51
|
Wu K, Minshull TC, Radford SE, Calabrese AN, Bardwell JCA. Trigger factor both holds and folds its client proteins. Nat Commun 2022; 13:4126. [PMID: 35840586 PMCID: PMC9287376 DOI: 10.1038/s41467-022-31767-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 06/15/2022] [Indexed: 12/12/2022] Open
Abstract
ATP-independent chaperones like trigger factor are generally assumed to play passive roles in protein folding by acting as holding chaperones. Here we show that trigger factor plays a more active role. Consistent with a role as an aggregation inhibiting chaperone, we find that trigger factor rapidly binds to partially folded glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and prevents it from non-productive self-association by shielding oligomeric interfaces. In the traditional view of holding chaperone action, trigger factor would then be expected to transfer its client to a chaperone foldase system for complete folding. Unexpectedly, we noticed that GAPDH folds into a monomeric but otherwise rather native-like intermediate state while trigger factor-bound. Upon release from trigger factor, the mostly folded monomeric GAPDH rapidly self-associates into its native tetramer and acquires enzymatic activity without needing additional folding factors. The mechanism we propose here for trigger factor bridges the holding and folding activities of chaperone function.
Collapse
Affiliation(s)
- Kevin Wu
- Department of Molecular, Cellular, and Developmental Biology and Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA
| | - Thomas C Minshull
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Antonio N Calabrese
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| | - James C A Bardwell
- Department of Molecular, Cellular, and Developmental Biology and Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
52
|
Shoup D, Roth A, Puchalla J, Rye HS. The Impact of Hidden Structure on Aggregate Disassembly by Molecular Chaperones. Front Mol Biosci 2022; 9:915307. [PMID: 35874607 PMCID: PMC9302491 DOI: 10.3389/fmolb.2022.915307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
Protein aggregation, or the uncontrolled self-assembly of partially folded proteins, is an ever-present danger for living organisms. Unimpeded, protein aggregation can result in severe cellular dysfunction and disease. A group of proteins known as molecular chaperones is responsible for dismantling protein aggregates. However, how protein aggregates are recognized and disassembled remains poorly understood. Here we employ a single particle fluorescence technique known as Burst Analysis Spectroscopy (BAS), in combination with two structurally distinct aggregate types grown from the same starting protein, to examine the mechanism of chaperone-mediated protein disaggregation. Using the core bi-chaperone disaggregase system from Escherichia coli as a model, we demonstrate that, in contrast to prevailing models, the overall size of an aggregate particle has, at most, a minor influence on the progression of aggregate disassembly. Rather, we show that changes in internal structure, which have no observable impact on aggregate particle size or molecular chaperone binding, can dramatically limit the ability of the bi-chaperone system to take aggregates apart. In addition, these structural alterations progress with surprising speed, rendering aggregates resistant to disassembly within minutes. Thus, while protein aggregate structure is generally poorly defined and is often obscured by heterogeneous and complex particle distributions, it can have a determinative impact on the ability of cellular quality control systems to process protein aggregates.
Collapse
Affiliation(s)
- Daniel Shoup
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States
| | - Andrew Roth
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States
| | - Jason Puchalla
- Department of Physics, Princeton University, Princeton, NJ, United States
| | - Hays S. Rye
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States
| |
Collapse
|
53
|
Xu H. Non-Equilibrium Protein Folding and Activation by ATP-Driven Chaperones. Biomolecules 2022; 12:832. [PMID: 35740957 PMCID: PMC9221429 DOI: 10.3390/biom12060832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 12/14/2022] Open
Abstract
Recent experimental studies suggest that ATP-driven molecular chaperones can stabilize protein substrates in their native structures out of thermal equilibrium. The mechanism of such non-equilibrium protein folding is an open question. Based on available structural and biochemical evidence, I propose here a unifying principle that underlies the conversion of chemical energy from ATP hydrolysis to the conformational free energy associated with protein folding and activation. I demonstrate that non-equilibrium folding requires the chaperones to break at least one of four symmetry conditions. The Hsp70 and Hsp90 chaperones each break a different subset of these symmetries and thus they use different mechanisms for non-equilibrium protein folding. I derive an upper bound on the non-equilibrium elevation of the native concentration, which implies that non-equilibrium folding only occurs in slow-folding proteins that adopt an unstable intermediate conformation in binding to ATP-driven chaperones. Contrary to the long-held view of Anfinsen's hypothesis that proteins fold to their conformational free energy minima, my results predict that some proteins may fold into thermodynamically unstable native structures with the assistance of ATP-driven chaperones, and that the native structures of some chaperone-dependent proteins may be shaped by their chaperone-mediated folding pathways.
Collapse
Affiliation(s)
- Huafeng Xu
- Roivant Sciences, New York, NY 10036, USA
| |
Collapse
|
54
|
Chaudhuri D, Banerjee S, Chakraborty S, Chowdhury D, Haldar S. Direct Observation of the Mechanical Role of Bacterial Chaperones in Protein Folding. Biomacromolecules 2022; 23:2951-2967. [PMID: 35678300 DOI: 10.1021/acs.biomac.2c00451] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protein folding under force is an integral source of generating mechanical energy in various cellular processes, ranging from protein translation to degradation. Although chaperones are well known to interact with proteins under mechanical force, how they respond to force and control cellular energetics remains unknown. To address this question, we introduce a real-time magnetic tweezer technology herein to mimic the physiological force environment on client proteins, keeping the chaperones unperturbed. We studied two structurally distinct client proteins--protein L and talin with seven different chaperones─independently and in combination and proposed a novel mechanical activity of chaperones. We found that chaperones behave differently, while these client proteins are under force, than their previously known functions. For instance, tunnel-associated chaperones (DsbA and trigger factor), otherwise working as holdase without force, assist folding under force. This process generates an additional mechanical energy up to ∼147 zJ to facilitate translation or translocation. However, well-known cytoplasmic foldase chaperones (PDI, thioredoxin, or DnaKJE) do not possess the mechanical folding ability under force. Notably, the transferring chaperones (DnaK, DnaJ, and SecB) act as holdase and slow down the folding process, both in the presence and absence of force, to prevent misfolding of the client proteins. This provides an emerging insight of mechanical roles of chaperones: they can generate or consume energy by shifting the energy landscape of the client proteins toward a folded or an unfolded state, suggesting an evolutionary mechanism to minimize energy consumption in various biological processes.
Collapse
Affiliation(s)
- Deep Chaudhuri
- Department of Biological Sciences, Ashoka University, Sonepat, Haryana 131029, India
| | - Souradeep Banerjee
- Department of Biological Sciences, Ashoka University, Sonepat, Haryana 131029, India
| | - Soham Chakraborty
- Department of Biological Sciences, Ashoka University, Sonepat, Haryana 131029, India
| | - Debojyoti Chowdhury
- Department of Biological Sciences, Ashoka University, Sonepat, Haryana 131029, India
| | - Shubhasis Haldar
- Department of Biological Sciences, Ashoka University, Sonepat, Haryana 131029, India
| |
Collapse
|
55
|
Guihur A, Rebeaud ME, Goloubinoff P. How do plants feel the heat and survive? Trends Biochem Sci 2022; 47:824-838. [PMID: 35660289 DOI: 10.1016/j.tibs.2022.05.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/27/2022] [Accepted: 05/05/2022] [Indexed: 01/03/2023]
Abstract
Climate change is increasingly affecting the quality of life of organisms on Earth. More frequent, extreme, and lengthy heat waves are contributing to the sixth mass extinction of complex life forms in the Earth's history. From an anthropocentric point of view, global warming is a major threat to human health because it also compromises crop yields and food security. Thus, achieving agricultural productivity under climate change calls for closer examination of the molecular mechanisms of heat-stress resistance in model and crop plants. This requires a better understanding of the mechanisms by which plant cells can sense rising temperatures and establish effective molecular defenses, such as molecular chaperones and thermoprotective metabolites, as reviewed here, to survive extreme diurnal variations in temperature and seasonal heat waves.
Collapse
Affiliation(s)
- Anthony Guihur
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland.
| | - Mathieu E Rebeaud
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Pierre Goloubinoff
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland; School of Plant Sciences and Food Security, Tel-Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
56
|
Deans EE, Kotler JLM, Wei WS, Street TO. Electrostatics drive the molecular chaperone BiP to preferentially bind oligomerized states of a client protein. J Mol Biol 2022; 434:167638. [PMID: 35597552 DOI: 10.1016/j.jmb.2022.167638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 04/26/2022] [Accepted: 05/12/2022] [Indexed: 10/18/2022]
Abstract
Hsp70 chaperones bind short monomeric peptides with a weak characteristic affinity in the low micromolar range, but can also bind some aggregates, fibrils, and amyloids, with low nanomolar affinity. While this differential affinity enables Hsp70 to preferentially target potentially toxic aggregates, it is unknown how a chaperone can differentiate between monomeric and aggregated states of a client protein and why preferential binding is only observed for some aggregated clients but not others. Here we examine the interaction of BiP (the Hsp70 paralog in the endoplasmic reticulum) with the client proIGF2, the pro-protein form of IGF2 that includes a long and mostly disordered E-peptide region that promotes proIGF2 oligomerization. By dissecting the mechanism by which BiP targets proIGF2 and E-peptide oligomers we discover that electrostatic attraction is a powerful driving force for oligomer recognition. We identify the specific BiP binding sites on proIGF2 and as monomers they bind BiP with characteristically weak affinity in the low micromolar range, but electrostatic attraction to E-peptide oligomers boosts the affinity to the low nanomolar level. The dominant role of electrostatics is manifested kinetically as a steering force that accelerates the binding of BiP to E-peptide oligomers by approximately two orders of magnitude as compared against monomeric peptides. Electrostatic targeting of Hsp70 provides an explanation for why preferential binding has been observed for some aggregated clients but not others, as all the currently-documented cases in which Hsp70 binds aggregates with high-affinity involve clients that have an opposite charge to Hsp70.
