51
|
Sriram K, Luo Y, Malhi NK, Chen AT, Chen ZB. Methods to Study RNA-Chromatin Interactions. Methods Mol Biol 2023; 2666:279-297. [PMID: 37166672 DOI: 10.1007/978-1-0716-3191-1_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
RNA plays a fundamental role in the organization of chromatin as well as the regulation of gene expression. Although the chromatin is pervasively attached by both coding and noncoding RNAs, the impact of these chromatin-associated RNAs (caRNAs) on gene expression and cellular functions and their underlying mechanisms have just begun to be unraveled. One approach to understand the potential mechanism of gene regulation by caRNAs is to identify the caRNA-associated genomic regions. Several groups have developed methods to capture RNA-chromatin interactions in either one RNA vs the whole genome, i.e., "one-to-all" or all RNAs vs the whole genome, i.e., "all-to-all" manner. In this chapter, we discuss several state-of-the-art methods highlighting the principles behind them, the experimental procedures, the advantages and limitations, and their applications. Our goal is to provide an overview and guide to researchers interested in exploring caRNAs using these techniques.
Collapse
Affiliation(s)
- Kiran Sriram
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes Metabolism Research Institute and Beckman Research Institute, City of Hope, Duarte, CA, USA
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Yingjun Luo
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes Metabolism Research Institute and Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Naseeb K Malhi
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes Metabolism Research Institute and Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Aleysha T Chen
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes Metabolism Research Institute and Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Zhen Bouman Chen
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes Metabolism Research Institute and Beckman Research Institute, City of Hope, Duarte, CA, USA.
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute, City of Hope, Duarte, CA, USA.
| |
Collapse
|
52
|
Yip CW, Hon CC, Yasuzawa K, Sivaraman DM, Ramilowski JA, Shibayama Y, Agrawal S, Prabhu AV, Parr C, Severin J, Lan YJ, Dostie J, Petri A, Nishiyori-Sueki H, Tagami M, Itoh M, López-Redondo F, Kouno T, Chang JC, Luginbühl J, Kato M, Murata M, Yip WH, Shu X, Abugessaisa I, Hasegawa A, Suzuki H, Kauppinen S, Yagi K, Okazaki Y, Kasukawa T, de Hoon M, Carninci P, Shin JW. Antisense-oligonucleotide-mediated perturbation of long non-coding RNA reveals functional features in stem cells and across cell types. Cell Rep 2022; 41:111893. [PMID: 36577377 DOI: 10.1016/j.celrep.2022.111893] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/30/2022] [Accepted: 12/07/2022] [Indexed: 12/28/2022] Open
Abstract
Within the scope of the FANTOM6 consortium, we perform a large-scale knockdown of 200 long non-coding RNAs (lncRNAs) in human induced pluripotent stem cells (iPSCs) and systematically characterize their roles in self-renewal and pluripotency. We find 36 lncRNAs (18%) exhibiting cell growth inhibition. From the knockdown of 123 lncRNAs with transcriptome profiling, 36 lncRNAs (29.3%) show molecular phenotypes. Integrating the molecular phenotypes with chromatin-interaction assays further reveals cis- and trans-interacting partners as potential primary targets. Additionally, cell-type enrichment analysis identifies lncRNAs associated with pluripotency, while the knockdown of LINC02595, CATG00000090305.1, and RP11-148B6.2 modulates colony formation of iPSCs. We compare our results with previously published fibroblasts phenotyping data and find that 2.9% of the lncRNAs exhibit a consistent cell growth phenotype, whereas we observe 58.3% agreement in molecular phenotypes. This highlights that molecular phenotyping is more comprehensive in revealing affected pathways.
Collapse
Affiliation(s)
- Chi Wai Yip
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Chung-Chau Hon
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Kayoko Yasuzawa
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Divya M Sivaraman
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan; Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala 695 011, India
| | - Jordan A Ramilowski
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan; Advanced Medical Research Center, Yokohama City University, Yokohama, Kanagawa 236-0004, Japan
| | - Youtaro Shibayama
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Saumya Agrawal
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Anika V Prabhu
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Callum Parr
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Jessica Severin
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Yan Jun Lan
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Josée Dostie
- Department of Biochemistry, Rosalind and Morris Goodman Cancer Research Center, McGill University, Montréal, QC, Canada
| | - Andreas Petri
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, Copenhagen 2450, Denmark
| | | | - Michihira Tagami
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Masayoshi Itoh
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | | | - Tsukasa Kouno
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Jen-Chien Chang
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Joachim Luginbühl
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Masaki Kato
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Mitsuyoshi Murata
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Wing Hin Yip
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Xufeng Shu
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan; Department of Computational Biology and Medical Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8562, Japan
| | - Imad Abugessaisa
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Akira Hasegawa
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Harukazu Suzuki
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Sakari Kauppinen
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, Copenhagen 2450, Denmark
| | - Ken Yagi
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Yasushi Okazaki
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Takeya Kasukawa
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Michiel de Hoon
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Piero Carninci
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan; Human Technopole, via Rita Levi Montalcini 1, Milan, Italy
| | - Jay W Shin
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan; Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore 138672, Singapore.
| |
Collapse
|
53
|
Ding T, Zhang H. Novel biological insights revealed from the investigation of multiscale genome architecture. Comput Struct Biotechnol J 2022; 21:312-325. [PMID: 36582436 PMCID: PMC9791078 DOI: 10.1016/j.csbj.2022.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 12/06/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Gene expression and cell fate determination require precise and coordinated epigenetic regulation. The complex three-dimensional (3D) genome organization plays a critical role in transcription in myriad biological processes. A wide range of architectural features of the 3D genome, including chromatin loops, topologically associated domains (TADs), chromatin compartments, and phase separation, together regulate the chromatin state and transcriptional activity at multiple levels. With the help of 3D genome informatics, recent biochemistry and imaging approaches based on different strategies have revealed functional interactions among biomacromolecules, even at the single-cell level. Here, we review the occurrence, mechanistic basis, and functional implications of dynamic genome organization, and outline recent experimental and computational approaches for profiling multiscale genome architecture to provide robust tools for studying the 3D genome.
Collapse
Affiliation(s)
- Tianyi Ding
- Institute for Regenerative Medicine of Shanghai East Hospital, Frontier Science Research Center for Stem Cells, School of Life Science and Technology, Tongji University, Shanghai, PR China
| | - He Zhang
- Institute for Regenerative Medicine of Shanghai East Hospital, Frontier Science Research Center for Stem Cells, School of Life Science and Technology, Tongji University, Shanghai, PR China
| |
Collapse
|
54
|
Brancato V, Brentari I, Coscujuela Tarrero L, Furlan M, Nicassio F, Denti MA. News from around the RNA world: new avenues in RNA biology, biotechnology and therapeutics from the 2022 SIBBM meeting. Biol Open 2022; 11:bio059597. [PMID: 36239357 PMCID: PMC9581514 DOI: 10.1242/bio.059597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Since the formalization of the Central Dogma of molecular biology, the relevance of RNA in modulating the flow of information from DNA to proteins has been clear. More recently, the discovery of a vast set of non-coding transcripts involved in crucial aspects of cellular biology has renewed the enthusiasm of the RNA community. Moreover, the remarkable impact of RNA therapies in facing the COVID19 pandemics has bolstered interest in the translational opportunities provided by this incredible molecule. For all these reasons, the Italian Society of Biophysics and Molecular Biology (SIBBM) decided to dedicate its 17th yearly meeting, held in June 2022 in Rome, to the many fascinating aspects of RNA biology. More than thirty national and international speakers covered the properties, modes of action and applications of RNA, from its role in the control of development and cell differentiation to its involvement in disease. Here, we summarize the scientific content of the conference, highlighting the take-home message of each presentation, and we stress the directions the community is currently exploring to push forward our comprehension of the RNA World 3.0.
Collapse
Affiliation(s)
- Virginia Brancato
- Center for Genomic Science IIT@SEMM, Italian Institute of Technology, Milan 20139, Italy
| | - Ilaria Brentari
- Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento 38123, Italy
| | | | - Mattia Furlan
- Center for Genomic Science IIT@SEMM, Italian Institute of Technology, Milan 20139, Italy
| | - Francesco Nicassio
- Center for Genomic Science IIT@SEMM, Italian Institute of Technology, Milan 20139, Italy
| | - Michela A. Denti
- Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento 38123, Italy
| |
Collapse
|
55
|
Warwick T, Seredinski S, Krause NM, Bains JK, Althaus L, Oo JA, Bonetti A, Dueck A, Engelhardt S, Schwalbe H, Leisegang MS, Schulz MH, Brandes RP. A universal model of RNA.DNA:DNA triplex formation accurately predicts genome-wide RNA-DNA interactions. Brief Bioinform 2022; 23:6760135. [PMID: 36239395 PMCID: PMC9677506 DOI: 10.1093/bib/bbac445] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/16/2022] [Accepted: 09/17/2022] [Indexed: 12/14/2022] Open
Abstract
RNA.DNA:DNA triple helix (triplex) formation is a form of RNA-DNA interaction which regulates gene expression but is difficult to study experimentally in vivo. This makes accurate computational prediction of such interactions highly important in the field of RNA research. Current predictive methods use canonical Hoogsteen base pairing rules, which whilst biophysically valid, may not reflect the plastic nature of cell biology. Here, we present the first optimization approach to learn a probabilistic model describing RNA-DNA interactions directly from motifs derived from triplex sequencing data. We find that there are several stable interaction codes, including Hoogsteen base pairing and novel RNA-DNA base pairings, which agree with in vitro measurements. We implemented these findings in TriplexAligner, a program that uses the determined interaction codes to predict triplex binding. TriplexAligner predicts RNA-DNA interactions identified in all-to-all sequencing data more accurately than all previously published tools in human and mouse and also predicts previously studied triplex interactions with known regulatory functions. We further validated a novel triplex interaction using biophysical experiments. Our work is an important step towards better understanding of triplex formation and allows genome-wide analyses of RNA-DNA interactions.
