Houston College of Optometry, Houston, Texas
| | | | - Kirill V. Larin
- Department of Biomedical Engineering, University of Houston, Houston, Texas
| | - Michael D. Twa
- University of Houston College of Optometry, Houston, Texas
- School of Optometry, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
54
|
Neidhardt M, Bengs M, Latus S, Schlüter M, Saathoff T, Schlaefer A. 4D deep learning for real-time volumetric optical coherence elastography. Int J Comput Assist Radiol Surg 2021; 16:23-27. [PMID: 32997312 PMCID: PMC7822782 DOI: 10.1007/s11548-020-02261-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 09/10/2020] [Indexed: 11/29/2022]
Abstract
PURPOSE Elasticity of soft tissue provides valuable information to physicians during treatment and diagnosis of diseases. A number of approaches have been proposed to estimate tissue stiffness from the shear wave velocity. Optical coherence elastography offers a particularly high spatial and temporal resolution. However, current approaches typically acquire data at different positions sequentially, making it slow and less practical for clinical application. METHODS We propose a new approach for elastography estimations using a fast imaging device to acquire small image volumes at rates of 831 Hz. The resulting sequence of phase image volumes is fed into a 4D convolutional neural network which handles both spatial and temporal data processing. We evaluate the approach on a set of image data acquired for gelatin phantoms of known elasticity. RESULTS Using the neural network, the gelatin concentration of unseen samples was predicted with a mean error of 0.65 ± 0.81 percentage points from 90 subsequent volumes of phase data only. We achieve a data acquisition and data processing time of under 12 ms and 22 ms, respectively. CONCLUSIONS We demonstrate direct volumetric optical coherence elastography from phase image data. The approach does not rely on particular stimulation or sampling sequences and allows the estimation of elastic tissue properties of up to 40 Hz.
Collapse
Affiliation(s)
- M Neidhardt
- Institute of Medical Technology and Intelligent Systems, Hamburg University of Technology, Hamburg, Germany.
| | - M Bengs
- Institute of Medical Technology and Intelligent Systems, Hamburg University of Technology, Hamburg, Germany
| | - S Latus
- Institute of Medical Technology and Intelligent Systems, Hamburg University of Technology, Hamburg, Germany
| | - M Schlüter
- Institute of Medical Technology and Intelligent Systems, Hamburg University of Technology, Hamburg, Germany
| | - T Saathoff
- Institute of Medical Technology and Intelligent Systems, Hamburg University of Technology, Hamburg, Germany
| | - A Schlaefer
- Institute of Medical Technology and Intelligent Systems, Hamburg University of Technology, Hamburg, Germany
| |
Collapse
|
55
|
Zvietcovich F, Nair A, Ambekar YS, Singh M, Aglyamov SR, Twa MD, Larin KV. Confocal air-coupled ultrasonic optical coherence elastography probe for quantitative biomechanics. OPTICS LETTERS 2020; 45:6567-6570. [PMID: 33258863 PMCID: PMC10041740 DOI: 10.1364/ol.410593] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
We present an air-coupled ultrasonic radiation force probe co-focused with a phase-sensitive optical coherence tomography (OCT) system for quantitative wave-based elastography. A custom-made 1 MHz spherically focused piezoelectric transducer with a concentric 10 mm wide circular opening allowed for confocal micro-excitation of waves and phase-sensitive OCT imaging. Phantom studies demonstrated the capabilities of this probe to produce quasi-harmonic excitation up to 4 kHz for generation of elastic waves. Experimental results in ocular tissues showed highly detailed 2D and 3D elasticity mapping using this approach with great potential for clinical translation.