Collapse
Affiliation(s)
- Erin E Deans
- Departments of Biochemistry, Brandeis University, Waltham, Massachusetts 02453
| | - Judy L M Kotler
- Departments of Biochemistry, Brandeis University, Waltham, Massachusetts 02453
| | - Wei-Shao Wei
- Departments of Physics, Brandeis University, Waltham, Massachusetts 02453
| | - Timothy O Street
- Departments of Biochemistry, Brandeis University, Waltham, Massachusetts 02453
| |
Collapse
|
57
|
Sadat A, Tiwari S, Sunidhi S, Chaphalkar A, Kochar M, Ali M, Zaidi Z, Sharma A, Verma K, Narayana Rao KB, Tripathi M, Ghosh A, Gautam D, Atul, Ray A, Mapa K, Chakraborty K. Conserved and divergent chaperoning effects of Hsp60/10 chaperonins on protein folding landscapes. Proc Natl Acad Sci U S A 2022; 119:e2118465119. [PMID: 35486698 PMCID: PMC9170145 DOI: 10.1073/pnas.2118465119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 03/02/2022] [Indexed: 12/21/2022] Open
Abstract
The GroEL/ES chaperonin cavity surface charge properties, especially the negative charges, play an important role in its capacity to assist intracavity protein folding. Remarkably, the larger fraction of GroEL/ES negative charges are not conserved among different bacterial species, resulting in a large variation in negative-charge density in the GroEL/ES cavity across prokaryotes. Intriguingly, eukaryotic GroEL/ES homologs have the lowest negative-charge density in the chaperonin cavity. This prompted us to investigate if GroEL’s chaperoning mechanism changed during evolution. Using a model in vivo GroEL/ES substrate, we show that the ability of GroEL/ES to buffer entropic traps in the folding pathway of its substrate was partially dependent upon the negative-charge density inside its cavity. While this activity of GroEL/ES was found to be essential for Escherichia coli, it has been perfected in some organisms and diminished in others. However, irrespective of their charges, all the tested homologs retained their ability to regulate polypeptide chain collapse and remove enthalpic traps from folding pathways. The ability of these GroEL/ES homologs to buffer mutational variations in a model substrate correlated with their negative-charge density. Thus, Hsp60/10 chaperonins in different organisms may have changed to accommodate a different spectrum of mutations on their substrates.
Collapse
Affiliation(s)
- Anwar Sadat
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Chemical and System Biology Unit, CSIR–Institute of Genomics and Integrative Biology, New Delhi 110025, India
| | - Satyam Tiwari
- Chemical and System Biology Unit, CSIR–Institute of Genomics and Integrative Biology, New Delhi 110025, India
| | - S. Sunidhi
- Department of Computational Biology, Indraprastha Institute of Information Technology–Delhi, New Delhi 110020, India
| | - Aseem Chaphalkar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Chemical and System Biology Unit, CSIR–Institute of Genomics and Integrative Biology, New Delhi 110025, India
| | - Manisha Kochar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Chemical and System Biology Unit, CSIR–Institute of Genomics and Integrative Biology, New Delhi 110025, India
| | - Mudassar Ali
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Greater Noida 201314, India
| | - Zainab Zaidi
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Chemical and System Biology Unit, CSIR–Institute of Genomics and Integrative Biology, New Delhi 110025, India
| | - Akanksha Sharma
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Chemical and System Biology Unit, CSIR–Institute of Genomics and Integrative Biology, New Delhi 110025, India
| | - Kanika Verma
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Chemical and System Biology Unit, CSIR–Institute of Genomics and Integrative Biology, New Delhi 110025, India
| | - Kannan Boosi Narayana Rao
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Chemical and System Biology Unit, CSIR–Institute of Genomics and Integrative Biology, New Delhi 110025, India
| | - Manjul Tripathi
- Chemical and System Biology Unit, CSIR–Institute of Genomics and Integrative Biology, New Delhi 110025, India
| | - Asmita Ghosh
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Chemical and System Biology Unit, CSIR–Institute of Genomics and Integrative Biology, New Delhi 110025, India
| | - Deepika Gautam
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Chemical and System Biology Unit, CSIR–Institute of Genomics and Integrative Biology, New Delhi 110025, India
| | - Atul
- Department of Computational Biology, Indraprastha Institute of Information Technology–Delhi, New Delhi 110020, India
| | - Arjun Ray
- Department of Computational Biology, Indraprastha Institute of Information Technology–Delhi, New Delhi 110020, India
| | - Koyeli Mapa
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Greater Noida 201314, India
| | - Kausik Chakraborty
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Chemical and System Biology Unit, CSIR–Institute of Genomics and Integrative Biology, New Delhi 110025, India
| |
Collapse
|
58
|
Györkei Á, Daruka L, Balogh D, Őszi E, Magyar Z, Szappanos B, Fekete G, Fuxreiter M, Horváth P, Pál C, Kintses B, Papp B. Proteome-wide landscape of solubility limits in a bacterial cell. Sci Rep 2022; 12:6547. [PMID: 35449391 PMCID: PMC9023497 DOI: 10.1038/s41598-022-10427-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/28/2022] [Indexed: 11/16/2022] Open
Abstract
Proteins are prone to aggregate when expressed above their solubility limits. Aggregation may occur rapidly, potentially as early as proteins emerge from the ribosome, or slowly, following synthesis. However, in vivo data on aggregation rates are scarce. Here, we classified the Escherichia coli proteome into rapidly and slowly aggregating proteins using an in vivo image-based screen coupled with machine learning. We find that the majority (70%) of cytosolic proteins that become insoluble upon overexpression have relatively low rates of aggregation and are unlikely to aggregate co-translationally. Remarkably, such proteins exhibit higher folding rates compared to rapidly aggregating proteins, potentially implying that they aggregate after reaching their folded states. Furthermore, we find that a substantial fraction (~ 35%) of the proteome remain soluble at concentrations much higher than those found naturally, indicating a large margin of safety to tolerate gene expression changes. We show that high disorder content and low surface stickiness are major determinants of high solubility and are favored in abundant bacterial proteins. Overall, our study provides a global view of aggregation rates and hence solubility limits of proteins in a bacterial cell.
Collapse
Affiliation(s)
- Ádám Györkei
- HCEMM-BRC Metabolic Systems Biology Lab, Szeged, Hungary
- Biological Research Centre, Institute of Biochemistry, Synthetic and Systems Biology Unit, Eötvös Loránd Research Network (ELKH), Szeged, Hungary
- Doctoral School in Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Lejla Daruka
- Biological Research Centre, Institute of Biochemistry, Synthetic and Systems Biology Unit, Eötvös Loránd Research Network (ELKH), Szeged, Hungary
- Doctoral School in Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Dávid Balogh
- Biological Research Centre, Institute of Biochemistry, Synthetic and Systems Biology Unit, Eötvös Loránd Research Network (ELKH), Szeged, Hungary
| | - Erika Őszi
- Biological Research Centre, Institute of Plant Biology, Eötvös Loránd Research Network (ELKH), Szeged, Hungary
| | - Zoltán Magyar
- Biological Research Centre, Institute of Plant Biology, Eötvös Loránd Research Network (ELKH), Szeged, Hungary
| | - Balázs Szappanos
- HCEMM-BRC Metabolic Systems Biology Lab, Szeged, Hungary
- Biological Research Centre, Institute of Biochemistry, Synthetic and Systems Biology Unit, Eötvös Loránd Research Network (ELKH), Szeged, Hungary
| | - Gergely Fekete
- HCEMM-BRC Metabolic Systems Biology Lab, Szeged, Hungary
- Biological Research Centre, Institute of Biochemistry, Synthetic and Systems Biology Unit, Eötvös Loránd Research Network (ELKH), Szeged, Hungary
| | - Mónika Fuxreiter
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Laboratory of Protein Dynamics, University of Debrecen, Debrecen, Hungary
| | - Péter Horváth
- Biological Research Centre, Institute of Biochemistry, Synthetic and Systems Biology Unit, Eötvös Loránd Research Network (ELKH), Szeged, Hungary
- Institute for Molecular Medicine Finland-FIMM, Helsinki Institute of Life Science-HiLIFE, University of Helsinki, Helsinki, Finland
| | - Csaba Pál
- Biological Research Centre, Institute of Biochemistry, Synthetic and Systems Biology Unit, Eötvös Loránd Research Network (ELKH), Szeged, Hungary.
| | - Bálint Kintses
- Biological Research Centre, Institute of Biochemistry, Synthetic and Systems Biology Unit, Eötvös Loránd Research Network (ELKH), Szeged, Hungary.