Collapse
Affiliation(s)
- Timothy Warwick
- Institute for Cardiovascular Physiology, Goethe University, Theodor-Stern-Kai 7, D-60590, Frankfurt am Main, Germany,DZHK (German Center for Cardiovascular Research), Partner site Rhein-Main, Frankfurt am Main, Germany
| | - Sandra Seredinski
- Institute for Cardiovascular Physiology, Goethe University, Theodor-Stern-Kai 7, D-60590, Frankfurt am Main, Germany,DZHK (German Center for Cardiovascular Research), Partner site Rhein-Main, Frankfurt am Main, Germany
| | - Nina M Krause
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University, Max-von-Laue-Str. 7, D-60438, Frankfurt am Main, Germany
| | - Jasleen Kaur Bains
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University, Max-von-Laue-Str. 7, D-60438, Frankfurt am Main, Germany
| | - Lara Althaus
- Institute for Cardiovascular Physiology, Goethe University, Theodor-Stern-Kai 7, D-60590, Frankfurt am Main, Germany,DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - James A Oo
- Institute for Cardiovascular Physiology, Goethe University, Theodor-Stern-Kai 7, D-60590, Frankfurt am Main, Germany,DZHK (German Center for Cardiovascular Research), Partner site Rhein-Main, Frankfurt am Main, Germany
| | - Alessandro Bonetti
- Translational Genomics, Discovery Sciences, Bio Pharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 431 50 Mölndal, Sweden
| | - Anne Dueck
- Institute of Pharmacology and Toxicology, Technical University of Munich, Biedersteiner Str. 29, D-80802, Munich, Germany,DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Stefan Engelhardt
- Institute of Pharmacology and Toxicology, Technical University of Munich, Biedersteiner Str. 29, D-80802, Munich, Germany,DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University, Max-von-Laue-Str. 7, D-60438, Frankfurt am Main, Germany
| | - Matthias S Leisegang
- Institute for Cardiovascular Physiology, Goethe University, Theodor-Stern-Kai 7, D-60590, Frankfurt am Main, Germany,DZHK (German Center for Cardiovascular Research), Partner site Rhein-Main, Frankfurt am Main, Germany
| | - Marcel H Schulz
- Corresponding authors. Ralf P. Brandes, Institute for Cardiovascular Physiology, Goethe University, Theodor-Stern-Kai 7, D-60590, Frankfurt am Main, Germany. E-mail: ; Marcel H. Schulz, Institute for Cardiovascular Physiology, Goethe University, Theodor-Stern-Kai 7, D-60590, Frankfurt am Main, Germany. E-mail:
| | - Ralf P Brandes
- Corresponding authors. Ralf P. Brandes, Institute for Cardiovascular Physiology, Goethe University, Theodor-Stern-Kai 7, D-60590, Frankfurt am Main, Germany. E-mail: ; Marcel H. Schulz, Institute for Cardiovascular Physiology, Goethe University, Theodor-Stern-Kai 7, D-60590, Frankfurt am Main, Germany. E-mail:
| |
Collapse
|
56
|
Mylarshchikov DE, Mironov AA. ortho2align: a sensitive approach for searching for orthologues of novel lncRNAs. BMC Bioinformatics 2022; 23:384. [PMID: 36123626 PMCID: PMC9487038 DOI: 10.1186/s12859-022-04929-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 09/13/2022] [Indexed: 11/12/2022] Open
Abstract
Background Many novel long noncoding RNAs have been discovered in recent years due to advances in high-throughput sequencing experiments. Finding orthologues of these novel lncRNAs might facilitate clarification of their functional role in living organisms. However, lncRNAs exhibit low sequence conservation, so specific methods for enhancing the signal-to-noise ratio were developed. Nevertheless, current methods such as transcriptomes comparison approaches or searches for conserved secondary structures are not applicable to novel, previously unannotated lncRNAs by design. Results We present ortho2align—a versatile sensitive synteny-based lncRNA orthologue search tool with statistical assessment of sequence conservation. This tool allows control of the specificity of the search process and optional annotation of found orthologues. ortho2align shows similar performance in terms of sensitivity and resource usage as the state-of-the-art method for aligning orthologous lncRNAs but also enables scientists to predict unannotated orthologous sequences for lncRNAs in question. Using ortho2align, we predicted orthologues of three distinct classes of novel human lncRNAs in six Vertebrata species to estimate their degree of conservation. Conclusions Being designed for the discovery of unannotated orthologues of novel lncRNAs in distant species, ortho2align is a versatile tool applicable to any genomic regions, especially weakly conserved ones. A small amount of input files makes ortho2align easy to use in orthology studies as a single tool or in bundle with other steps that researchers will consider sensible. ortho2align is available as an Anaconda package with its source code hosted at https://github.com/dmitrymyl/ortho2align. Supplementary Information The online version contains supplementary material available at 10.1186/s12859-022-04929-y.
Collapse
Affiliation(s)
| | - Andrey Alexandrovich Mironov
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russian Federation, 119234.,Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russian Federation, 127994
| |
Collapse
|
57
|
Yamazaki T, Yamamoto T, Hirose T. Micellization: A new principle in the formation of biomolecular condensates. Front Mol Biosci 2022; 9:974772. [PMID: 36106018 PMCID: PMC9465675 DOI: 10.3389/fmolb.2022.974772] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 07/20/2022] [Indexed: 11/18/2022] Open
Abstract
Phase separation is a fundamental mechanism for compartmentalization in cells and leads to the formation of biomolecular condensates, generally containing various RNA molecules. RNAs are biomolecules that can serve as suitable scaffolds for biomolecular condensates and determine their forms and functions. Many studies have focused on biomolecular condensates formed by liquid-liquid phase separation (LLPS), one type of intracellular phase separation mechanism. We recently identified that paraspeckle nuclear bodies use an intracellular phase separation mechanism called micellization of block copolymers in their formation. The paraspeckles are scaffolded by NEAT1_2 long non-coding RNAs (lncRNAs) and their partner RNA-binding proteins (NEAT1_2 RNA-protein complexes [RNPs]). The NEAT1_2 RNPs act as block copolymers and the paraspeckles assemble through micellization. In LLPS, condensates grow without bound as long as components are available and typically have spherical shapes to minimize surface tension. In contrast, the size, shape, and internal morphology of the condensates are more strictly controlled in micellization. Here, we discuss the potential importance and future perspectives of micellization of block copolymers of RNPs in cells, including the construction of designer condensates with optimal internal organization, shape, and size according to design guidelines of block copolymers.
Collapse
Affiliation(s)
- Tomohiro Yamazaki
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Tetsuya Yamamoto
- Institute for Chemical Reaction Design and Discovery, Hokkaido University, Sapporo, Japan
| | - Tetsuro Hirose
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
- Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Japan
| |
Collapse
|
58
|
Zhang YW, Chen L, Li SC. Detecting TAD-like domains from RNA-associated interactions. Nucleic Acids Res 2022; 50:e88. [PMID: 35639502 PMCID: PMC9410901 DOI: 10.1093/nar/gkac422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/02/2022] [Accepted: 05/09/2022] [Indexed: 12/25/2022] Open
Abstract
Topologically associated domains (TADs) are crucial chromatin structural units. Evidence has illustrated that RNA-chromatin and RNA-RNA spatial interactions, so-called RNA-associated interactions (RAIs), may be associated with TAD-like domains (TLDs). To decode hierarchical TLDs from RAIs, we proposed SuperTLD, a domain detection algorithm incorporating imputation. We applied SuperTLD on four RAI data sets and compared TLDs with the TADs identified from the corresponding Hi-C datasets. The TLDs and TADs share a moderate similarity of hierarchies ≥ 0.5312 and the finest structures ≥ 0.8295. Comparison between boundaries and domains further demonstrated the novelty of TLDs. Enrichment analysis of epigenetic characteristics illustrated that the novel TLDs exhibit an enriched CTCF by 0.6245 fold change and H3 histone marks enriched within domains. GO analysis on the TLD novel boundaries exhibited enriched diverse terms, revealing TLDs' formation mechanism related closely to gene regulation.
Collapse
Affiliation(s)
- Yu Wei Zhang
- Department of Computer Science, City University of Hong Kong, Hong Kong
| | - Lingxi Chen
- Department of Computer Science, City University of Hong Kong, Hong Kong
| | - Shuai Cheng Li
- Department of Computer Science, City University of Hong Kong, Hong Kong
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong
| |
Collapse
|
59
|
Yamamoto T, Yamazaki T, Hirose T. Triblock copolymer micelle model of spherical paraspeckles. Front Mol Biosci 2022; 9:925058. [PMID: 36072433 PMCID: PMC9441768 DOI: 10.3389/fmolb.2022.925058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Paraspeckles are nuclear bodies scaffolded by RNP complexes of NEAT1_2 RNA transcripts and multiple RNA-binding proteins. The assembly of paraspeckles is coupled with the transcription of NEAT1_2. Paraspeckles form the core-shell structure, where the two terminal regions of NEAT1_2 RNP complexes compose the shell of the paraspeckle and the middle regions of these complexes compose the core. We here construct a theoretical model of paraspeckles by taking into account the transcription of NEAT1_2 in an extension of the theory of block copolymer micelles. This theory predicts that the core-shell structure of a paraspeckle is assembled by the association of the middle region of NEAT1_2 RNP complexes due to the multivalent interactions between RBPs bound to these regions and by the relative affinity of the terminal regions of the complexes to the nucleoplasm. The latter affinity results in the effective repulsive interactions between terminal regions of the RNA complexes and limits the number of complexes composing the paraspeckle. In the wild type, the repulsive interaction between the middle and terminal block dominates the thermal fluctuation. However, the thermal fluctuation can be significant in a mutant, where a part of the terminal regions of NEAT1_2 is deleted, and distributes the shortened terminal regions randomly between the shell and the core, consistent with our recent experiments. With the upregulated transcription, the shortened terminal regions of NEAT1_2 in a deletion mutant is localized to the core to decrease the repulsive interaction between the terminal regions, while the structure does not change with the upregulation in the wild type. The robustness of the structure of paraspeckles in the wild type results from the polymeric nature of NEAT1_2 complexes.