Collapse
Affiliation(s)
- Fernando Zvietcovich
- Department of Biomedical Engineering, University of Houston, Houston, Texas 77204, USA
| | - Achuth Nair
- Department of Biomedical Engineering, University of Houston, Houston, Texas 77204, USA
| | - Yogeshwari S. Ambekar
- Department of Biomedical Engineering, University of Houston, Houston, Texas 77204, USA
| | - Manmohan Singh
- Department of Biomedical Engineering, University of Houston, Houston, Texas 77204, USA
| | - Salavat R. Aglyamov
- Department of Mechanical Engineering, University of Houston, Houston, Texas 77204, USA
| | - Michael D. Twa
- College of Optometry, University of Houston, Houston, Texas 77204, USA
| | - Kirill V. Larin
- Department of Biomedical Engineering, University of Houston, Houston, Texas 77204, USA
- Corresponding author:
| |
Collapse
|
56
|
Zvietcovich F, Nair A, Singh M, Aglyamov SR, Twa MD, Larin KV. Dynamic Optical Coherence Elastography of the Anterior Eye: Understanding the Biomechanics of the Limbus. Invest Ophthalmol Vis Sci 2020; 61:7. [PMID: 33141893 PMCID: PMC7645208 DOI: 10.1167/iovs.61.13.7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Purpose Currently, the biomechanical properties of the corneo-scleral limbus when the eye-globe deforms are largely unknown. The purpose of this study is to evaluate changes in elasticity of the cornea, sclera, and limbus when subjected to different intraocular pressures (IOP) using wave-based optical coherence elastography (OCE). Special attention was given to the elasticity changes of the limbal region with respect to the elasticity variations in the neighboring corneal and scleral regions. Methods Continuous harmonic elastic waves (800 Hz) were mechanically induced in the sclera near the corneo-sclera limbus of in situ porcine eye-globes (n = 8). Wave propagation was imaged using a phase-sensitive optical coherence tomography system (PhS-OCT). The eyes were subjected to five different IOP-levels (10, 15, 20, 30, and 40 mm Hg), and spatially distributed propagation velocities were calculated along corneal, limbal, and scleral regions. Finite element analysis (FEA) of the same regions under the same excitation conditions were conducted for further validation of results. Results FEA demonstrated that the stiffness of the heterogeneous cornea-limbus-sclera transition can be characterized by phase velocity measurements of the elastic waves produced at 800 Hz in the anterior eye. Experimental results revealed that the wave speed in the limbus (cL = 6.5 m/s) is between the cornea (cc = 2.9 m/s) and sclera (cs = 10.0 m/s) at a physiological IOP level (15 mm Hg) and rapidly increases as the IOP level is increased, even surpassing the wave speed in the sclera. Finally, the change in elastic wave speed in the limbus (ΔcL∼18.5 m/s) was greater than in the cornea (Δcc ∼12.6 m/s) and sclera (Δcs∼8.1 m/s) for the same change in IOP. Conclusions We demonstrated that wave-based OCE can be utilized to assess limbus biomechanical properties. Moreover, experimental evidence showed that the corneo-scleral limbus is highly nonlinear compared to the cornea and sclera when the eye-globe is deformed by an increase of IOP. This may suggest that the limbus has enough structural flexibility to stabilize anterior eye shape during IOP changes.
Collapse
Affiliation(s)
- Fernando Zvietcovich
- Department of Biomedical Engineering, University of Houston, Houston, Texas, United States
| | - Achuth Nair
- Department of Biomedical Engineering, University of Houston, Houston, Texas, United States
| | - Manmohan Singh
- Department of Biomedical Engineering, University of Houston, Houston, Texas, United States
| | - Salavat R Aglyamov
- Department of Mechanical Engineering, University of Houston, Houston, Texas, United States
| | - Michael D Twa
- College of Optometry, University of Houston, Houston, Texas, United States
| | - Kirill V Larin
- Department of Biomedical Engineering, University of Houston, Houston, Texas, United States
| |
Collapse
|
57
|
Jin Z, Chen S, Dai Y, Bao C, Ye S, Zhou Y, Wang Y, Huang S, Wang Y, Shen M, Zhu D, Lu F. In vivo noninvasive measurement of spatially resolved corneal elasticity in human eyes using Lamb wave optical coherence elastography. JOURNAL OF BIOPHOTONICS 2020; 13:e202000104. [PMID: 32368840 DOI: 10.1002/jbio.202000104] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/24/2020] [Accepted: 04/29/2020] [Indexed: 05/23/2023]
Abstract
Current elastography techniques are limited in application to accurately assess spatially resolved corneal elasticity in vivo for human eyes. The air-puff optical coherence elastography (OCE) with an eye motion artifacts correction algorithm is developed to distinguish the in vivo cornea vibration from the eye motion and visualize the Lamb wave propagation clearly in healthy subjects. Based on the Lamb wave model, the phase velocity dispersion curve in the high-frequency is calculated to obtain spatially resolved corneal elasticity accurately with high repeatability. It is found that the corneal elasticity has regional variations and is correlated with intraocular pressure, which suggests that the method has the potential to provide noninvasive measurement of spatially resolved corneal elasticity in clinical practice.