- HCEMM-BRC Translational Microbiology Research Group, Szeged, Hungary.
- Department of Biochemistry and Molecular Biology, University of Szeged, Szeged, Hungary.
| | - Balázs Papp
- HCEMM-BRC Metabolic Systems Biology Lab, Szeged, Hungary.
- Biological Research Centre, Institute of Biochemistry, Synthetic and Systems Biology Unit, Eötvös Loránd Research Network (ELKH), Szeged, Hungary.
| |
Collapse
|
59
|
Kang Y, Lee K, Hoshikawa K, Kang M, Jang S. Molecular Bases of Heat Stress Responses in Vegetable Crops With Focusing on Heat Shock Factors and Heat Shock Proteins. FRONTIERS IN PLANT SCIENCE 2022; 13:837152. [PMID: 35481144 PMCID: PMC9036485 DOI: 10.3389/fpls.2022.837152] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/09/2022] [Indexed: 05/09/2023]
Abstract
The effects of the climate change including an increase in the average global temperatures, and abnormal weather events such as frequent and severe heatwaves are emerging as a worldwide ecological concern due to their impacts on plant vegetation and crop productivity. In this review, the molecular processes of plants in response to heat stress-from the sensing of heat stress, the subsequent molecular cascades associated with the activation of heat shock factors and their primary targets (heat shock proteins), to the cellular responses-have been summarized with an emphasis on the classification and functions of heat shock proteins. Vegetables contain many essential vitamins, minerals, antioxidants, and fibers that provide many critical health benefits to humans. The adverse effects of heat stress on vegetable growth can be alleviated by developing vegetable crops with enhanced thermotolerance with the aid of various genetic tools. To achieve this goal, a solid understanding of the molecular and/or cellular mechanisms underlying various responses of vegetables to high temperature is imperative. Therefore, efforts to identify heat stress-responsive genes including those that code for heat shock factors and heat shock proteins, their functional roles in vegetable crops, and also their application to developing vegetables tolerant to heat stress are discussed.
Collapse
Affiliation(s)
- Yeeun Kang
- World Vegetable Center Korea Office, Wanju-gun, South Korea
| | - Kwanuk Lee
- National Institute of Horticultural and Herbal Science (NIHHS), Rural Development Administration (RDA), Wanju-gun, South Korea
| | - Ken Hoshikawa
- Biological Resources and Post-harvest Division, Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Japan
| | | | - Seonghoe Jang
- World Vegetable Center Korea Office, Wanju-gun, South Korea
| |
Collapse
|
60
|
Direct observation of chaperone-modulated talin mechanics with single-molecule resolution. Commun Biol 2022; 5:307. [PMID: 35379917 PMCID: PMC8979947 DOI: 10.1038/s42003-022-03258-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 03/11/2022] [Indexed: 12/18/2022] Open
Abstract
Talin as a critical focal adhesion mechanosensor exhibits force-dependent folding dynamics and concurrent interactions. Being a cytoplasmic protein, talin also might interact with several cytosolic chaperones; however, the roles of chaperones in talin mechanics remain elusive. To address this question, we investigated the force response of a mechanically stable talin domain with a set of well-known unfoldase (DnaJ, DnaK) and foldase (DnaKJE, DsbA) chaperones, using single-molecule magnetic tweezers. Our findings demonstrate that chaperones could affect adhesion proteins’ stability by changing their folding mechanics; while unfoldases reduce their unfolding force from ~11 pN to ~6 pN, foldase shifts it upto ~15 pN. Since talin is mechanically synced within 2 pN force ranges, these changes are significant in cellular conditions. Furthermore, we determined that chaperones directly reshape the energy landscape of talin: unfoldases decrease the unfolding barrier height from 26.8 to 21.7 kBT, while foldases increase it to 33.5 kBT. We reconciled our observations with eukaryotic Hsp70 and Hsp40 and observed their similar function of decreasing the talin unfolding barrier. Quantitative mapping of this chaperone-induced talin folding landscape directly illustrates that chaperones perturb the adhesion protein stability under physiological force, thereby, influencing their force-dependent interactions and adhesion dynamics. Chakraborty et al. uses single-molecule magnetic tweezers to investigate the chaperone-modulated talin protein mechanics. The results showed that chaperones are involved in the regulation of talin folding/unfolding under mechanical force with some chaperones stabilizing talin and increasing the force, whereas others destabilize it and reduce the force.
Collapse
|
61
|
Sharma A, Balda S, Capalash N, Sharma P. Engineering multifunctional enzymes for agro-biomass utilization. BIORESOURCE TECHNOLOGY 2022; 347:126706. [PMID: 35033642 DOI: 10.1016/j.biortech.2022.126706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/07/2022] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
Lignocellulosic biomass is a plentiful renewable resource that can be converted into a wide range of high-value-added industrial products. However, the complexity of its structural integrity is one of the major constraints and requires combinations of different fibrolytic enzymes for the cost-effective, industrially and environmentally feasible transformation. An interesting approach is constructing multifunctional enzymes, either in a single polypeptide or by joining multiple domains with linkers and performing diverse reactions simultaneously, in a single host. The production of such chimera proteins multiplies the advantages of different enzymatic reactions in a single setup, in lesser time, at lower production cost and with desirable and improved catalytic activities. This review embodies the various domain-tailoring and extracellular secretion strategies, possible solutions to their challenges, and efforts to experimentally connect different catalytic activities in a single host, as well as their applications.
Collapse
Affiliation(s)
- Aarjoo Sharma
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Sanjeev Balda
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Neena Capalash
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Prince Sharma
- Department of Microbiology, Panjab University, Chandigarh, India.
| |
Collapse
|
62
|
The folding and misfolding mechanisms of multidomain proteins. MEDICINE IN DRUG DISCOVERY 2022. [DOI: 10.1016/j.medidd.2022.100126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
63
|
Structural and Kinetic Views of Molecular Chaperones in Multidomain Protein Folding. Int J Mol Sci 2022; 23:ijms23052485. [PMID: 35269628 PMCID: PMC8910466 DOI: 10.3390/ijms23052485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 12/10/2022] Open
Abstract
Despite recent developments in protein structure prediction, the process of the structure formation, folding, remains poorly understood. Notably, folding of multidomain proteins, which involves multiple steps of segmental folding, is one of the biggest questions in protein science. Multidomain protein folding often requires the assistance of molecular chaperones. Molecular chaperones promote or delay the folding of the client protein, but the detailed mechanisms are still unclear. This review summarizes the findings of biophysical and structural studies on the mechanism of multidomain protein folding mediated by molecular chaperones and explains how molecular chaperones recognize the client proteins and alter their folding properties. Furthermore, we introduce several recent studies that describe the concept of kinetics-activity relationships to explain the mechanism of functional diversity of molecular chaperones.
Collapse
|
64
|
Yoo H, Bard JA, Pilipenko E, Drummond DA. Chaperones directly and efficiently disperse stress-triggered biomolecular condensates. Mol Cell 2022; 82:741-755.e11. [PMID: 35148816 PMCID: PMC8857057 DOI: 10.1016/j.molcel.2022.01.005] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/30/2021] [Accepted: 01/06/2022] [Indexed: 12/28/2022]
Abstract
Stresses such as heat shock trigger the formation of protein aggregates and the induction of a disaggregation system composed of molecular chaperones. Recent work reveals that several cases of apparent heat-induced aggregation, long thought to be the result of toxic misfolding, instead reflect evolved, adaptive biomolecular condensation, with chaperone activity contributing to condensate regulation. Here we show that the yeast disaggregation system directly disperses heat-induced biomolecular condensates of endogenous poly(A)-binding protein (Pab1) orders of magnitude more rapidly than aggregates of the most commonly used misfolded model substrate, firefly luciferase. Beyond its efficiency, heat-induced condensate dispersal differs from heat-induced aggregate dispersal in its molecular requirements and mechanistic behavior. Our work establishes a bona fide endogenous heat-induced substrate for long-studied heat shock proteins, isolates a specific example of chaperone regulation of condensates, and underscores needed expansion of the proteotoxic interpretation of the heat shock response to encompass adaptive, chaperone-mediated regulation.