Collapse
Affiliation(s)
- Tetsuya Yamamoto
- Institute for Chemical Reaction Design and Discovery, Hokkaido University, Sapporo, Japan
- PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Japan
- *Correspondence: Tetsuya Yamamoto,
| | - Tomohiro Yamazaki
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Tetsuro Hirose
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan
| |
Collapse
|
60
|
Alinejad-Rokny H, Ghavami Modegh R, Rabiee HR, Ramezani Sarbandi E, Rezaie N, Tam KT, Forrest ARR. MaxHiC: A robust background correction model to identify biologically relevant chromatin interactions in Hi-C and capture Hi-C experiments. PLoS Comput Biol 2022; 18:e1010241. [PMID: 35749574 PMCID: PMC9262194 DOI: 10.1371/journal.pcbi.1010241] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 07/07/2022] [Accepted: 05/23/2022] [Indexed: 12/13/2022] Open
Abstract
Hi-C is a genome-wide chromosome conformation capture technology that detects interactions between pairs of genomic regions and exploits higher order chromatin structures. Conceptually Hi-C data counts interaction frequencies between every position in the genome and every other position. Biologically functional interactions are expected to occur more frequently than transient background and artefactual interactions. To identify biologically relevant interactions, several background models that take biases such as distance, GC content and mappability into account have been proposed. Here we introduce MaxHiC, a background correction tool that deals with these complex biases and robustly identifies statistically significant interactions in both Hi-C and capture Hi-C experiments. MaxHiC uses a negative binomial distribution model and a maximum likelihood technique to correct biases in both Hi-C and capture Hi-C libraries. We systematically benchmark MaxHiC against major Hi-C background correction tools including Hi-C significant interaction callers (SIC) and Hi-C loop callers using published Hi-C, capture Hi-C, and Micro-C datasets. Our results demonstrate that 1) Interacting regions identified by MaxHiC have significantly greater levels of overlap with known regulatory features (e.g. active chromatin histone marks, CTCF binding sites, DNase sensitivity) and also disease-associated genome-wide association SNPs than those identified by currently existing models, 2) the pairs of interacting regions are more likely to be linked by eQTL pairs and 3) more likely to link known regulatory features including known functional enhancer-promoter pairs validated by CRISPRi than any of the existing methods. We also demonstrate that interactions between different genomic region types have distinct distance distributions only revealed by MaxHiC. MaxHiC is publicly available as a python package for the analysis of Hi-C, capture Hi-C and Micro-C data.
Collapse
Affiliation(s)
- Hamid Alinejad-Rokny
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, Australia
- Bio Medical Machine Learning Lab (BML), The Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, Australia
- Health Data Analytics Program, AI-enabled Processes (AIP) Research Centre, Macquarie University, Sydney, Australia
- * E-mail: (HAR); (ARRF)
| | - Rassa Ghavami Modegh
- Bioinformatics and Computational Biology Lab, Department of Computer Engineering, Sharif University of Technology, Tehran, Iran
| | - Hamid R. Rabiee
- Bioinformatics and Computational Biology Lab, Department of Computer Engineering, Sharif University of Technology, Tehran, Iran
| | - Ehsan Ramezani Sarbandi
- Bioinformatics and Computational Biology Lab, Department of Computer Engineering, Sharif University of Technology, Tehran, Iran
| | - Narges Rezaie
- Center for Complex Biological Systems, University of California Irvine, Irvine, California, United States of America
| | - Kin Tung Tam
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, Australia
| | - Alistair R. R. Forrest
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, Australia
- * E-mail: (HAR); (ARRF)
| |
Collapse
|
61
|
Huang X, Bashkenova N, Hong Y, Lyu C, Guallar D, Hu Z, Malik V, Li D, Wang H, Shen X, Zhou H, Wang J. A TET1-PSPC1-Neat1 molecular axis modulates PRC2 functions in controlling stem cell bivalency. Cell Rep 2022; 39:110928. [PMID: 35675764 PMCID: PMC9214724 DOI: 10.1016/j.celrep.2022.110928] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 03/29/2022] [Accepted: 05/18/2022] [Indexed: 11/16/2022] Open
Abstract
TET1 maintains hypomethylation at bivalent promoters through its catalytic activity in embryonic stem cells (ESCs). However, TET1 catalytic activity-independent function in regulating bivalent genes is not well understood. Using a proteomics approach, we map the TET1 interactome in ESCs and identify PSPC1 as a TET1 partner. Genome-wide location analysis reveals that PSPC1 functionally associates with TET1 and Polycomb repressive complex-2 (PRC2). We establish that PSPC1 and TET1 repress, and the lncRNA Neat1 activates, bivalent gene expression. In ESCs, Neat1 is preferentially bound to PSPC1 alongside its PRC2 association at bivalent promoters. During the ESC-to-epiblast-like stem cell (EpiLC) transition, PSPC1 and TET1 maintain PRC2 chromatin occupancy at bivalent gene promoters, while Neat1 facilitates the activation of certain bivalent genes by promoting PRC2 binding to their mRNAs. Our study demonstrates a TET1-PSPC1-Neat1 molecular axis that modulates PRC2-binding affinity to chromatin and bivalent gene transcripts in controlling stem cell bivalency.
Collapse
Affiliation(s)
- Xin Huang
- Department of Medicine, Columbia Center for Human Development, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Nazym Bashkenova
- Department of Medicine, Columbia Center for Human Development, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Yantao Hong
- Tsinghua Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Cong Lyu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Diana Guallar
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Zhe Hu
- Department of Medicine, Columbia Center for Human Development, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Vikas Malik
- Department of Medicine, Columbia Center for Human Development, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Dan Li
- Department of Medicine, Columbia Center for Human Development, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Hailin Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiaohua Shen
- Tsinghua Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Hongwei Zhou
- Department of Medicine, Columbia Center for Human Development, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jianlong Wang
- Department of Medicine, Columbia Center for Human Development, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
62
|
Sanbonmatsu K. Getting to the bottom of lncRNA mechanism: structure-function relationships. Mamm Genome 2022; 33:343-353. [PMID: 34642784 PMCID: PMC8509902 DOI: 10.1007/s00335-021-09924-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/28/2021] [Indexed: 12/14/2022]
Abstract
While long non-coding RNAs are known to play key roles in disease and development, relatively few structural studies have been performed for this important class of RNAs. Here, we review functional studies of long non-coding RNAs and expose the need for high-resolution 3-D structural studies, discussing the roles of long non-coding RNAs in the cell and how structure-function relationships might be used to elucidate further understanding. We then describe structural studies of other classes of RNAs using chemical probing, nuclear magnetic resonance, small-angle X-ray scattering, X-ray crystallography, and cryogenic electron microscopy (cryo-EM). Next, we review early structural studies of long non-coding RNAs to date and describe the way forward for the structural biology of long non-coding RNAs in terms of cryo-EM.
Collapse
|
63
|
Ryabykh GK, Mylarshchikov DE, Kuznetsov SV, Sigorskikh AI, Ponomareva TY, Zharikova AA, Mironov AA. RNA–Chromatin Interactome: What? Where? When? Mol Biol 2022. [DOI: 10.1134/s0026893322020121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
64
|
Enhancer RNAs (eRNAs) in Cancer: The Jacks of All Trades. Cancers (Basel) 2022; 14:cancers14081978. [PMID: 35454885 PMCID: PMC9030334 DOI: 10.3390/cancers14081978] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/09/2022] [Accepted: 04/12/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary This review focuses on eRNAs and the several mechanisms by which they can regulate gene expression. In particular we describe here the most recent examples of eRNAs dysregulated in cancer or involved in the immune escape of tumor cells. Abstract Enhancer RNAs (eRNAs) are non-coding RNAs (ncRNAs) transcribed in enhancer regions. They play an important role in transcriptional regulation, mainly during cellular differentiation. eRNAs are tightly tissue- and cell-type specific and are induced by specific stimuli, activating promoters of target genes in turn. eRNAs usually have a very short half-life but in some cases, once activated, they can be stably expressed and acquire additional functions. Due to their critical role, eRNAs are often dysregulated in cancer and growing number of interactions with chromatin modifiers, transcription factors, and splicing machinery have been described. Enhancer activation and eRNA transcription have particular relevance also in inflammatory response, placing the eRNAs at the interplay between cancer and immune cells. Here, we summarize all the possible molecular mechanisms recently reported in association with eRNAs activity.
Collapse
|
65
|
Cao H, Kapranov P. Methods to Analyze the Non-Coding RNA Interactome—Recent Advances and Challenges. Front Genet 2022; 13:857759. [PMID: 35368711 PMCID: PMC8969105 DOI: 10.3389/fgene.2022.857759] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 02/15/2022] [Indexed: 12/03/2022] Open
Abstract
Most of the human genome is transcribed to generate a multitude of non-coding RNAs. However, while these transcripts have generated an immense amount of scientific interest, their biological function remains a subject of an intense debate. Understanding mechanisms of action of non-coding RNAs is a key to addressing the issue of biological relevance of these transcripts. Based on some well-understood non-coding RNAs that function inside the cell by interacting with other molecules, it is generally believed many other non-coding transcripts could also function in a similar fashion. Therefore, development of methods that can map RNA interactome is the key to understanding functionality of the extensive cellular non-coding transcriptome. Here, we review the vast progress that has been made in the past decade in technologies that can map RNA interactions with different sites in DNA, proteins or other RNA molecules; the general approaches used to validate the existence of novel interactions; and the challenges posed by interpreting the data obtained using the interactome mapping methods.
Collapse
|
66
|
Nuclear matrix associated RNAs in posterior silk glands show developmental dynamics in Bombyx mori in 5th instar larvae. BMC Res Notes 2022; 15:68. [PMID: 35183251 PMCID: PMC8858543 DOI: 10.1186/s13104-022-05951-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 02/03/2022] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVES The nuclear matrix maintains and regulates chromatin structure. RNA is an integral component of the nuclear matrix and is essential to its structural maintenance. Bombyx mori is a major economic contributor in the sericulture industry and produces fibroin-the most important silk protein in its posterior silk glands during 5th instar larval stage. The present study investigates the composition of nuclear matrix RNA prepared from the posterior silk glands of Bombyx mori during fifth instar larval stage where maximum silk production occurs. The datasets from which the analysis is carried out are part of data note titled "Nuclear matrix associated RNA datasets of posterior silk glands of Bombyx mori during 5th instar larval development". RESULTS The results showed significant enrichment of nuclear matrix RNA from day 1, to day 5 and day 7. Nuclear RNA showed increased abundance from day 1 to day 5 and day 7. Nuclear matrix RNA exhibited repetitive RNA sequences, of which UGUCC and GCUGGU were the most abundant. Genes involved in metabolic pathways showed significant enrichment correlating with silk production. These results emphasize the role of dynamic, repetitive DNA transcripts in chromatin architecture and further reveal the close association between the nuclear matrix and gene expression.