Collapse
Affiliation(s)
- Zi Jin
- School of Ophthalmology and Optometry, Wenzhou Medical University, Zhejiang, China
| | - Sisi Chen
- School of Ophthalmology and Optometry, Wenzhou Medical University, Zhejiang, China
| | - Yingying Dai
- School of Ophthalmology and Optometry, Wenzhou Medical University, Zhejiang, China
| | - Chenhong Bao
- School of Ophthalmology and Optometry, Wenzhou Medical University, Zhejiang, China
| | - Shuling Ye
- School of Ophthalmology and Optometry, Wenzhou Medical University, Zhejiang, China
| | - Yuheng Zhou
- School of Ophthalmology and Optometry, Wenzhou Medical University, Zhejiang, China
| | - Yiyi Wang
- School of Ophthalmology and Optometry, Wenzhou Medical University, Zhejiang, China
| | - Shenghai Huang
- School of Ophthalmology and Optometry, Wenzhou Medical University, Zhejiang, China
| | - Yuanyuan Wang
- School of Ophthalmology and Optometry, Wenzhou Medical University, Zhejiang, China
| | - Meixiao Shen
- School of Ophthalmology and Optometry, Wenzhou Medical University, Zhejiang, China
| | - Dexi Zhu
- School of Ophthalmology and Optometry, Wenzhou Medical University, Zhejiang, China
| | - Fan Lu
- School of Ophthalmology and Optometry, Wenzhou Medical University, Zhejiang, China
| |
Collapse
|
58
|
Pitre JJ, Kirby MA, Li DS, Shen TT, Wang RK, O'Donnell M, Pelivanov I. Nearly-incompressible transverse isotropy (NITI) of cornea elasticity: model and experiments with acoustic micro-tapping OCE. Sci Rep 2020; 10:12983. [PMID: 32737363 PMCID: PMC7395720 DOI: 10.1038/s41598-020-69909-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/21/2020] [Indexed: 12/28/2022] Open
Abstract
The cornea provides the largest refractive power for the human visual system. Its stiffness, along with intraocular pressure (IOP), are linked to several pathologies, including keratoconus and glaucoma. Although mechanical tests can quantify corneal elasticity ex vivo, they cannot be used clinically. Dynamic optical coherence elastography (OCE), which launches and tracks shear waves to estimate stiffness, provides an attractive non-contact probe of corneal elasticity. To date, however, OCE studies report corneal moduli around tens of kPa, orders-of-magnitude less than those (few MPa) obtained by tensile/inflation testing. This large discrepancy impedes OCE's clinical adoption. Based on corneal microstructure, we introduce and fully characterize a nearly-incompressible transversely isotropic (NITI) model depicting corneal biomechanics. We show that the cornea must be described by at least two shear moduli, contrary to current single-modulus models, decoupling tensile and shear responses. We measure both as a function of IOP in ex vivo porcine cornea, obtaining values consistent with both tensile and shear tests. At pressures above 30 mmHg, the model begins to fail, consistent with non-linear changes in cornea at high IOP.