Collapse
Affiliation(s)
- Haneul Yoo
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA
| | - Jared A.M. Bard
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA
| | - Evgeny Pilipenko
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA
| | - D. Allan Drummond
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA,Department of Medicine, Section of Genetic Medicine, The University of Chicago, Chicago, IL, 60637, USA,Lead Contact,Correspondence: (D.A.D.)
| |
Collapse
|
65
|
Abstract
The endoplasmic reticulum (ER) is the site of membrane protein insertion, folding, and assembly in eukaryotes. Over the past few years, a combination of genetic and biochemical studies have implicated an abundant factor termed the ER membrane protein complex (EMC) in several aspects of membrane protein biogenesis. This large nine-protein complex is built around a deeply conserved core formed by the EMC3-EMC6 subcomplex. EMC3 belongs to the universally conserved Oxa1 superfamily of membrane protein transporters, whereas EMC6 is an ancient, widely conserved obligate partner. EMC has an established role in the insertion of transmembrane domains (TMDs) and less understood roles during the later steps of membrane protein folding and assembly. Several recent structures suggest hypotheses about the mechanism(s) of TMD insertion by EMC, with various biochemical and proteomics studies beginning to reveal the range of EMC's membrane protein substrates. Expected final online publication date for the Annual Review of Biochemistry, Volume 91 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Ramanujan S Hegde
- Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom;
| |
Collapse
|
66
|
Dahiya V, Rutz DA, Moessmer P, Mühlhofer M, Lawatscheck J, Rief M, Buchner J. The switch from client holding to folding in the Hsp70/Hsp90 chaperone machineries is regulated by a direct interplay between co-chaperones. Mol Cell 2022; 82:1543-1556.e6. [PMID: 35176233 DOI: 10.1016/j.molcel.2022.01.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/23/2021] [Accepted: 01/19/2022] [Indexed: 12/20/2022]
Abstract
Folding of stringent clients requires transfer from Hsp70 to Hsp90. The co-chaperone Hop physically connects the chaperone machineries. Here, we define its role from the remodeling of Hsp70/40-client complexes to the mechanism of client transfer and the conformational switching from stalled to active client-processing states of Hsp90. We show that Hsp70 together with Hsp40 completely unfold a stringent client, the glucocorticoid receptor ligand-binding domain (GR-LBD) in large assemblies. Hop remodels these for efficient transfer onto Hsp90. As p23 enters, Hsp70 leaves the complex via switching between binding sites in Hop. Current concepts assume that to proceed to client folding, Hop dissociates and the co-chaperone p23 stabilizes the Hsp90 closed state. In contrast, we show that p23 functionally interacts with Hop, relieves the stalling Hsp90-Hop interaction, and closes Hsp90. This reaction allows folding of the client and is thus the key regulatory step for the progression of the chaperone cycle.
Collapse
Affiliation(s)
- Vinay Dahiya
- Center for Protein Assemblies and Department Chemie, Technische Universität München, München, Germany
| | - Daniel Andreas Rutz
- Center for Protein Assemblies and Department Chemie, Technische Universität München, München, Germany
| | - Patrick Moessmer
- Center for Protein Assemblies and Department Physik, Technische Universität München, München, Germany
| | - Moritz Mühlhofer
- Center for Protein Assemblies and Department Chemie, Technische Universität München, München, Germany
| | - Jannis Lawatscheck
- Center for Protein Assemblies and Department Chemie, Technische Universität München, München, Germany
| | - Matthias Rief
- Center for Protein Assemblies and Department Physik, Technische Universität München, München, Germany
| | - Johannes Buchner
- Center for Protein Assemblies and Department Chemie, Technische Universität München, München, Germany.
| |
Collapse
|
67
|
Yusof NA, Masnoddin M, Charles J, Thien YQ, Nasib FN, Wong CMVL, Abdul Murad AM, Mahadi NM, Bharudin I. Can heat shock protein 70 (HSP70) serve as biomarkers in Antarctica for future ocean acidification, warming and salinity stress? Polar Biol 2022. [DOI: 10.1007/s00300-022-03006-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AbstractThe Antarctic Peninsula is one of the fastest-warming places on Earth. Elevated sea water temperatures cause glacier and sea ice melting. When icebergs melt into the ocean, it “freshens” the saltwater around them, reducing its salinity. The oceans absorb excess anthropogenic carbon dioxide (CO2) causing decline in ocean pH, a process known as ocean acidification. Many marine organisms are specifically affected by ocean warming, freshening and acidification. Due to the sensitivity of Antarctica to global warming, using biomarkers is the best way for scientists to predict more accurately future climate change and provide useful information or ecological risk assessments. The 70-kilodalton (kDa) heat shock protein (HSP70) chaperones have been used as biomarkers of stress in temperate and tropical environments. The induction of the HSP70 genes (Hsp70) that alter intracellular proteins in living organisms is a signal triggered by environmental temperature changes. Induction of Hsp70 has been observed both in eukaryotes and in prokaryotes as response to environmental stressors including increased and decreased temperature, salinity, pH and the combined effects of changes in temperature, acidification and salinity stress. Generally, HSP70s play critical roles in numerous complex processes of metabolism; their synthesis can usually be increased or decreased during stressful conditions. However, there is a question as to whether HSP70s may serve as excellent biomarkers in the Antarctic considering the long residence time of Antarctic organisms in a cold polar environment which appears to have greatly modified the response of heat responding transcriptional systems. This review provides insight into the vital roles of HSP70 that make them ideal candidates as biomarkers for identifying resistance and resilience in response to abiotic stressors associated with climate change, which are the effects of ocean warming, freshening and acidification in Antarctic organisms.
Collapse
|
68
|
Qiu Y, Yu S, Wang Y, Xiao L, Pei L, Pu Y, Zhang Y. Photothermal Therapy may be a Double-edge Sword by Inducing the Formation of Bacterial Antibiotic Tolerance. Biomater Sci 2022; 10:1995-2005. [PMID: 35266929 DOI: 10.1039/d1bm01740c] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photothermal nanoparticles are thought to be the most potential candidates against infectious disease, by disrupting cell membrane and inhibiting metabolism. However, subpopulation survived with this low-activity state may be endowed...
Collapse
Affiliation(s)
- Yun Qiu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| | - Shimin Yu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| | - Yulan Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| | - Leyi Xiao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| | - Linsen Pei
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430079, China
| | - Yingying Pu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430079, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, China
| | - Yufeng Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430079, China
| |
Collapse
|
69
|
Wyszkowski H, Janta A, Sztangierska W, Obuchowski I, Chamera T, Kłosowska A, Liberek K. Class-specific interactions between Sis1 J-domain protein and Hsp70 chaperone potentiate disaggregation of misfolded proteins. Proc Natl Acad Sci U S A 2021; 118:e2108163118. [PMID: 34873058 PMCID: PMC8670446 DOI: 10.1073/pnas.2108163118] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2021] [Indexed: 12/18/2022] Open
Abstract
Protein homeostasis is constantly being challenged with protein misfolding that leads to aggregation. Hsp70 is one of the versatile chaperones that interact with misfolded proteins and actively support their folding. Multifunctional Hsp70s are harnessed to specific roles by J-domain proteins (JDPs, also known as Hsp40s). Interaction with the J-domain of these cochaperones stimulates ATP hydrolysis in Hsp70, which stabilizes substrate binding. In eukaryotes, two classes of JDPs, Class A and Class B, engage Hsp70 in the reactivation of aggregated proteins. In most species, excluding metazoans, protein recovery also relies on an Hsp100 disaggregase. Although intensely studied, many mechanistic details of how the two JDP classes regulate protein disaggregation are still unknown. Here, we explore functional differences between the yeast Class A (Ydj1) and Class B (Sis1) JDPs at the individual stages of protein disaggregation. With real-time biochemical tools, we show that Ydj1 alone is superior to Sis1 in aggregate binding, yet it is Sis1 that recruits more Ssa1 molecules to the substrate. This advantage of Sis1 depends on its ability to bind to the EEVD motif of Hsp70, a quality specific to most of Class B JDPs. This second interaction also conditions the Hsp70-induced aggregate modification that boosts its subsequent dissolution by the Hsp104 disaggregase. Our results suggest that the Sis1-mediated chaperone assembly at the aggregate surface potentiates the entropic pulling, driven polypeptide disentanglement, while Ydj1 binding favors the refolding of the solubilized proteins. Such subspecialization of the JDPs across protein reactivation improves the robustness and efficiency of the disaggregation machinery.
Collapse
Affiliation(s)
- Hubert Wyszkowski
- Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Gdansk 80-307, Poland
| | - Anna Janta
- Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Gdansk 80-307, Poland
| | - Wiktoria Sztangierska
- Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Gdansk 80-307, Poland
| | - Igor Obuchowski
- Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Gdansk 80-307, Poland
| | - Tomasz Chamera
- Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Gdansk 80-307, Poland
| | - Agnieszka Kłosowska
- Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Gdansk 80-307, Poland
| | - Krzysztof Liberek
- Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Gdansk 80-307, Poland
| |
Collapse
|
70
|
Samanta N, Ribeiro SS, Becker M, Laborie E, Pollak R, Timr S, Sterpone F, Ebbinghaus S. Sequestration of Proteins in Stress Granules Relies on the In-Cell but Not the In Vitro Folding Stability. J Am Chem Soc 2021; 143:19909-19918. [PMID: 34788540 DOI: 10.1021/jacs.1c09589] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Stress granules (SGs) are among the most studied membraneless organelles that form upon heat stress (HS) to sequester unfolded, misfolded, or aggregated protein, supporting protein quality control (PQC) clearance. The folding states that are primarily associated with SGs, as well as the function of the phase separated environment in adjusting the energy landscapes, remain unknown. Here, we investigate the association of superoxide dismutase 1 (SOD1) proteins with different folding stabilities and aggregation propensities with condensates in cells, in vitro and by simulation. We find that irrespective of aggregation the folding stability determines the association of SOD1 with SGs in cells. In vitro and in silico experiments however suggest that the increased flexibility of the unfolded state constitutes only a minor driving force to associate with the dynamic biomolecular network of the condensate. Specific protein-protein interactions in the cytoplasm in comparison to SGs determine the partitioning of folding states between the respective phases during HS.