Collapse
|
67
|
Mazurov E, Sizykh A, Medvedeva YA. HiMoRNA: A Comprehensive Database of Human lncRNAs Involved in Genome-Wide Epigenetic Regulation. Noncoding RNA 2022; 8:ncrna8010018. [PMID: 35202091 PMCID: PMC8876941 DOI: 10.3390/ncrna8010018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/22/2022] [Accepted: 01/23/2022] [Indexed: 01/17/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) play an important role in genome regulation. Specifically, many lncRNAs interact with chromatin, recruit epigenetic complexes and in this way affect large-scale gene expression programs. However, the experimental data about lncRNA-chromatin interactions is still limited. The majority of experimental protocols do not provide any insight into the mechanics of lncRNA-based genome-wide epigenetic regulation. Here we present the HiMoRNA (Histone-Modifying RNA) database, a resource containing correlated lncRNA–epigenetic changes in specific genomic locations genome-wide. HiMoRNA integrates a large amount of multi-omics data to characterize the effects of lncRNA on epigenetic modifications and gene expression. The current release of HiMoRNA includes more than five million associations in humans for ten histone modifications in multiple genomic loci and 4145 lncRNAs. HiMoRNA provides a user-friendly interface to facilitate browsing, searching and retrieving of lncRNAs associated with epigenetic profiles of various chromatin loci. Analysis of the HiMoRNA data suggests that several lncRNA including JPX might be involved not only in regulation of XIST locus but also in direct establishment or maintenance of X-chromosome inactivation. We believe that HiMoRNA is a convenient and valuable resource that can provide valuable biological insights and greatly facilitate functional annotation of lncRNAs.
Collapse
Affiliation(s)
- Evgeny Mazurov
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, 117312 Moscow, Russia;
| | - Alexey Sizykh
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, 141701 Moscow, Russia;
| | - Yulia A. Medvedeva
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, 117312 Moscow, Russia;
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, 141701 Moscow, Russia;
- Correspondence:
| |
Collapse
|
68
|
Zhang YC, Zhou YF, Cheng Y, Huang JH, Lian JP, Yang L, He RR, Lei MQ, Liu YW, Yuan C, Zhao WL, Xiao S, Chen YQ. Genome-wide analysis and functional annotation of chromatin-enriched noncoding RNAs in rice during somatic cell regeneration. Genome Biol 2022; 23:28. [PMID: 35045887 PMCID: PMC8772118 DOI: 10.1186/s13059-022-02608-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/12/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Plants have the remarkable ability to generate callus, a pluripotent cell mass that acquires competence for subsequent tissue regeneration. Global chromatin remodeling is required for this cell fate transition, but how the process is regulated is not fully understood. Chromatin-enriched noncoding RNAs (cheRNAs) are thought to play important roles in maintaining chromatin state. However, whether cheRNAs participate in somatic cell regeneration in plants has not yet been clarified. RESULTS To uncover the characteristics and functions of cheRNAs during somatic cell reprogramming in plants, we systematically investigate cheRNAs during callus induction, proliferation and regeneration in rice. We identify 2284 cheRNAs, most of which are novel long non-coding RNAs or small nucleolar RNAs. These cheRNAs, which are highly conserved across plant species, shuttle between chromatin and the nucleoplasm during somatic cell regeneration. They positively regulate the expression of neighboring genes via specific RNA motifs, which may interact with DNA motifs around cheRNA loci. Large-scale mutant analysis shows that cheRNAs are associated with plant size and seed morphology. Further detailed functional investigation of two che-lncRNAs demonstrates that their loss of function impairs cell dedifferentiation and plant regeneration, highlighting the functions of cheRNAs in regulating the expression of neighboring genes via specific motifs. These findings support cis- regulatory roles of cheRNAs in influencing a variety of rice traits. CONCLUSIONS cheRNAs are a distinct subclass of regulatory non-coding RNAs that are required for somatic cell regeneration and regulate rice traits. Targeting cheRNAs has great potential for crop trait improvement and breeding in future.
Collapse
Affiliation(s)
- Yu-Chan Zhang
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
- MOE Key Laboratory of Gene Function and Regulation, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China.
| | - Yan-Fei Zhou
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Yu Cheng
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Jia-Hui Huang
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Jian-Ping Lian
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Lu Yang
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Rui-Rui He
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Meng-Qi Lei
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Yu-Wei Liu
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Chao Yuan
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Wen-Long Zhao
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Shi Xiao
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Yue-Qin Chen
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
- MOE Key Laboratory of Gene Function and Regulation, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China.
| |
Collapse
|
69
|
Zeng C, Takeda A, Sekine K, Osato N, Fukunaga T, Hamada M. Bioinformatics Approaches for Determining the Functional Impact of Repetitive Elements on Non-coding RNAs. Methods Mol Biol 2022; 2509:315-340. [PMID: 35796972 DOI: 10.1007/978-1-0716-2380-0_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
With a large number of annotated non-coding RNAs (ncRNAs), repetitive sequences are found to constitute functional components (termed as repetitive elements) in ncRNAs that perform specific biological functions. Bioinformatics analysis is a powerful tool for improving our understanding of the role of repetitive elements in ncRNAs. This chapter summarizes recent findings that reveal the role of repetitive elements in ncRNAs. Furthermore, relevant bioinformatics approaches are systematically reviewed, which promises to provide valuable resources for studying the functional impact of repetitive elements on ncRNAs.
Collapse
Affiliation(s)
- Chao Zeng
- Faculty of Science and Engineering, Waseda University, Tokyo, Japan.
- AIST-Waseda University Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), Tokyo, Japan.
| | - Atsushi Takeda
- Faculty of Science and Engineering, Waseda University, Tokyo, Japan
| | - Kotaro Sekine
- Faculty of Science and Engineering, Waseda University, Tokyo, Japan
| | - Naoki Osato
- Faculty of Science and Engineering, Waseda University, Tokyo, Japan
| | - Tsukasa Fukunaga
- Waseda Institute for Advanced Study, Waseda University, Tokyo, Japan
| | - Michiaki Hamada
- Faculty of Science and Engineering, Waseda University, Tokyo, Japan.
- AIST-Waseda University Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), Tokyo, Japan.
| |
Collapse
|
70
|
Silveira GO, Coelho HS, Amaral MS, Verjovski-Almeida S. Long non-coding RNAs as possible therapeutic targets in protozoa, and in Schistosoma and other helminths. Parasitol Res 2021; 121:1091-1115. [PMID: 34859292 DOI: 10.1007/s00436-021-07384-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 11/14/2021] [Indexed: 12/26/2022]
Abstract
Long non-coding RNAs (lncRNAs) emerged in the past 20 years due to massive amounts of scientific data regarding transcriptomic analyses. They have been implicated in a plethora of cellular processes in higher eukaryotes. However, little is known about lncRNA possible involvement in parasitic diseases, with most studies only detecting their presence in parasites of human medical importance. Here, we review the progress on lncRNA studies and their functions in protozoans and helminths. In addition, we show an example of knockdown of one lncRNA in Schistosoma mansoni, SmLINC156349, which led to in vitro parasite adhesion, motility, and pairing impairment, with a 20% decrease in parasite viability and 33% reduction in female oviposition. Other observed phenotypes were a decrease in the proliferation rate of both male and female worms and their gonads, and reduced female lipid and vitelline droplets that are markers for well-developed vitellaria. Impairment of female worms' vitellaria in SmLINC156349-silenced worms led to egg development deficiency. All those results demonstrate the great potential of the tools and methods to characterize lncRNAs as potential new therapeutic targets. Further, we discuss the challenges and limitations of current methods for studying lncRNAs in parasites and possible solutions to overcome them, and we highlight the future directions of this exciting field.
Collapse
Affiliation(s)
- Gilbert O Silveira
- Laboratório de Parasitologia, Instituto Butantan, São Paulo, SP, 05503-900, Brazil.,Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, 05508-900, Brazil
| | - Helena S Coelho
- Laboratório de Parasitologia, Instituto Butantan, São Paulo, SP, 05503-900, Brazil
| | - Murilo S Amaral
- Laboratório de Parasitologia, Instituto Butantan, São Paulo, SP, 05503-900, Brazil.
| | - Sergio Verjovski-Almeida
- Laboratório de Parasitologia, Instituto Butantan, São Paulo, SP, 05503-900, Brazil. .,Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, 05508-900, Brazil.
| |
Collapse
|
71
|
Quinodoz SA, Jachowicz JW, Bhat P, Ollikainen N, Banerjee AK, Goronzy IN, Blanco MR, Chovanec P, Chow A, Markaki Y, Thai J, Plath K, Guttman M. RNA promotes the formation of spatial compartments in the nucleus. Cell 2021; 184:5775-5790.e30. [PMID: 34739832 PMCID: PMC9115877 DOI: 10.1016/j.cell.2021.10.014] [Citation(s) in RCA: 232] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 08/25/2021] [Accepted: 10/13/2021] [Indexed: 12/25/2022]
Abstract
RNA, DNA, and protein molecules are highly organized within three-dimensional (3D) structures in the nucleus. Although RNA has been proposed to play a role in nuclear organization, exploring this has been challenging because existing methods cannot measure higher-order RNA and DNA contacts within 3D structures. To address this, we developed RNA & DNA SPRITE (RD-SPRITE) to comprehensively map the spatial organization of RNA and DNA. These maps reveal higher-order RNA-chromatin structures associated with three major classes of nuclear function: RNA processing, heterochromatin assembly, and gene regulation. These data demonstrate that hundreds of ncRNAs form high-concentration territories throughout the nucleus, that specific RNAs are required to recruit various regulators into these territories, and that these RNAs can shape long-range DNA contacts, heterochromatin assembly, and gene expression. These results demonstrate a mechanism where RNAs form high-concentration territories, bind to diffusible regulators, and guide them into compartments to regulate essential nuclear functions.