Collapse
Affiliation(s)
- John J Pitre
- Department of Bioengineering, University of Washington, Seattle, WA, USA.
| | - Mitchell A Kirby
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - David S Li
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Department of Chemical Engineering, University of Washington, Seattle, WA, USA
| | - Tueng T Shen
- Department of Ophthalmology, University of Washington, Seattle, WA, USA
| | - Ruikang K Wang
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Department of Ophthalmology, University of Washington, Seattle, WA, USA
| | - Matthew O'Donnell
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Ivan Pelivanov
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| |
Collapse
|
59
|
Preoperative, intraoperative, and postoperative assessment of corneal biomechanics in refractive surgery. Curr Opin Ophthalmol 2020; 31:234-240. [PMID: 32452876 DOI: 10.1097/icu.0000000000000663] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PURPOSE OF REVIEW To review current and emerging methods and utilities of preoperative, intraoperative, and postoperative measurements of corneal biomechanics and their effects on refractive surgery decision-making. RECENT FINDINGS Several recent clinical and preclinical studies have demonstrated the utility of corneal biomechanical analysis in refractive surgery. These studies focus on both screening surgical candidates for keratoconic disease as well as intraoperative and postoperative monitoring. The measurement of spatially resolved biomechanics is beginning to be studied in humans. SUMMARY Clinically available screening methods combining corneal biomechanics with topographic and tomographic data provide increased utility when screening for keratoconic disorder. Spatially resolved measurement of corneal biomechanics holds great potential for preoperative, intraoperative, and postoperative evaluation of refractive surgery candidates as well as for more individualized procedures in the future.
Collapse
|
60
|
Liu HC, Kijanka P, Urban MW. Four-dimensional (4D) phase velocity optical coherence elastography in heterogeneous materials and biological tissue. BIOMEDICAL OPTICS EXPRESS 2020; 11:3795-3817. [PMID: 33014567 PMCID: PMC7510894 DOI: 10.1364/boe.394835] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/21/2020] [Accepted: 06/09/2020] [Indexed: 05/03/2023]
Abstract
The variations of mechanical properties in soft tissues are biomarkers used for clinical diagnosis and disease monitoring. Optical coherence elastography (OCE) has been extensively developed to investigate mechanical properties of various biological tissues. These methods are generally based on time-domain data and measure the time-of-flight of the localized shear wave propagations to estimate the group velocity. However, there is considerable information that can be obtained from examining the mechanical properties such as wave propagation velocities at different frequencies. Here we propose a method to evaluate phase velocity, wave velocity at various frequencies, in four-dimensional space (x, y, z, f), called 4D-OCE phase velocity. The method enables local estimates of the phase velocity of propagating mechanical waves in a medium. We acquired and analyzed data with this method from a homogeneous reference phantom, a heterogeneous phantom material with four different excitation cases, and ex vivo porcine kidney tissue. The 3D-OCE group velocity was also estimated to compare with 4D-OCE phase velocity. Moreover, we performed numerical simulation of wave propagations to illustrate the boundary behavior of the propagating waves. The proposed 4D-OCE phase velocity is capable of providing further information in OCE to better understand the spatial variation of mechanical properties of various biological tissues with respect to frequency.
Collapse
Affiliation(s)
- Hsiao-Chuan Liu
- Department of Radiology, Mayo Clinic, 200
First St SW, Rochester, MN 55905, USA
| | - Piotr Kijanka
- Department of Radiology, Mayo Clinic, 200
First St SW, Rochester, MN 55905, USA
- Department of Robotics and Mechatronics,
AGH University of Science and Technology, Al. Mickiewicza 30, Krakow
30-059, Poland
| | - Matthew W. Urban
- Department of Radiology, Mayo Clinic, 200
First St SW, Rochester, MN 55905, USA
- Department of Physiology and Biomedical
Engineering, Mayo Clinic, 200 First St SW, Rochester, MN 55905,
USA
| |
Collapse
|
61
|
Marmin A, Catheline S, Nahas A. Full-field passive elastography using digital holography. OPTICS LETTERS 2020; 45:2965-2968. [PMID: 32479434 DOI: 10.1364/ol.388327] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/20/2020] [Indexed: 06/11/2023]
Abstract
Off-axis digital holography is an imaging technique that allows direct measurement of phase and amplitude from one image. We utilize this technique to capture displacements induced by a diffuse shear wave field with high sensitivity. A noise-correlation-based algorithm is then used to measure mechanical properties of samples. This approach enables full-field quantitative passive elastography without the need of contact or a synchronized source of a mechanical wave. This passive elastography method is first validated on agarose test samples mimicking biological tissues, and first results on an ex vivo biological sample are presented.