Collapse
Affiliation(s)
- Nirnay Samanta
- Institute of Physical and Theoretical Chemistry, TU Braunschweig, Rebenring 56, D-38106 Braunschweig, Germany
| | - Sara S Ribeiro
- Institute of Physical and Theoretical Chemistry, TU Braunschweig, Rebenring 56, D-38106 Braunschweig, Germany
| | - Mailin Becker
- Institute of Physical and Theoretical Chemistry, TU Braunschweig, Rebenring 56, D-38106 Braunschweig, Germany
| | - Emeline Laborie
- CNRS Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, Université Paris Denis Diderot, Sorbonne Paris Cité, PSL Research University, 13 rue Pierre et Marie Curie, Paris 75005, France
| | - Roland Pollak
- Institute of Physical and Theoretical Chemistry, TU Braunschweig, Rebenring 56, D-38106 Braunschweig, Germany
| | - Stepan Timr
- CNRS Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, Université Paris Denis Diderot, Sorbonne Paris Cité, PSL Research University, 13 rue Pierre et Marie Curie, Paris 75005, France.,J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Dolejskova 2155/3, Prague 8 182 23, Czech Republic
| | - Fabio Sterpone
- CNRS Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, Université Paris Denis Diderot, Sorbonne Paris Cité, PSL Research University, 13 rue Pierre et Marie Curie, Paris 75005, France
| | - Simon Ebbinghaus
- Institute of Physical and Theoretical Chemistry, TU Braunschweig, Rebenring 56, D-38106 Braunschweig, Germany
| |
Collapse
|
71
|
Arhar T, Shkedi A, Nadel CM, Gestwicki JE. The interactions of molecular chaperones with client proteins: why are they so weak? J Biol Chem 2021; 297:101282. [PMID: 34624315 PMCID: PMC8567204 DOI: 10.1016/j.jbc.2021.101282] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/29/2021] [Accepted: 10/04/2021] [Indexed: 12/30/2022] Open
Abstract
The major classes of molecular chaperones have highly variable sequences, sizes, and shapes, yet they all bind to unfolded proteins, limit their aggregation, and assist in their folding. Despite the central importance of this process to protein homeostasis, it has not been clear exactly how chaperones guide this process or whether the diverse families of chaperones use similar mechanisms. For the first time, recent advances in NMR spectroscopy have enabled detailed studies of how unfolded, "client" proteins interact with both ATP-dependent and ATP-independent classes of chaperones. Here, we review examples from four distinct chaperones, Spy, Trigger Factor, DnaK, and HscA-HscB, highlighting the similarities and differences between their mechanisms. One striking similarity is that the chaperones all bind weakly to their clients, such that the chaperone-client interactions are readily outcompeted by stronger, intra- and intermolecular contacts in the folded state. Thus, the relatively weak affinity of these interactions seems to provide directionality to the folding process. However, there are also key differences, especially in the details of how the chaperones release clients and how ATP cycling impacts that process. For example, Spy releases clients in a largely folded state, while clients seem to be unfolded upon release from Trigger Factor or DnaK. Together, these studies are beginning to uncover the similarities and differences in how chaperones use weak interactions to guide protein folding.
Collapse
Affiliation(s)
- Taylor Arhar
- Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Disease, University of California San Francisco, San Francisco California, USA
| | - Arielle Shkedi
- Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Disease, University of California San Francisco, San Francisco California, USA
| | - Cory M Nadel
- Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Disease, University of California San Francisco, San Francisco California, USA
| | - Jason E Gestwicki
- Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Disease, University of California San Francisco, San Francisco California, USA.
| |
Collapse
|
72
|
Sitron CS, Hartl FU. A new way of D/Ealing with protein misfolding. Mol Cell 2021; 81:4114-4115. [PMID: 34686313 DOI: 10.1016/j.molcel.2021.09.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Huang et al. (2021) show that proteins containing aspartate- and glutamate-rich stretches represent a putative new class of ATP-independent molecular chaperones that operate on diverse client proteins in vitro and protect bona fide interactors against aggregation in cells.
Collapse
Affiliation(s)
- Cole S Sitron
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - F Ulrich Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
73
|
Schneider MM, Gautam S, Herling TW, Andrzejewska E, Krainer G, Miller AM, Trinkaus VA, Peter QAE, Ruggeri FS, Vendruscolo M, Bracher A, Dobson CM, Hartl FU, Knowles TPJ. The Hsc70 disaggregation machinery removes monomer units directly from α-synuclein fibril ends. Nat Commun 2021; 12:5999. [PMID: 34650037 PMCID: PMC8516981 DOI: 10.1038/s41467-021-25966-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 08/25/2021] [Indexed: 02/02/2023] Open
Abstract
Molecular chaperones contribute to the maintenance of cellular protein homoeostasis through assisting de novo protein folding and preventing amyloid formation. Chaperones of the Hsp70 family can further disaggregate otherwise irreversible aggregate species such as α-synuclein fibrils, which accumulate in Parkinson's disease. However, the mechanisms and kinetics of this key functionality are only partially understood. Here, we combine microfluidic measurements with chemical kinetics to study α-synuclein disaggregation. We show that Hsc70 together with its co-chaperones DnaJB1 and Apg2 can completely reverse α-synuclein aggregation back to its soluble monomeric state. This reaction proceeds through first-order kinetics where monomer units are removed directly from the fibril ends with little contribution from intermediate fibril fragmentation steps. These findings extend our mechanistic understanding of the role of chaperones in the suppression of amyloid proliferation and in aggregate clearance, and inform on possibilities and limitations of this strategy in the development of therapeutics against synucleinopathies.
Collapse
Affiliation(s)
- Matthias M. Schneider
- grid.5335.00000000121885934Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW UK
| | - Saurabh Gautam
- grid.418615.f0000 0004 0491 845XDepartment of Cellular Biochemistry, Max-Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany ,Present Address: ViraTherapeutics GmbH, 6063 Rum, Austria
| | - Therese W. Herling
- grid.5335.00000000121885934Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW UK
| | - Ewa Andrzejewska
- grid.5335.00000000121885934Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW UK
| | - Georg Krainer
- grid.5335.00000000121885934Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW UK
| | - Alyssa M. Miller
- grid.5335.00000000121885934Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW UK
| | - Victoria A. Trinkaus
- grid.418615.f0000 0004 0491 845XDepartment of Cellular Biochemistry, Max-Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany ,grid.452617.3Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Quentin A. E. Peter
- grid.5335.00000000121885934Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW UK
| | - Francesco Simone Ruggeri
- grid.5335.00000000121885934Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW UK
| | - Michele Vendruscolo
- grid.5335.00000000121885934Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW UK
| | - Andreas Bracher
- grid.418615.f0000 0004 0491 845XDepartment of Cellular Biochemistry, Max-Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Christopher M. Dobson
- grid.5335.00000000121885934Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW UK
| | - F. Ulrich Hartl
- grid.418615.f0000 0004 0491 845XDepartment of Cellular Biochemistry, Max-Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany ,grid.452617.3Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Tuomas P. J. Knowles
- grid.5335.00000000121885934Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW UK ,grid.5335.00000000121885934Department of Physics, Cavendish Laboratory, University of Cambridge, JJ Thomson Road, Cambridge, CB3 0HE UK
| |
Collapse
|
74
|
Selective promiscuity in the binding of E. coli Hsp70 to an unfolded protein. Proc Natl Acad Sci U S A 2021; 118:2016962118. [PMID: 34625496 DOI: 10.1073/pnas.2016962118] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2021] [Indexed: 01/16/2023] Open
Abstract
Heat shock protein 70 (Hsp70) chaperones bind many different sequences and discriminate between incompletely folded and folded clients. Most research into the origins of this "selective promiscuity" has relied on short peptides as substrates to dissect the binding, but much less is known about how Hsp70s bind full-length client proteins. Here, we connect detailed structural analyses of complexes between the Escherichia coli Hsp70 (DnaK) substrate-binding domain (SBD) and peptides encompassing five potential binding sites in the precursor to E. coli alkaline phosphatase (proPhoA) with SBD binding to full-length unfolded proPhoA. Analysis of SBD complexes with proPhoA peptides by a combination of X-ray crystallography, methyl-transverse relaxation optimized spectroscopy (methyl-TROSY), and paramagnetic relaxation enhancement (PRE) NMR and chemical cross-linking experiments provided detailed descriptions of their binding modes. Importantly, many sequences populate multiple SBD binding modes, including both the canonical N to C orientation and a C to N orientation. The favored peptide binding mode optimizes substrate residue side-chain compatibility with the SBD binding pockets independent of backbone orientation. Relating these results to the binding of the SBD to full-length proPhoA, we observe that multiple chaperones may bind to the protein substrate, and the binding sites, well separated in the proPhoA sequence, behave independently. The hierarchy of chaperone binding to sites on the protein was generally consistent with the apparent binding affinities observed for the peptides corresponding to these sites. Functionally, these results reveal that Hsp70s "read" sequences without regard to the backbone direction and that both binding orientations must be considered in current predictive algorithms.