Collapse
Affiliation(s)
- Sofia A Quinodoz
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Joanna W Jachowicz
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Prashant Bhat
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Noah Ollikainen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Abhik K Banerjee
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Isabel N Goronzy
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Mario R Blanco
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Peter Chovanec
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Amy Chow
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Yolanda Markaki
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jasmine Thai
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Kathrin Plath
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Mitchell Guttman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
72
|
Three-dimensional genome organization via triplex-forming RNAs. Nat Struct Mol Biol 2021; 28:945-954. [PMID: 34759378 DOI: 10.1038/s41594-021-00678-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 09/30/2021] [Indexed: 11/08/2022]
Abstract
An increasing number of long noncoding RNAs (lncRNAs) have been proposed to act as nuclear organization factors during interphase. Direct RNA-DNA interactions can be achieved by the formation of triplex helix structures where a single-stranded RNA molecule hybridizes by complementarity into the major groove of double-stranded DNA. However, whether and how these direct RNA-DNA associations influence genome structure in interphase chromosomes remain poorly understood. Here we theorize that RNA organizes the genome in space via a triplex-forming mechanism. To test this theory, we apply a computational modeling approach of chromosomes that combines restraint-based modeling with polymer physics. Our models suggest that colocalization of triplex hotspots targeted by lncRNAs could contribute to large-scale chromosome compartmentalization cooperating, rather than competing, with architectural transcription factors such as CTCF.
Collapse
|
73
|
Ide S, Sasaki A, Kawamoto Y, Bando T, Sugiyama H, Maeshima K. Telomere-specific chromatin capture using a pyrrole-imidazole polyamide probe for the identification of proteins and non-coding RNAs. Epigenetics Chromatin 2021; 14:46. [PMID: 34627342 PMCID: PMC8502363 DOI: 10.1186/s13072-021-00421-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/23/2021] [Indexed: 11/25/2022] Open
Abstract
Background Knowing chromatin components at a DNA regulatory element at any given time is essential for understanding how the element works during cellular proliferation, differentiation and development. A region-specific chromatin purification is an invaluable approach to dissecting the comprehensive chromatin composition at a particular region. Several methods (e.g., PICh, enChIP, CAPTURE and CLASP) have been developed for isolating and analyzing chromatin components. However, all of them have some shortcomings in identifying non-coding RNA associated with DNA regulatory elements. Results We have developed a new approach for affinity purification of specific chromatin segments employing an N-methyl pyrrole (P)-N-methylimidazole (I) (PI) polyamide probe, which binds to a specific sequence in double-stranded DNA via Watson–Crick base pairing as a minor groove binder. This new technique is called proteomics and RNA-omics of isolated chromatin segments (PI-PRICh). Using PI-PRICh to isolate mouse and human telomeric components, we found enrichments of shelterin proteins, the well-known telomerase RNA component (TERC) and telomeric repeat-containing RNA (TERRA). When PI-PRICh was performed for alternative lengthening of telomere (ALT) cells with highly recombinogenic telomeres, in addition to the conventional telomeric chromatin, we obtained chromatin regions containing telomeric repeat insertions scattered in the genome and their associated RNAs. Conclusion PI-PRICh reproducibly identified both the protein and RNA components of telomeric chromatin when targeting telomere repeats. PI polyamide is a promising alternative to simultaneously isolate associated proteins and RNAs of sequence-specific chromatin regions under native conditions, allowing better understanding of chromatin organization and functions within the cell. Supplementary Information The online version contains supplementary material available at 10.1186/s13072-021-00421-8.
Collapse
Affiliation(s)
- Satoru Ide
- Genome Dynamics Laboratory, National Institute of Genetics, ROIS, Mishima, Shizuoka, 411-8540, Japan. .,Department of Genetics, School of Life Science, SOKENDAI, Mishima, Shizuoka, 411-8540, Japan.
| | - Asuka Sasaki
- Genome Dynamics Laboratory, National Institute of Genetics, ROIS, Mishima, Shizuoka, 411-8540, Japan.,Department of Genetics, School of Life Science, SOKENDAI, Mishima, Shizuoka, 411-8540, Japan
| | - Yusuke Kawamoto
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto, 606-8502, Japan
| | - Toshikazu Bando
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto, 606-8502, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto, 606-8502, Japan
| | - Kazuhiro Maeshima
- Genome Dynamics Laboratory, National Institute of Genetics, ROIS, Mishima, Shizuoka, 411-8540, Japan.,Department of Genetics, School of Life Science, SOKENDAI, Mishima, Shizuoka, 411-8540, Japan
| |
Collapse
|
74
|
Ogunleye AJ, Romanova E, Medvedeva YA. Genome-wide regulation of CpG methylation by ecCEBPα in acute myeloid leukemia. F1000Res 2021; 10:204. [PMID: 34557292 PMCID: PMC8444155 DOI: 10.12688/f1000research.28146.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/23/2021] [Indexed: 01/08/2023] Open
Abstract
Background: Acute myeloid leukemia (AML) is a hematopoietic malignancy characterized by genetic and epigenetic aberrations that alter the differentiation capacity of myeloid progenitor cells. The transcription factor
CEBPα is frequently mutated in AML patients leading to an increase in DNA methylation in many genomic locations. Previously, it has been shown that
ecCEBPα (extra coding CEBP
α) - a lncRNA transcribed in the same direction as
CEBPα gene - regulates DNA methylation of
CEBPα promoter in
cis. Here, we hypothesize that
ecCEBPα could participate in the regulation of DNA methylation in
trans. Method: First, we retrieved the methylation profile of AML patients with mutated
CEBPα locus from The Cancer Genome Atlas (TCGA). We then predicted the
ecCEBPα secondary structure in order to check the potential of
ecCEBPα to form triplexes around CpG loci and checked if triplex formation influenced CpG methylation, genome-wide. Results: Using DNA methylation profiles of AML patients with a mutated
CEBPα locus, we show that
ecCEBPα could interact with DNA by forming DNA:RNA triple helices and protect regions near its binding sites from global DNA methylation. Further analysis revealed that triplex-forming oligonucleotides in
ecCEBPα are structurally unpaired supporting the DNA-binding potential of these regions.
ecCEBPα triplexes supported with the RNA-chromatin co-localization data are located in the promoters of leukemia-linked transcriptional factors such as MLF2. Discussion: Overall, these results suggest a novel regulatory mechanism for
ecCEBPα as a genome-wide epigenetic modulator through triple-helix formation which may provide a foundation for sequence-specific engineering of RNA for regulating methylation of specific genes.
Collapse
Affiliation(s)
- Adewale J Ogunleye
- Department of Biological and Medical Physics, Moscow Institute of Physics and Technology, Moscow, Russian Federation
| | - Ekaterina Romanova
- Research Center of Biotechnology, Institute of Bioengineering, Russian Academy of Sciences, Moscow, Russian Federation
| | - Yulia A Medvedeva
- Department of Biological and Medical Physics, Moscow Institute of Physics and Technology, Moscow, Russian Federation.,Research Center of Biotechnology, Institute of Bioengineering, Russian Academy of Sciences, Moscow, Russian Federation
| |
Collapse
|
75
|
Bylino OV, Ibragimov AN, Pravednikova AE, Shidlovskii YV. Investigation of the Basic Steps in the Chromosome Conformation Capture Procedure. Front Genet 2021; 12:733937. [PMID: 34616432 PMCID: PMC8488379 DOI: 10.3389/fgene.2021.733937] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/16/2021] [Indexed: 12/05/2022] Open
Abstract
A constellation of chromosome conformation capture methods (С-methods) are an important tool for biochemical analysis of the spatial interactions between DNA regions that are separated in the primary sequence. All these methods are based on the long sequence of basic steps of treating cells, nuclei, chromatin, and finally DNA, thus representing a significant technical challenge. Here, we present an in-depth study of the basic steps in the chromatin conformation capture procedure (3С), which was performed using Drosophila Schneider 2 cells as a model. We investigated the steps of cell lysis, nuclei washing, nucleoplasm extraction, chromatin treatment with SDS/Triton X-100, restriction enzyme digestion, chromatin ligation, reversion of cross-links, DNA extraction, treatment of a 3C library with RNases, and purification of the 3C library. Several options were studied, and optimal conditions were found. Our work contributes to the understanding of the 3C basic steps and provides a useful guide to the 3C procedure.
Collapse
Affiliation(s)
- Oleg V. Bylino
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Airat N. Ibragimov
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Anna E. Pravednikova
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Yulii V. Shidlovskii
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- Department of Biology and General Genetics, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
76
|
Elizarova A, Ozturk M, Guler R, Medvedeva YA. MIREyA: a computational approach to detect miRNA-directed gene activation. F1000Res 2021; 10:249. [PMID: 34527215 PMCID: PMC8411277 DOI: 10.12688/f1000research.28142.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/04/2021] [Indexed: 11/20/2022] Open
Abstract
Emerging studies demonstrate the ability of microRNAs (miRNAs) to activate genes via different mechanisms. Specifically, miRNAs may trigger an enhancer promoting chromatin remodelling in the enhancer region, thus activating the enhancer and its target genes. Here we present MIREyA, a pipeline developed to predict such miRNA-gene-enhancer trios based on an expression dataset which obviates the need to write custom scripts. We applied our pipeline to primary murine macrophages infected by Mycobacterium tuberculosis (HN878 strain) and detected Mir22, Mir221, Mir222, Mir155 and Mir1956, which could up-regulate genes related to immune responses. We believe that MIREyA is a useful tool for detecting putative miRNA-directed gene activation cases. MIREyA is available from: https://github.com/veania/MIREyA.
Collapse
Affiliation(s)
- Anna Elizarova
- Group of Regulatory Transcriptomics and Epigenomics, Research Center of Biotechnology, Institute of Bioengineering, Russian Academy of Sciences, Moscow, 117312, Russian Federation.,Department of Biological and Medical Physics, Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, 141701, Russian Federation
| | - Mumin Ozturk
- International Centre for Genetic Engineering and Biotechnology, Cape Town, Cape Town, 7925, South Africa.,Department of Pathology, University of Cape Town, Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, Cape Town, 7925, South Africa
| | - Reto Guler
- International Centre for Genetic Engineering and Biotechnology, Cape Town, Cape Town, 7925, South Africa.,Department of Pathology, University of Cape Town, Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, Cape Town, 7925, South Africa.,Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, 7925, South Africa
| | - Yulia A Medvedeva
- Group of Regulatory Transcriptomics and Epigenomics, Research Center of Biotechnology, Institute of Bioengineering, Russian Academy of Sciences, Moscow, 117312, Russian Federation.,Department of Biological and Medical Physics, Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, 141701, Russian Federation
| |
Collapse
|
77
|
A Comprehensive Toolbox to Analyze Enhancer-Promoter Functions. Methods Mol Biol 2021. [PMID: 34382181 DOI: 10.1007/978-1-0716-1597-3_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Knowledge in gene transcription and chromatin regulation has been intensely studied for decades, but thanks to next-generation sequencing (NGS) techniques there has been a major leap forward in the last few years. Historically, identification of specific enhancer elements has led to the identification of master transcription factors (TFs) in the 1990s. Genetic and biochemical experiments have identified the key regulators controlling RNA polymerase II (RNAPII) transcription and structurally analyses have elucidated detailed mechanisms. NGS and the development of chromatin immunoprecipitation (ChIP) have accelerated the gain of knowledge in the recent years. By now, we have a dazzling wealth of techniques that are currently used to put gene expression into a genome-wide context. This book is an attempt to assemble useful protocols for many researchers within and nearby research areas. In general, these innovative techniques focus on enhancer and promoter studies. The techniques should also be of interest for related fields such as DNA repair and replication.