Collapse
|
62
|
Nair A, Singh M, Aglyamov SR, Larin KV. Heartbeat OCE: corneal biomechanical response to simulated heartbeat pulsation measured by optical coherence elastography. JOURNAL OF BIOMEDICAL OPTICS 2020; 25:1-9. [PMID: 32372574 PMCID: PMC7199791 DOI: 10.1117/1.jbo.25.5.055001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 04/24/2020] [Indexed: 05/04/2023]
Abstract
SIGNIFICANCE It is generally agreed that the corneal mechanical properties are strongly linked to many eye diseases and could be used to assess disease progression and response to therapies. Elastography is the most notable method of assessing corneal mechanical properties, but it generally requires some type of external excitation to induce a measurable displacement in the tissue. AIM We present Heartbeat Optical Coherence Elastography (Hb-OCE), a truly passive method that can measure the elasticity of the cornea based on intrinsic corneal displacements induced by the heartbeat. APPROACH Hb-OCE measurements were performed in untreated and UV-A/riboflavin cross-linked porcine corneas ex vivo, and a distinct difference in strain was detected. Furthermore, a partially cross-linked cornea was also assessed, and the treated and untreated areas were similarly distinguished. RESULTS Our results suggest that Hb-OCE can spatially map displacements in the cornea induced by small fluctuations in intraocular pressure, similar to what is induced by the heartbeat. CONCLUSIONS The described technique opens the possibility for completely passive and noncontact in vivo assessment of corneal stiffness.
Collapse
Affiliation(s)
- Achuth Nair
- University of Houston, Department of Biomedical Engineering, Houston, Texas, United States
| | - Manmohan Singh
- University of Houston, Department of Biomedical Engineering, Houston, Texas, United States
| | - Salavat R. Aglyamov
- University of Houston, Department of Mechanical Engineering, Houston, Texas, United States
| | - Kirill V. Larin
- University of Houston, Department of Biomedical Engineering, Houston, Texas, United States
- Address all correspondence to Kirill V. Larin, E-mail:
| |
Collapse
|
63
|
Ambekar YS, Singh M, Zhang J, Nair A, Aglyamov SR, Scarcelli G, Larin KV. Multimodal quantitative optical elastography of the crystalline lens with optical coherence elastography and Brillouin microscopy. BIOMEDICAL OPTICS EXPRESS 2020; 11:2041-2051. [PMID: 32341865 PMCID: PMC7173892 DOI: 10.1364/boe.387361] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/27/2020] [Accepted: 03/05/2020] [Indexed: 05/03/2023]
Abstract
Assessing the biomechanical properties of the crystalline lens can provide crucial information for diagnosing disease and guiding precision therapeutic interventions. Existing noninvasive methods have been limited to global measurements. Here, we demonstrate the quantitative assessment of the elasticity of crystalline lens with a multimodal optical elastography technique, which combines dynamic wave-based optical coherence elastography (OCE) and Brillouin microscopy to overcome the drawbacks of individual modalities. OCE can provide direct measurements of tissue elasticity rapidly and quantitatively, but it is a challenge to image transparent samples such as the lens because this technique relies on backscattered light. On the other hand, Brillouin microscopy can map the longitudinal modulus with micro-scale resolution in transparent samples. However, the relationship between Brillouin-deduced modulus and Young's modulus is not straightforward and sample dependent. By combining these two techniques, we can calibrate Brillouin measurements with OCE, based on the same sample, allowing us to completely map the Young's modulus of the crystalline lens. The combined system was first validated with tissue-mimicking gelatin phantoms of varying elasticities (N = 9). The OCE data was used to calibrate the Brillouin shift measurements and subsequently map the Young's modulus of the phantoms. After validation, OCE and Brillouin measurements were performed on ex-vivo porcine lenses (N = 6), and the Young's modulus of the lenses was spatially mapped. The results show a strong correlation between Young's moduli measured by OCE and longitudinal moduli measured by Brillouin microscopy. The correlation coefficient R was 0.98 for the phantoms and 0.94 for the lenses, respectively. The mean Young's modulus of the anterior and posterior lens was 1.98 ± 0.74 kPa and 2.93 ± 1.13 kPa, respectively, and the Young's modulus of the lens nucleus was 11.90 ± 2.94 kPa. The results presented in this manuscript open a new way for truly quantitative biomechanical mapping of optically transparent (or low scattering) tissues in 3D.