Collapse
|
75
|
Wang W, Liu Q, Liu Q, Hendrickson WA. Conformational equilibria in allosteric control of Hsp70 chaperones. Mol Cell 2021; 81:3919-3933.e7. [PMID: 34453889 DOI: 10.1016/j.molcel.2021.07.039] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/04/2021] [Accepted: 07/28/2021] [Indexed: 01/16/2023]
Abstract
Heat-shock proteins of 70 kDa (Hsp70s) are vital for all life and are notably important in protein folding. Hsp70s use ATP binding and hydrolysis at a nucleotide-binding domain (NBD) to control the binding and release of client polypeptides at a substrate-binding domain (SBD); however, the mechanistic basis for this allostery has been elusive. Here, we first characterize biochemical properties of selected domain-interface mutants in bacterial Hsp70 DnaK. We then develop a theoretical model for allosteric equilibria among Hsp70 conformational states to explain the observations: a restraining state, Hsp70R-ATP, restricts ATP hydrolysis and binds peptides poorly, whereas a stimulating state, Hsp70S-ATP, hydrolyzes ATP rapidly and has high intrinsic substrate affinity but rapid binding kinetics. We support this model for allosteric regulation with DnaK structures obtained in the postulated stimulating state S with biochemical tests of the S-state interface and with improved peptide-binding-site definition in an R-state structure.
Collapse
Affiliation(s)
- Wei Wang
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Qinglian Liu
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Qun Liu
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Wayne A Hendrickson
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
76
|
James EI, Murphree TA, Vorauer C, Engen JR, Guttman M. Advances in Hydrogen/Deuterium Exchange Mass Spectrometry and the Pursuit of Challenging Biological Systems. Chem Rev 2021; 122:7562-7623. [PMID: 34493042 PMCID: PMC9053315 DOI: 10.1021/acs.chemrev.1c00279] [Citation(s) in RCA: 154] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
![]()
Solution-phase hydrogen/deuterium
exchange (HDX) coupled to mass
spectrometry (MS) is a widespread tool for structural analysis across
academia and the biopharmaceutical industry. By monitoring the exchangeability
of backbone amide protons, HDX-MS can reveal information about higher-order
structure and dynamics throughout a protein, can track protein folding
pathways, map interaction sites, and assess conformational states
of protein samples. The combination of the versatility of the hydrogen/deuterium
exchange reaction with the sensitivity of mass spectrometry has enabled
the study of extremely challenging protein systems, some of which
cannot be suitably studied using other techniques. Improvements over
the past three decades have continually increased throughput, robustness,
and expanded the limits of what is feasible for HDX-MS investigations.
To provide an overview for researchers seeking to utilize and derive
the most from HDX-MS for protein structural analysis, we summarize
the fundamental principles, basic methodology, strengths and weaknesses,
and the established applications of HDX-MS while highlighting new
developments and applications.
Collapse
Affiliation(s)
- Ellie I James
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Taylor A Murphree
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Clint Vorauer
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - John R Engen
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Miklos Guttman
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
77
|
The extracellular chaperone Clusterin enhances Tau aggregate seeding in a cellular model. Nat Commun 2021; 12:4863. [PMID: 34381050 PMCID: PMC8357826 DOI: 10.1038/s41467-021-25060-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 07/16/2021] [Indexed: 02/06/2023] Open
Abstract
Spreading of aggregate pathology across brain regions acts as a driver of disease progression in Tau-related neurodegeneration, including Alzheimer’s disease (AD) and frontotemporal dementia. Aggregate seeds released from affected cells are internalized by naïve cells and induce the prion-like templating of soluble Tau into neurotoxic aggregates. Here we show in a cellular model system and in neurons that Clusterin, an abundant extracellular chaperone, strongly enhances Tau aggregate seeding. Upon interaction with Tau aggregates, Clusterin stabilizes highly potent, soluble seed species. Tau/Clusterin complexes enter recipient cells via endocytosis and compromise the endolysosomal compartment, allowing transfer to the cytosol where they propagate aggregation of endogenous Tau. Thus, upregulation of Clusterin, as observed in AD patients, may enhance Tau seeding and possibly accelerate the spreading of Tau pathology. Variants of the extracellular chaperone Clusterin are associated with Alzheimer’s disease (AD) and Clusterin levels are elevated in AD patient brains. Here, the authors show that Clusterin binds to oligomeric Tau, which enhances the seeding capacity of Tau aggregates upon cellular uptake. They also demonstrate that Tau/Clusterin complexes enter cells via the endosomal pathway, resulting in damage to endolysosomes and entry into the cytosol, where they induce the aggregation of endogenous, soluble Tau.
Collapse
|
78
|
A Conceptual Framework for Integrating Cellular Protein Folding, Misfolding and Aggregation. Life (Basel) 2021; 11:life11070605. [PMID: 34202456 PMCID: PMC8304792 DOI: 10.3390/life11070605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/16/2021] [Accepted: 06/21/2021] [Indexed: 02/06/2023] Open
Abstract
How proteins properly fold and maintain solubility at the risk of misfolding and aggregation in the cellular environments still remains largely unknown. Aggregation has been traditionally treated as a consequence of protein folding (or misfolding). Notably, however, aggregation can be generally inhibited by affecting the intermolecular interactions leading to aggregation, independently of protein folding and conformation. We here point out that rigorous distinction between protein folding and aggregation as two independent processes is necessary to reconcile and underlie all observations regarding the combined cellular protein folding and aggregation. So far, the direct attractive interactions (e.g., hydrophobic interactions) between cellular macromolecules including chaperones and interacting polypeptides have been widely believed to mainly stabilize polypeptides against aggregation. However, the intermolecular repulsions by large excluded volume and surface charges of cellular macromolecules can play a key role in stabilizing their physically connected polypeptides against aggregation, irrespective of the connection types and induced conformational changes, underlying the generic intrinsic chaperone activity of cellular macromolecules. Such rigorous distinction and intermolecular repulsive force-driven aggregation inhibition by cellular macromolecules could give new insights into understanding the complex cellular protein landscapes that remain uncharted.
Collapse
|
79
|
Macošek J, Mas G, Hiller S. Redefining Molecular Chaperones as Chaotropes. Front Mol Biosci 2021; 8:683132. [PMID: 34195228 PMCID: PMC8237284 DOI: 10.3389/fmolb.2021.683132] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/20/2021] [Indexed: 01/27/2023] Open
Abstract
Molecular chaperones are the key instruments of bacterial protein homeostasis. Chaperones not only facilitate folding of client proteins, but also transport them, prevent their aggregation, dissolve aggregates and resolve misfolded states. Despite this seemingly large variety, single chaperones can perform several of these functions even on multiple different clients, thus suggesting a single biophysical mechanism underlying. Numerous recently elucidated structures of bacterial chaperone–client complexes show that dynamic interactions between chaperones and their client proteins stabilize conformationally flexible non-native client states, which results in client protein denaturation. Based on these findings, we propose chaotropicity as a suitable biophysical concept to rationalize the generic activity of chaperones. We discuss the consequences of applying this concept in the context of ATP-dependent and -independent chaperones and their functional regulation.
Collapse
|
80
|
Mayer MP. The Hsp70-Chaperone Machines in Bacteria. Front Mol Biosci 2021; 8:694012. [PMID: 34164436 PMCID: PMC8215388 DOI: 10.3389/fmolb.2021.694012] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 05/20/2021] [Indexed: 12/02/2022] Open
Abstract
The ATP-dependent Hsp70s are evolutionary conserved molecular chaperones that constitute central hubs of the cellular protein quality surveillance network. None of the other main chaperone families (Tig, GroELS, HtpG, IbpA/B, ClpB) have been assigned with a comparable range of functions. Through a multitude of functions Hsp70s are involved in many cellular control circuits for maintaining protein homeostasis and have been recognized as key factors for cell survival. Three mechanistic properties of Hsp70s are the basis for their high versatility. First, Hsp70s bind to short degenerate sequence motifs within their client proteins. Second, Hsp70 chaperones switch in a nucleotide-controlled manner between a state of low affinity for client proteins and a state of high affinity for clients. Third, Hsp70s are targeted to their clients by a large number of cochaperones of the J-domain protein (JDP) family and the lifetime of the Hsp70-client complex is regulated by nucleotide exchange factors (NEF). In this review I will discuss advances in the understanding of the molecular mechanism of the Hsp70 chaperone machinery focusing mostly on the bacterial Hsp70 DnaK and will compare the two other prokaryotic Hsp70s HscA and HscC with DnaK.