Collapse
|
78
|
Subramaniam N, Nair R, Marsden PA. Epigenetic Regulation of the Vascular Endothelium by Angiogenic LncRNAs. Front Genet 2021; 12:668313. [PMID: 34512715 PMCID: PMC8427604 DOI: 10.3389/fgene.2021.668313] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/17/2021] [Indexed: 12/15/2022] Open
Abstract
The functional properties of the vascular endothelium are diverse and heterogeneous between vascular beds. This is especially evident when new blood vessels develop from a pre-existing closed cardiovascular system, a process termed angiogenesis. Endothelial cells are key drivers of angiogenesis as they undergo a highly choreographed cascade of events that has both exogenous (e.g., hypoxia and VEGF) and endogenous regulatory inputs. Not surprisingly, angiogenesis is critical in health and disease. Diverse therapeutics target proteins involved in coordinating angiogenesis with varying degrees of efficacy. It is of great interest that recent work on non-coding RNAs, especially long non-coding RNAs (lncRNAs), indicates that they are also important regulators of the gene expression paradigms that underpin this cellular cascade. The protean effects of lncRNAs are dependent, in part, on their subcellular localization. For instance, lncRNAs enriched in the nucleus can act as epigenetic modifiers of gene expression in the vascular endothelium. Of great interest to genetic disease, they are undergoing rapid evolution and show extensive inter- and intra-species heterogeneity. In this review, we describe endothelial-enriched lncRNAs that have robust effects in angiogenesis.
Collapse
Affiliation(s)
- Noeline Subramaniam
- Marsden Lab, Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
- Marsden Lab, Keenan Research Centre in the Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, ON, Canada
| | - Ranju Nair
- Marsden Lab, Keenan Research Centre in the Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, ON, Canada
- Marsden Lab, Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Philip A. Marsden
- Marsden Lab, Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
- Marsden Lab, Keenan Research Centre in the Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, ON, Canada
- Marsden Lab, Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
79
|
Lange M, Begolli R, Giakountis A. Non-Coding Variants in Cancer: Mechanistic Insights and Clinical Potential for Personalized Medicine. Noncoding RNA 2021; 7:47. [PMID: 34449663 PMCID: PMC8395730 DOI: 10.3390/ncrna7030047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/26/2021] [Accepted: 08/01/2021] [Indexed: 12/11/2022] Open
Abstract
The cancer genome is characterized by extensive variability, in the form of Single Nucleotide Polymorphisms (SNPs) or structural variations such as Copy Number Alterations (CNAs) across wider genomic areas. At the molecular level, most SNPs and/or CNAs reside in non-coding sequences, ultimately affecting the regulation of oncogenes and/or tumor-suppressors in a cancer-specific manner. Notably, inherited non-coding variants can predispose for cancer decades prior to disease onset. Furthermore, accumulation of additional non-coding driver mutations during progression of the disease, gives rise to genomic instability, acting as the driving force of neoplastic development and malignant evolution. Therefore, detection and characterization of such mutations can improve risk assessment for healthy carriers and expand the diagnostic and therapeutic toolbox for the patient. This review focuses on functional variants that reside in transcribed or not transcribed non-coding regions of the cancer genome and presents a collection of appropriate state-of-the-art methodologies to study them.
Collapse
Affiliation(s)
- Marios Lange
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece; (M.L.); (R.B.)
| | - Rodiola Begolli
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece; (M.L.); (R.B.)
| | - Antonis Giakountis
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece; (M.L.); (R.B.)
- Institute for Fundamental Biomedical Research, B.S.R.C “Alexander Fleming”, 34 Fleming Str., 16672 Vari, Greece
| |
Collapse
|
80
|
Abstract
PURPOSE OF REVIEW To summarize recently developed next generation sequencing-based methods to study epigenomics and epitranscriptomics. To elucidate the potential applications of these recently developed methods in transplantation research. RECENT FINDINGS There are several methods established with the collaborative efforts from different consortiums, such as ENCODE, Human Cell Atlas, and exRNA consortium to study role of epigenetics in human health. Rapid development in the sequencing technology also enabled the establishment of these genome-wide studies. This review specifically focuses on these techniques, such as EM-seq to study DNA methylation, CUT&RUN, and CUT&Tag to study histone/transcription factor--DNA interactions, ATAC-seq to study chromatin accessibility, Hi-C to explore 3D genome architecture and several methods to study epigenetics at single-cell level. In addition, we briefly mentioned recent efforts to study lncRNAs and extracellular miRNAs. SUMMARY Technical advancements in genomics, particularly epigenomics, shed light on the role of epigenetics and recently epitranscriptomics in different fields. Application of those techniques to transplantation research is still very limited because of technical limitations. On the other hand, there are a lot of promising studies showing that these new techniques can be adapted to study the molecular biology of transplant-related problems.
Collapse
|
81
|
Wang X, Dong Y, Zheng Y, Chen Y. Multiomics metabolic and epigenetics regulatory network in cancer: A systems biology perspective. J Genet Genomics 2021; 48:520-530. [PMID: 34362682 DOI: 10.1016/j.jgg.2021.05.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 12/21/2022]
Abstract
Genetic, epigenetic, and metabolic alterations are all hallmarks of cancer. However, the epigenome and metabolome are both highly complex and dynamic biological networks in vivo. The interplay between the epigenome and metabolome contributes to a biological system that is responsive to the tumor microenvironment and possesses a wealth of unknown biomarkers and targets of cancer therapy. From this perspective, we first review the state of high-throughput biological data acquisition (i.e. multiomics data) and analysis (i.e. computational tools) and then propose a conceptual in silico metabolic and epigenetic regulatory network (MER-Net) that is based on these current high-throughput methods. The conceptual MER-Net is aimed at linking metabolomic and epigenomic networks through observation of biological processes, omics data acquisition, analysis of network information, and integration with validated database knowledge. Thus, MER-Net could be used to reveal new potential biomarkers and therapeutic targets using deep learning models to integrate and analyze large multiomics networks. We propose that MER-Net can serve as a tool to guide integrated metabolomics and epigenomics research or can be modified to answer other complex biological and clinical questions using multiomics data.
Collapse
Affiliation(s)
- Xuezhu Wang
- The State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Yucheng Dong
- The State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Yongchang Zheng
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yang Chen
- The State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China.
| |
Collapse
|
82
|
Razin SV, Gavrilov AA. Non-coding RNAs in chromatin folding and nuclear organization. Cell Mol Life Sci 2021; 78:5489-5504. [PMID: 34117518 PMCID: PMC11072467 DOI: 10.1007/s00018-021-03876-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/24/2021] [Accepted: 06/05/2021] [Indexed: 12/19/2022]
Abstract
One of the most intriguing questions facing modern biology concerns how the genome directs the construction of cells, tissues, and whole organisms. It is tempting to suggest that the part of the genome that does not encode proteins contains architectural plans. We are still far from understanding how these plans work at the level of building tissues and the body as a whole. However, the results of recent studies demonstrate that at the cellular level, special non-coding RNAs serve as scaffolds for the construction of various intracellular structures. The term "architectural RNAs" was proposed to designate this subset of non-coding RNAs. In this review, we discuss the role of architectural RNAs in the construction of the cell nucleus and maintenance of the three-dimensional organization of the genome.
Collapse
Affiliation(s)
- Sergey V Razin
- Institute of Gene Biology, Russian Academy of Sciences, 119334, Moscow, Russia.
- Faculty of Biology, M. V. Lomonosov Moscow State University, 119234, Moscow, Russia.
| | - Alexey A Gavrilov
- Institute of Gene Biology, Russian Academy of Sciences, 119334, Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334, Moscow, Russia
| |
Collapse
|
83
|
Yamazaki T, Yamamoto T, Yoshino H, Souquere S, Nakagawa S, Pierron G, Hirose T. Paraspeckles are constructed as block copolymer micelles. EMBO J 2021; 40:e107270. [PMID: 33885174 PMCID: PMC8204865 DOI: 10.15252/embj.2020107270] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/14/2021] [Accepted: 03/18/2021] [Indexed: 01/20/2023] Open
Abstract
Paraspeckles are constructed by NEAT1_2 architectural long noncoding RNAs. Their characteristic cylindrical shapes, with highly ordered internal organization, distinguish them from typical liquid-liquid phase-separated condensates. We experimentally and theoretically investigated how the shape and organization of paraspeckles are determined. We identified the NEAT1_2 RNA domains responsible for shell localization of the NEAT1_2 ends, which determine the characteristic internal organization. Using the soft matter physics, we then applied a theoretical framework to understand the principles that determine NEAT1_2 organization as well as shape, number, and size of paraspeckles. By treating paraspeckles as amphipathic block copolymer micelles, we could explain and predict the experimentally observed behaviors of paraspeckles upon NEAT1_2 domain deletions or transcriptional modulation. Thus, we propose that paraspeckles are block copolymer micelles assembled through a type of microphase separation, micellization. This work provides an experiment-based theoretical framework for the concept that ribonucleoprotein complexes (RNPs) can act as block copolymers to form RNA-scaffolding biomolecular condensates with optimal sizes and structures in cells.