Collapse
Affiliation(s)
| | - Manmohan Singh
- Department of Biomedical Engineering, University of Houston, Houston, TX 77030, USA
| | - Jitao Zhang
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Achuth Nair
- Department of Biomedical Engineering, University of Houston, Houston, TX 77030, USA
| | - Salavat R. Aglyamov
- Department of Mechanical Engineering, University of Houston, Houston, TX 77030, USA
| | - Giuliano Scarcelli
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Kirill V. Larin
- Department of Biomedical Engineering, University of Houston, Houston, TX 77030, USA
- Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
64
|
Li R, Du Z, Qian X, Li Y, Martinez-Camarillo JC, Jiang L, Humayun MS, Chen Z, Zhou Q. High resolution optical coherence elastography of retina under prosthetic electrode. Quant Imaging Med Surg 2020; 11:918-927. [PMID: 33654665 DOI: 10.21037/qims-20-1137] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background Quantitatively investigating the biomechanics of retina with a retinal prosthetic electrode, we explored the effects of the prosthetic electrode on the retina, and further supplemented data for a potential clinical trial. Methods Biomechanical properties were assessed with a high resolution optical coherence tomography (OCT) based elastography (OCE) system. A shaker was used to initiate elastic waves and an OCT system was used to track axial displacement along with wave propagation. Rabbits received surgery to implant the retinal prosthetic electrode, and elastic wave speed was measured before and after implantation; anatomical B-mode images were also acquired. Results Spatial-temporal maps of each layer in retina with and without prosthetic electrodes were acquired. Elastic wave speed of nerve fiber to inner plexiform layer, inner nuclear to outer nuclear layer, retinal pigmented epithelium layer and choroid to sclera layer without prosthetic electrode were found to be 3.66±0.36, 5.33±0.07, 6.85±0.37, and 9.69±0.24 m/s, respectively. With prosthetic electrode, the elastic wave speed was found to be 4.09±0.26, 5.14±0.11, 6.88±0.70, and 9.99±0.73 m/s, respectively in each layer. Conclusions Our results show that the elastic wave speed in each layer of retina is slightly faster with the retinal electrode, and further demonstrate that the retinal prosthetic electrode does not affect biomechanical properties significantly. In the future, we expect OCE technology to be used by clinicians where it could become part of routine testing and evaluation of the biomechanical properties of the retina in response to long term use of prosthetic electrodes in patients.
Collapse
Affiliation(s)
- Runze Li
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA.,USC Roski Eye Institute, University of Southern California, Los Angeles, CA, USA
| | - Zhaodong Du
- USC Roski Eye Institute, University of Southern California, Los Angeles, CA, USA
| | - Xuejun Qian
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA.,USC Roski Eye Institute, University of Southern California, Los Angeles, CA, USA
| | - Yan Li
- Beckman Laser Institute, University of California, Irvine, CA, USA.,Department of Biomedical Engineering, University of California, Irvine, CA, USA
| | | | - Laiming Jiang
- USC Roski Eye Institute, University of Southern California, Los Angeles, CA, USA
| | - Mark S Humayun
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA.,USC Roski Eye Institute, University of Southern California, Los Angeles, CA, USA
| | - Zhongping Chen
- Beckman Laser Institute, University of California, Irvine, CA, USA.,Department of Biomedical Engineering, University of California, Irvine, CA, USA
| | - Qifa Zhou
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA.,USC Roski Eye Institute, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|