Collapse
Affiliation(s)
- Matthias P Mayer
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH-Alliance, Heidelberg, Germany
| |
Collapse
|
81
|
The DnaK/DnaJ Chaperone System Enables RNA Polymerase-DksA Complex Formation in Salmonella Experiencing Oxidative Stress. mBio 2021; 12:mBio.03443-20. [PMID: 33975942 PMCID: PMC8262869 DOI: 10.1128/mbio.03443-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Our previous biochemical approaches showed that the oxidoreductase activity of the DnaJ protein facilitates the interaction of oxidized DksA with RNA polymerase. Investigations herein demonstrate that under biologically relevant conditions the DnaJ- and DksA-codependent activation of the stringent response in Salmonella undergoing oxidative stress involves the DnaK chaperone. Oxidation of DksA cysteine residues stimulates redox-based and holdase interactions with zinc-binding and C-terminal domains of DnaJ. Genetic and biochemical evidence indicates that His33 in the HPD motif in the J domain of DnaJ facilitates interactions of unfolded DksA with DnaK. A mutation in His33 in the J domain prevents the presentation of unfolded DksA to DnaK without limiting the oxidoreductase activity mapped to DnaJ's zinc-2 site. Thr199 in the ATPase catalytic site of DnaK is required for the formation of the DksA/RNA polymerase complex. The DnaK/DnaJ/DksA complex enables the formation of an enzymatically active RNA polymerase holoenzyme that stimulates transcription of branched-chain amino acid and histidine metabolic genes in Salmonella exposed to reactive oxygen species. The DnaK/DnaJ chaperone protects Salmonella against the cytotoxicity associated with reactive oxygen species generated by the phagocyte NADPH oxidase in the innate host response. The antioxidant defenses associated with DnaK/DnaJ can in part be ascribed to the elicitation of the DksA-dependent stringent response and the protection this chaperone system provides against protein carbonylation in Salmonella undergoing oxidative stress.IMPORTANCE DksA was discovered 30 years ago in a screen for suppressors that reversed the thermosensitivity of Escherichia coli mutant strains deficient in DnaK/DnaJ, raising the possibility that this chaperone system may control DksA function. Since its serendipitous discovery, DksA has emerged as a key activator of the transcriptional program called the stringent response in Gram-negative bacteria experiencing diverse adverse conditions, including nutritional starvation or oxidative stress. DksA activates the stringent response through the allosteric control this regulatory protein exerts on the kinetics of RNA polymerase promoter open complexes. Recent investigations have shown that DksA overexpression protects dnaKJ mutant bacteria against heat shock indirectly via the ancestral chaperone polyphosphate, casting doubt on a possible complexation of DnaK, DnaJ, and DksA. Nonetheless, research presented herein demonstrates that the cochaperones DnaK and DnaJ enable DksA/RNA polymerase complex formation in response to oxidative stress.
Collapse
|
82
|
Upadhyay T, Potteth US, Karekar VV, Saraogi I. A Stutter in the Coiled-Coil Domain of Escherichia coli Co-chaperone GrpE Connects Structure with Function. Biochemistry 2021; 60:1356-1367. [PMID: 33881310 DOI: 10.1021/acs.biochem.1c00110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In bacteria, the co-chaperone GrpE acts as a nucleotide exchange factor and plays an important role in controlling the chaperone cycle of DnaK. The functional form of GrpE is an asymmetric dimer, consisting of a non-ideal coiled coil. Partial unfolding of this region during heat stress results in reduced nucleotide exchange and disrupts protein folding by DnaK. In this study, we elucidate the role of non-ideality in the coiled-coil domain of Escherichia coli GrpE in controlling its co-chaperone activity. The presence of a four-residue stutter introduces nonheptad periodicity in the GrpE coiled coil, resulting in global structural changes in GrpE and regulating its interaction with DnaK. Introduction of hydrophobic residues at the stutter core increased the structural stability of the protein. Using an in vitro FRET assay, we show that the enhanced stability of GrpE resulted in an increased affinity for DnaK. However, these mutants were unable to support bacterial growth at 42°C in a grpE-deleted E. coli strain. This work provides valuable insights into the functional role of a stutter in GrpE in regulating the DnaK-chaperone cycle during heat stress. More generally, our findings illustrate how stutters in a coiled-coil domain regulate structure-function trade-off in proteins.
Collapse
Affiliation(s)
- Tulsi Upadhyay
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, MP, India
| | - Upasana S Potteth
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, MP, India
| | - Vaibhav V Karekar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, MP, India
| | - Ishu Saraogi
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, MP, India
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, MP, India
| |
Collapse
|
83
|
Chen J, Wei H, Guo Y, Li Q, Wang H, Liu J. Chaperone-mediated protein folding enhanced D-psicose 3-epimerase expression in engineered Bacillus subtilis. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.02.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
84
|
Lu J, Zhang X, Wu Y, Sheng Y, Li W, Wang W. Energy landscape remodeling mechanism of Hsp70-chaperone-accelerated protein folding. Biophys J 2021; 120:1971-1983. [PMID: 33745889 PMCID: PMC8204389 DOI: 10.1016/j.bpj.2021.03.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 02/02/2021] [Accepted: 03/12/2021] [Indexed: 11/29/2022] Open
Abstract
Hsp70 chaperone is one of the key protein machines responsible for the quality control of protein production in cells. Facilitating in vivo protein folding by counteracting misfolding and aggregation is the essence of its biological function. Although the allosteric cycle during its functional actions has been well characterized both experimentally and computationally, the mechanism by which Hsp70 assists protein folding is still not fully understood. In this work, we studied the Hsp70-mediated folding of model proteins with rugged energy landscape by using molecular simulations. Different from the canonical scenario of Hsp70 functioning, which assumes that folding of substrate proteins occurs spontaneously after releasing from chaperones, our results showed that the substrate protein remains in contacts with the chaperone during its folding process. The direct chaperone-substrate interactions in the open conformation of Hsp70 tend to shield the substrate sites prone to form non-native contacts, which therefore avoids the frustrated folding pathway, leading to a higher folding rate and less probability of misfolding. Our results suggest that in addition to the unfoldase and holdase functions widely addressed in previous studies, Hsp70 can facilitate the folding of its substrate proteins by remodeling the folding energy landscape and directing the folding processes, demonstrating the foldase scenario. These findings add new, to our knowledge, insights into the general molecular mechanisms of chaperone-mediated protein folding.
Collapse
Affiliation(s)
- Jiajun Lu
- Department of Physics, National Laboratory of Solid State Microstructure, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China
| | - Xiaoyi Zhang
- Department of Physics, National Laboratory of Solid State Microstructure, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China
| | - Yichao Wu
- Department of Physics, National Laboratory of Solid State Microstructure, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China
| | - Yuebiao Sheng
- Department of Physics, National Laboratory of Solid State Microstructure, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China
| | - Wenfei Li
- Department of Physics, National Laboratory of Solid State Microstructure, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China.
| | - Wei Wang
- Department of Physics, National Laboratory of Solid State Microstructure, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China.
| |
Collapse
|
85
|
Cho H, Shim WJ, Liu Y, Shan SO. J-domain proteins promote client relay from Hsp70 during tail-anchored membrane protein targeting. J Biol Chem 2021; 296:100546. [PMID: 33741343 PMCID: PMC8054193 DOI: 10.1016/j.jbc.2021.100546] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/22/2021] [Accepted: 03/15/2021] [Indexed: 01/17/2023] Open
Abstract
J-domain proteins (JDPs) play essential roles in Hsp70 function by assisting Hsp70 in client trapping and regulating the Hsp70 ATPase cycle. Here, we report that JDPs can further enhance the targeting competence of Hsp70-bound client proteins during tail-anchored protein (TA) biogenesis. In the guided-entry-of-tail-anchored protein pathway in yeast, nascent TAs are captured by cytosolic Hsp70 and sequentially relayed to downstream chaperones, Sgt2 and Get3, for delivery to the ER. We found that two JDPs, Ydj1 and Sis1, function in parallel to support TA targeting to the ER in vivo. Biochemical analyses showed that, while Ydj1 and Sis1 differ in their ability to assist Hsp70 in TA trapping, both JDPs enhance the transfer of Hsp70-bound TAs to Sgt2. The ability of the JDPs to regulate the ATPase cycle of Hsp70 is essential for enhancing the transfer competence of Hsp70-bound TAs in vitro and for supporting TA insertion in vivo. These results demonstrate a role of JDPs in regulating the conformation of Hsp70-bound clients during membrane protein biogenesis.
Collapse
Affiliation(s)
- Hyunju Cho
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, USA
| | - Woo Jun Shim
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, USA
| | - Yumeng Liu
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, USA
| | - Shu-Ou Shan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, USA.
| |
Collapse
|
86
|
Studying protein folding in health and disease using biophysical approaches. Emerg Top Life Sci 2021; 5:29-38. [PMID: 33660767 PMCID: PMC8138949 DOI: 10.1042/etls20200317] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/10/2021] [Accepted: 02/15/2021] [Indexed: 11/17/2022]
Abstract
Protein folding is crucial for normal physiology including development and healthy aging, and failure of this process is related to the pathology of diseases including neurodegeneration and cancer. Early thermodynamic and kinetic studies based on the unfolding and refolding equilibrium of individual proteins in the test tube have provided insight into the fundamental principles of protein folding, although the problem of predicting how any given protein will fold remains unsolved. Protein folding within cells is a more complex issue than folding of purified protein in isolation, due to the complex interactions within the cellular environment, including post-translational modifications of proteins, the presence of macromolecular crowding in cells, and variations in the cellular environment, for example in cancer versus normal cells. Development of biophysical approaches including fluorescence resonance energy transfer (FRET) and nuclear magnetic resonance (NMR) techniques and cellular manipulations including microinjection and insertion of noncanonical amino acids has allowed the study of protein folding in living cells. Furthermore, biophysical techniques such as single-molecule fluorescence spectroscopy and optical tweezers allows studies of simplified systems at the single molecular level. Combining in-cell techniques with the powerful detail that can be achieved from single-molecule studies allows the effects of different cellular components including molecular chaperones to be monitored, providing us with comprehensive understanding of the protein folding process. The application of biophysical techniques to the study of protein folding is arming us with knowledge that is fundamental to the battle against cancer and other diseases related to protein conformation or protein–protein interactions.