Collapse
Affiliation(s)
| | - Tetsuya Yamamoto
- Institute for Chemical Reaction Design and DiscoveryHokkaido UniversitySapporoJapan
| | - Hyura Yoshino
- Institute for Genetic MedicineHokkaido UniversitySapporoJapan
| | | | | | - Gerard Pierron
- Centre National de la Recherche ScientifiqueUMR‐9196Gustave RoussyVillejuifFrance
| | - Tetsuro Hirose
- Graduate School of Frontier BiosciencesOsaka UniversitySuitaJapan
- Institute for Genetic MedicineHokkaido UniversitySapporoJapan
| |
Collapse
|
84
|
Liu S, Zhao K. The Toolbox for Untangling Chromosome Architecture in Immune Cells. Front Immunol 2021; 12:670884. [PMID: 33995409 PMCID: PMC8120992 DOI: 10.3389/fimmu.2021.670884] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/06/2021] [Indexed: 12/19/2022] Open
Abstract
The code of life is not only encrypted in the sequence of DNA but also in the way it is organized into chromosomes. Chromosome architecture is gradually being recognized as an important player in regulating cell activities (e.g., controlling spatiotemporal gene expression). In the past decade, the toolbox for elucidating genome structure has been expanding, providing an opportunity to explore this under charted territory. In this review, we will introduce the recent advancements in approaches for mapping spatial organization of the genome, emphasizing applications of these techniques to immune cells, and trying to bridge chromosome structure with immune cell activities.
Collapse
Affiliation(s)
- Shuai Liu
- Laboratory of Epigenome Biology, Systems Biology Center, NHLBI, NIH, Bethesda, MD, United States
| | - Keji Zhao
- Laboratory of Epigenome Biology, Systems Biology Center, NHLBI, NIH, Bethesda, MD, United States
| |
Collapse
|
85
|
Functional annotation of lncRNA in high-throughput screening. Essays Biochem 2021; 65:761-773. [PMID: 33835127 PMCID: PMC8564734 DOI: 10.1042/ebc20200061] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/25/2021] [Accepted: 03/15/2021] [Indexed: 12/17/2022]
Abstract
Recent efforts on the characterization of long non-coding RNAs (lncRNAs) revealed their functional roles in modulating diverse cellular processes. These include pluripotency maintenance, lineage commitment, carcinogenesis, and pathogenesis of various diseases. By interacting with DNA, RNA and protein, lncRNAs mediate multifaceted mechanisms to regulate transcription, RNA processing, RNA interference and translation. Of more than 173000 discovered lncRNAs, the majority remain functionally unknown. The cell type-specific expression and localization of the lncRNA also suggest potential distinct functions of lncRNAs across different cell types. This highlights the niche of identifying functional lncRNAs in different biological processes and diseases through high-throughput (HTP) screening. This review summarizes the current work performed and perspectives on HTP screening of functional lncRNAs where different technologies, platforms, cellular responses and the downstream analyses are discussed. We hope to provide a better picture in applying different technologies to facilitate functional annotation of lncRNA efficiently.
Collapse
|
86
|
Statello L, Guo CJ, Chen LL, Huarte M. Gene regulation by long non-coding RNAs and its biological functions. Nat Rev Mol Cell Biol 2021; 22:96-118. [PMID: 33353982 PMCID: PMC7754182 DOI: 10.1038/s41580-020-00315-9] [Citation(s) in RCA: 2908] [Impact Index Per Article: 727.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2020] [Indexed: 02/07/2023]
Abstract
Evidence accumulated over the past decade shows that long non-coding RNAs (lncRNAs) are widely expressed and have key roles in gene regulation. Recent studies have begun to unravel how the biogenesis of lncRNAs is distinct from that of mRNAs and is linked with their specific subcellular localizations and functions. Depending on their localization and their specific interactions with DNA, RNA and proteins, lncRNAs can modulate chromatin function, regulate the assembly and function of membraneless nuclear bodies, alter the stability and translation of cytoplasmic mRNAs and interfere with signalling pathways. Many of these functions ultimately affect gene expression in diverse biological and physiopathological contexts, such as in neuronal disorders, immune responses and cancer. Tissue-specific and condition-specific expression patterns suggest that lncRNAs are potential biomarkers and provide a rationale to target them clinically. In this Review, we discuss the mechanisms of lncRNA biogenesis, localization and functions in transcriptional, post-transcriptional and other modes of gene regulation, and their potential therapeutic applications.
Collapse
Affiliation(s)
- Luisa Statello
- Center for Applied Medical Research, University of Navarra, Pamplona, Spain
- Institute of Health Research of Navarra (IdiSNA), Pamplona, Spain
| | - Chun-Jie Guo
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ling-Ling Chen
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
| | - Maite Huarte
- Center for Applied Medical Research, University of Navarra, Pamplona, Spain.
- Institute of Health Research of Navarra (IdiSNA), Pamplona, Spain.
| |
Collapse
|
87
|
Lucero L, Ferrero L, Fonouni-Farde C, Ariel F. Functional classification of plant long noncoding RNAs: a transcript is known by the company it keeps. THE NEW PHYTOLOGIST 2021; 229:1251-1260. [PMID: 32880949 DOI: 10.1111/nph.16903] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 08/05/2020] [Indexed: 05/27/2023]
Abstract
The extraordinary maturation in high-throughput sequencing technologies has revealed the existence of a complex network of transcripts in eukaryotic organisms, including thousands of long noncoding (lnc) RNAs with little or no protein-coding capacity. Subsequent discoveries have shown that lncRNAs participate in a wide range of molecular processes, controlling gene expression and protein activity though direct interactions with proteins, DNA or other RNA molecules. Although significant advances have been achieved in the understanding of lncRNA biology in the animal kingdom, the functional characterization of plant lncRNAs is still in its infancy and remains a major challenge. In this review, we report emerging functional and mechanistic paradigms of plant lncRNAs and partner molecules, and discuss how cutting-edge technologies may help to identify and classify yet uncharacterized transcripts into functional groups.
Collapse
Affiliation(s)
- Leandro Lucero
- Instituto de Agrobiotecnología del Litoral, CONICET, Universidad Nacional del Litoral, Colectora Ruta Nacional 168 km 0, Santa Fe, 3000, Argentina
| | - Lucía Ferrero
- Instituto de Agrobiotecnología del Litoral, CONICET, Universidad Nacional del Litoral, Colectora Ruta Nacional 168 km 0, Santa Fe, 3000, Argentina
| | - Camille Fonouni-Farde
- Instituto de Agrobiotecnología del Litoral, CONICET, Universidad Nacional del Litoral, Colectora Ruta Nacional 168 km 0, Santa Fe, 3000, Argentina
| | - Federico Ariel
- Instituto de Agrobiotecnología del Litoral, CONICET, Universidad Nacional del Litoral, Colectora Ruta Nacional 168 km 0, Santa Fe, 3000, Argentina
| |
Collapse
|
88
|
Abugessaisa I, Ramilowski JA, Lizio M, Severin J, Hasegawa A, Harshbarger J, Kondo A, Noguchi S, Yip CW, Ooi J, Tagami M, Hori F, Agrawal S, Hon C, Cardon M, Ikeda S, Ono H, Bono H, Kato M, Hashimoto K, Bonetti A, Kato M, Kobayashi N, Shin J, de Hoon M, Hayashizaki Y, Carninci P, Kawaji H, Kasukawa T. FANTOM enters 20th year: expansion of transcriptomic atlases and functional annotation of non-coding RNAs. Nucleic Acids Res 2021; 49:D892-D898. [PMID: 33211864 PMCID: PMC7779024 DOI: 10.1093/nar/gkaa1054] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/16/2020] [Accepted: 10/21/2020] [Indexed: 11/15/2022] Open
Abstract
The Functional ANnoTation Of the Mammalian genome (FANTOM) Consortium has continued to provide extensive resources in the pursuit of understanding the transcriptome, and transcriptional regulation, of mammalian genomes for the last 20 years. To share these resources with the research community, the FANTOM web-interfaces and databases are being regularly updated, enhanced and expanded with new data types. In recent years, the FANTOM Consortium's efforts have been mainly focused on creating new non-coding RNA datasets and resources. The existing FANTOM5 human and mouse miRNA atlas was supplemented with rat, dog, and chicken datasets. The sixth (latest) edition of the FANTOM project was launched to assess the function of human long non-coding RNAs (lncRNAs). From its creation until 2020, FANTOM6 has contributed to the research community a large dataset generated from the knock-down of 285 lncRNAs in human dermal fibroblasts; this is followed with extensive expression profiling and cellular phenotyping. Other updates to the FANTOM resource includes the reprocessing of the miRNA and promoter atlases of human, mouse and chicken with the latest reference genome assemblies. To facilitate the use and accessibility of all above resources we further enhanced FANTOM data viewers and web interfaces. The updated FANTOM web resource is publicly available at https://fantom.gsc.riken.jp/.
Collapse
Affiliation(s)
- Imad Abugessaisa
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Jordan A Ramilowski
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
- Advanced Medical Research Center, Yokohama City University, Kanagawa, Japan
| | - Marina Lizio
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Jesicca Severin
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Akira Hasegawa
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Jayson Harshbarger
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Atsushi Kondo
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Shuhei Noguchi
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Chi Wai Yip
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | | | - Michihira Tagami
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Fumi Hori
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Saumya Agrawal
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Chung Chau Hon
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Melissa Cardon
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Shuya Ikeda
- Database Center for Life Science, Research Organization of Information and Systems, Mishima, Shizuoka, Japan
| | - Hiromasa Ono
- Database Center for Life Science, Research Organization of Information and Systems, Mishima, Shizuoka, Japan
| | - Hidemasa Bono
- Database Center for Life Science, Research Organization of Information and Systems, Mishima, Shizuoka, Japan
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University
| | - Masaki Kato
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Kosuke Hashimoto
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Alessandro Bonetti
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
- Karolinska Institutet, Stockholm, Sweden
| | - Masaki Kato
- RIKEN Head Office for Information Systems and Cybersecurity, Wako, Saitama, Japan
| | - Norio Kobayashi
- RIKEN Head Office for Information Systems and Cybersecurity, Wako, Saitama, Japan
| | - Jay Shin
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Michiel de Hoon
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | | | - Piero Carninci
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Hideya Kawaji
- Correspondence may also be addressed to Hideya Kawaji.
| | - Takeya Kasukawa
- To whom correspondence should be addressed. Tel: +81 45 503 9222; Fax: +81 45 503 9219;
| |
Collapse
|
89
|
Wu SK, Roberts JT, Balas MM, Johnson AM. RNA matchmaking in chromatin regulation. Biochem Soc Trans 2020; 48:2467-2481. [PMID: 33245317 PMCID: PMC7888525 DOI: 10.1042/bst20191225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/05/2020] [Accepted: 10/07/2020] [Indexed: 01/12/2023]
Abstract
Beyond being the product of gene expression, RNA can also influence the regulation of chromatin. The majority of the human genome has the capacity to be transcribed and the majority of the non-protein-coding transcripts made by RNA Polymerase II are enriched in the nucleus. Many chromatin regulators can bind to these ncRNAs in the nucleus; in some cases, there are clear examples of direct RNA-mediated chromatin regulation mechanisms stemming from these interactions, while others have yet to be determined. Recent studies have highlighted examples of chromatin regulation via RNA matchmaking, a term we use broadly here to describe intermolecular base-pairing interactions between one RNA molecule and an RNA or DNA match. This review provides examples of RNA matchmaking that regulates chromatin processes and summarizes the technical approaches used to capture these events.