Collapse
|
87
|
Choi SI, Seong BL. A social distancing measure governing the whole proteome. Curr Opin Struct Biol 2020; 66:104-111. [PMID: 33238232 DOI: 10.1016/j.sbi.2020.10.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/27/2020] [Accepted: 10/19/2020] [Indexed: 12/30/2022]
Abstract
Protein folding in vivo has been largely understood in the context of molecular chaperones preventing aggregation of nascent polypeptides in the crowded cellular environment. Nascent chains utilize the crowded environment in favor of productive folding by direct physical connection with cellular macromolecules. The intermolecular repulsive forces by large excluded volume and surface charges of interacting cellular macromolecules, exerting 'social distancing' measure among folding intermediates, could play an important role in stabilizing their physically connected polypeptides against aggregation regardless of the physical connection types. The generic intrinsic chaperone activity of cellular macromolecules likely provides a robust cellular environment for the productive protein folding and solubility maintenance at the whole proteome level.
Collapse
Affiliation(s)
- Seong Il Choi
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden.
| | - Baik L Seong
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea; Vaccine Innovation Technology Alliance (VITAL)-Korea, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
88
|
Wentink AS, Nillegoda NB, Feufel J, Ubartaitė G, Schneider CP, De Los Rios P, Hennig J, Barducci A, Bukau B. Molecular dissection of amyloid disaggregation by human HSP70. Nature 2020; 587:483-488. [PMID: 33177717 DOI: 10.1038/s41586-020-2904-6] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 08/24/2020] [Indexed: 11/09/2022]
Abstract
The deposition of highly ordered fibrillar-type aggregates into inclusion bodies is a hallmark of neurodegenerative diseases such as Parkinson's disease. The high stability of such amyloid fibril aggregates makes them challenging substrates for the cellular protein quality-control machinery1,2. However, the human HSP70 chaperone and its co-chaperones DNAJB1 and HSP110 can dissolve preformed fibrils of the Parkinson's disease-linked presynaptic protein α-synuclein in vitro3,4. The underlying mechanisms of this unique activity remain poorly understood. Here we use biochemical tools and nuclear magnetic resonance spectroscopy to determine the crucial steps of the disaggregation process of amyloid fibrils. We find that DNAJB1 specifically recognizes the oligomeric form of α-synuclein via multivalent interactions, and selectively targets HSP70 to fibrils. HSP70 and DNAJB1 interact with the fibril through exposed, flexible amino and carboxy termini of α-synuclein rather than the amyloid core itself. The synergistic action of DNAJB1 and HSP110 strongly accelerates disaggregation by facilitating the loading of several HSP70 molecules in a densely packed arrangement at the fibril surface, which is ideal for the generation of 'entropic pulling' forces. The cooperation of DNAJB1 and HSP110 in amyloid disaggregation goes beyond the classical substrate targeting and recycling functions that are attributed to these HSP70 co-chaperones and constitutes an active and essential contribution to the remodelling of the amyloid substrate. These mechanistic insights into the essential prerequisites for amyloid disaggregation may provide a basis for new therapeutic interventions in neurodegeneration.
Collapse
Affiliation(s)
- Anne S Wentink
- Center for Molecular Biology of Heidelberg University (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany.
| | - Nadinath B Nillegoda
- Center for Molecular Biology of Heidelberg University (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany.,Australian Regenerative Medicine Institute (ARMI), Monash University, Melbourne, Victoria, Australia
| | - Jennifer Feufel
- Center for Molecular Biology of Heidelberg University (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Gabrielė Ubartaitė
- Center for Molecular Biology of Heidelberg University (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Carolyn P Schneider
- Center for Molecular Biology of Heidelberg University (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Paolo De Los Rios
- Institute of Physics, School of Basic Sciences and Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Janosch Hennig
- Structural and Computational Biology Unit, EMBL Heidelberg, Heidelberg, Germany
| | - Alessandro Barducci
- Centre de Biochimie Structurale (CBS), INSERM, CNRS, Université de Montpellier, Montpellier, France
| | - Bernd Bukau
- Center for Molecular Biology of Heidelberg University (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany.
| |
Collapse
|
89
|
Kohler V, Andréasson C. Hsp70-mediated quality control: should I stay or should I go? Biol Chem 2020; 401:1233-1248. [PMID: 32745066 DOI: 10.1515/hsz-2020-0187] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/11/2020] [Indexed: 12/30/2022]
Abstract
Chaperones of the 70 kDa heat shock protein (Hsp70) superfamily are key components of the cellular proteostasis system. Together with its co-chaperones, Hsp70 forms proteostasis subsystems that antagonize protein damage during physiological and stress conditions. This function stems from highly regulated binding and release cycles of protein substrates, which results in a flow of unfolded, partially folded and misfolded species through the Hsp70 subsystem. Specific factors control how Hsp70 makes decisions regarding folding and degradation fates of the substrate proteins. In this review, we summarize how the flow of Hsp70 substrates is controlled in the cell with special emphasis on recent advances regarding substrate release mechanisms.
Collapse
Affiliation(s)
- Verena Kohler
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, S-106 91 Stockholm, Sweden
| | - Claes Andréasson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, S-106 91 Stockholm, Sweden
| |
Collapse
|
90
|
Balchin D, Hayer-Hartl M, Hartl FU. Recent advances in understanding catalysis of protein folding by molecular chaperones. FEBS Lett 2020; 594:2770-2781. [PMID: 32446288 DOI: 10.1002/1873-3468.13844] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/17/2020] [Accepted: 05/18/2020] [Indexed: 12/27/2022]
Abstract
Molecular chaperones are highly conserved proteins that promote proper folding of other proteins in vivo. Diverse chaperone systems assist de novo protein folding and trafficking, the assembly of oligomeric complexes, and recovery from stress-induced unfolding. A fundamental function of molecular chaperones is to inhibit unproductive protein interactions by recognizing and protecting hydrophobic surfaces that are exposed during folding or following proteotoxic stress. Beyond this basic principle, it is now clear that chaperones can also actively and specifically accelerate folding reactions in an ATP-dependent manner. We focus on the bacterial Hsp70 and chaperonin systems as paradigms, and review recent work that has advanced our understanding of how these chaperones act as catalysts of protein folding.
Collapse
Affiliation(s)
- David Balchin
- Protein Biogenesis Laboratory, The Francis Crick Institute, London, UK
| | - Manajit Hayer-Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - F Ulrich Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
| |
Collapse
|
91
|
Barriot R, Latour J, Castanié-Cornet MP, Fichant G, Genevaux P. J-Domain Proteins in Bacteria and Their Viruses. J Mol Biol 2020; 432:3771-3789. [DOI: 10.1016/j.jmb.2020.04.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/10/2020] [Accepted: 04/14/2020] [Indexed: 02/06/2023]
|
92
|
Singh AK, Balchin D, Imamoglu R, Hayer-Hartl M, Hartl FU. Efficient Catalysis of Protein Folding by GroEL/ES of the Obligate Chaperonin Substrate MetF. J Mol Biol 2020; 432:2304-2318. [PMID: 32135190 DOI: 10.1016/j.jmb.2020.02.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 02/25/2020] [Accepted: 02/25/2020] [Indexed: 11/16/2022]
Abstract
The cylindrical chaperonin GroEL and its cofactor GroES mediate ATP-dependent protein folding in Escherichia coli by transiently encapsulating non-native substrate in a nano-cage formed by the GroEL ring cavity and the lid-shaped GroES. Mechanistic studies of GroEL/ES with heterologous protein substrates suggested that the chaperonin is inefficient, typically requiring multiple ATP-dependent encapsulation cycles with only a few percent of protein folded per cycle. Here we analyzed the spontaneous and chaperonin-assisted folding of the essential enzyme 5,10-methylenetetrahydrofolate reductase (MetF) of E. coli, an obligate GroEL/ES substrate. We found that MetF, a homotetramer of 33-kDa subunits with (β/α)8 TIM-barrel fold, populates a kinetically trapped folding intermediate(s) (MetF-I) upon dilution from denaturant that fails to convert to the native state, even in the absence of aggregation. GroEL/ES recognizes MetF-I and catalyzes rapid folding, with ~50% of protein folded in a single round of encapsulation. Analysis by hydrogen/deuterium exchange at peptide resolution showed that the MetF subunit folds to completion in the GroEL/ES nano-cage and binds its cofactor flavin adenine dinucleotide. Rapid folding required the net negative charge character of the wall of the chaperonin cavity. These findings reveal a remarkable capacity of GroEL/ES to catalyze folding of an endogenous substrate protein that would have coevolved with the chaperonin system.
Collapse
Affiliation(s)
- Amit K Singh
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82159 Martinsried, Germany
| | - David Balchin
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82159 Martinsried, Germany
| | - Rahmi Imamoglu
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82159 Martinsried, Germany
| | - Manajit Hayer-Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82159 Martinsried, Germany.
| | - F Ulrich Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82159 Martinsried, Germany.
| |
Collapse
|