Collapse
Affiliation(s)
- Stephen K. Wu
- Molecular Biology Program, University of Colorado Denver Anschutz Medical Campus 12801 East 17 Ave., Aurora, CO, United States
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver Anschutz Medical Campus 12801 East 17 Ave., Aurora, CO, United States
| | - Justin T. Roberts
- Molecular Biology Program, University of Colorado Denver Anschutz Medical Campus 12801 East 17 Ave., Aurora, CO, United States
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver Anschutz Medical Campus 12801 East 17 Ave., Aurora, CO, United States
| | - Maggie M. Balas
- Molecular Biology Program, University of Colorado Denver Anschutz Medical Campus 12801 East 17 Ave., Aurora, CO, United States
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver Anschutz Medical Campus 12801 East 17 Ave., Aurora, CO, United States
| | - Aaron M. Johnson
- Molecular Biology Program, University of Colorado Denver Anschutz Medical Campus 12801 East 17 Ave., Aurora, CO, United States
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver Anschutz Medical Campus 12801 East 17 Ave., Aurora, CO, United States
| |
Collapse
|
90
|
Ramírez-Colmenero A, Oktaba K, Fernandez-Valverde SL. Evolution of Genome-Organizing Long Non-coding RNAs in Metazoans. Front Genet 2020; 11:589697. [PMID: 33329735 PMCID: PMC7734150 DOI: 10.3389/fgene.2020.589697] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/09/2020] [Indexed: 12/28/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have important regulatory functions across eukarya. It is now clear that many of these functions are related to gene expression regulation through their capacity to recruit epigenetic modifiers and establish chromatin interactions. Several lncRNAs have been recently shown to participate in modulating chromatin within the spatial organization of the genome in the three-dimensional space of the nucleus. The identification of lncRNA candidates is challenging, as it is their functional characterization. Conservation signatures of lncRNAs are different from those of protein-coding genes, making identifying lncRNAs under selection a difficult task, and the homology between lncRNAs may not be readily apparent. Here, we review the evidence for these higher-order genome organization functions of lncRNAs in animals and the evolutionary signatures they display.
Collapse
Affiliation(s)
- América Ramírez-Colmenero
- Unidad de Genómica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, México
| | - Katarzyna Oktaba
- Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, México
| | - Selene L Fernandez-Valverde
- Unidad de Genómica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, México
| |
Collapse
|
91
|
Antonov I, Medvedeva Y. Direct Interactions with Nascent Transcripts Is Potentially a Common Targeting Mechanism of Long Non-Coding RNAs. Genes (Basel) 2020; 11:genes11121483. [PMID: 33321875 PMCID: PMC7764144 DOI: 10.3390/genes11121483] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 11/16/2022] Open
Abstract
Although thousands of mammalian long non-coding RNAs (lncRNAs) have been reported in the last decade, their functional annotation remains limited. A wet-lab approach to detect functions of a novel lncRNA usually includes its knockdown followed by RNA sequencing and identification of the deferentially expressed genes. However, identification of the molecular mechanism(s) used by the lncRNA to regulate its targets frequently becomes a challenge. Previously, we developed the ASSA algorithm that detects statistically significant inter-molecular RNA-RNA interactions. Here we designed a workflow that uses ASSA predictions to estimate the ability of an lncRNA to function via direct base pairing with the target transcripts (co- or post-transcriptionally). The workflow was applied to 300+ lncRNA knockdown experiments from the FANTOM6 pilot project producing statistically significant predictions for 71 unique lncRNAs (104 knockdowns). Surprisingly, the majority of these lncRNAs were likely to function co-transcriptionally, i.e., hybridize with the nascent transcripts of the target genes. Moreover, a number of the obtained predictions were supported by independent iMARGI experimental data on co-localization of lncRNA and chromatin. We detected an evolutionarily conserved lncRNA CHASERR (AC013394.2 or LINC01578) that could regulate target genes co-transcriptionally via interaction with a nascent transcript by directing CHD2 helicase. The obtained results suggested that this nuclear lncRNA may be able to activate expression of the target genes in trans by base-pairing with the nascent transcripts and directing the CHD2 helicase to the regulated promoters leading to open the chromatin and active transcription. Our study highlights the possible importance of base-pairing between nuclear lncRNAs and nascent transcripts for the regulation of gene expression.
Collapse
Affiliation(s)
- Ivan Antonov
- Research Center of Biotechnology, Institute of Bioengineering, Russian Academy of Science, 119071 Moscow, Russia;
- Department of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, 141701 Moscow Region, Russia
| | - Yulia Medvedeva
- Research Center of Biotechnology, Institute of Bioengineering, Russian Academy of Science, 119071 Moscow, Russia;
- Department of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, 141701 Moscow Region, Russia
- Correspondence:
| |
Collapse
|
92
|
Towards a comprehensive pipeline to identify and functionally annotate long noncoding RNA (lncRNA). Comput Biol Med 2020; 127:104028. [PMID: 33126123 DOI: 10.1016/j.compbiomed.2020.104028] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 12/20/2022]
Abstract
Long noncoding RNAs (lncRNAs) are implicated in various genetic diseases and cancer, attributed to their critical role in gene regulation. They are a divergent group of RNAs and are easily differentiated from other types with unique characteristics, functions, and mechanisms of action. In this review, we provide a list of some of the prominent data repositories containing lncRNAs, their interactome, and predicted and validated disease associations. Next, we discuss various wet-lab experiments formulated to obtain the data for these repositories. We also provide a critical review of in silico methods available for the identification purpose and suggest techniques to further improve their performance. The bulk of the methods currently focus on distinguishing lncRNA transcripts from the coding ones. Functional annotation of these transcripts still remains a grey area and more efforts are needed in that space. Finally, we provide details of current progress, discuss impediments, and illustrate a roadmap for developing a generalized computational pipeline for comprehensive annotation of lncRNAs, which is essential to accelerate research in this area.
Collapse
|
93
|
Kantidze OL, Razin SV. Weak interactions in higher-order chromatin organization. Nucleic Acids Res 2020; 48:4614-4626. [PMID: 32313950 PMCID: PMC7229822 DOI: 10.1093/nar/gkaa261] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/30/2020] [Accepted: 04/03/2020] [Indexed: 12/20/2022] Open
Abstract
The detailed principles of the hierarchical folding of eukaryotic chromosomes have been revealed during the last two decades. Along with structures composing three-dimensional (3D) genome organization (chromatin compartments, topologically associating domains, chromatin loops, etc.), the molecular mechanisms that are involved in their establishment and maintenance have been characterized. Generally, protein-protein and protein-DNA interactions underlie the spatial genome organization in eukaryotes. However, it is becoming increasingly evident that weak interactions, which exist in biological systems, also contribute to the 3D genome. Here, we provide a snapshot of our current understanding of the role of the weak interactions in the establishment and maintenance of the 3D genome organization. We discuss how weak biological forces, such as entropic forces operating in crowded solutions, electrostatic interactions of the biomolecules, liquid-liquid phase separation, DNA supercoiling, and RNA environment participate in chromosome segregation into structural and functional units and drive intranuclear functional compartmentalization.
Collapse
Affiliation(s)
- Omar L Kantidze
- Institute of Gene Biology Russian Academy of Sciences, 119334 Moscow, Russia
| | - Sergey V Razin
- Institute of Gene Biology Russian Academy of Sciences, 119334 Moscow, Russia
| |
Collapse
|
94
|
Gavrilov AA, Zharikova AA, Galitsyna AA, Luzhin A, Rubanova NM, Golov AK, Petrova NV, Logacheva M, Kantidze OL, Ulianov SV, Magnitov MD, Mironov AA, Razin SV. Studying RNA-DNA interactome by Red-C identifies noncoding RNAs associated with various chromatin types and reveals transcription dynamics. Nucleic Acids Res 2020; 48:6699-6714. [PMID: 32479626 PMCID: PMC7337940 DOI: 10.1093/nar/gkaa457] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/13/2020] [Accepted: 05/18/2020] [Indexed: 12/15/2022] Open
Abstract
Non-coding RNAs (ncRNAs) participate in various biological processes, including regulating transcription and sustaining genome 3D organization. Here, we present a method termed Red-C that exploits proximity ligation to identify contacts with the genome for all RNA molecules present in the nucleus. Using Red-C, we uncovered the RNA-DNA interactome of human K562 cells and identified hundreds of ncRNAs enriched in active or repressed chromatin, including previously undescribed RNAs. Analysis of the RNA-DNA interactome also allowed us to trace the kinetics of messenger RNA production. Our data support the model of co-transcriptional intron splicing, but not the hypothesis of the circularization of actively transcribed genes.
Collapse
Affiliation(s)
- Alexey A Gavrilov
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Anastasiya A Zharikova
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
- Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
- National Medical Research Center for Preventive Medicine, Ministry of Healthcare of the Russian Federation, Moscow, Russia
| | - Aleksandra A Galitsyna
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
- Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
- Skolkovo Institute of Science and Technology, Skolkovo, Russia
| | - Artem V Luzhin
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | | | - Arkadiy K Golov
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- Mental Health Research Center, Moscow, Russia
| | | | | | - Omar L Kantidze
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Sergey V Ulianov
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Mikhail D Magnitov
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Andrey A Mironov
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
- Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
- Faculty of Computer Science, Higher School of Economics, Moscow, Russia
| | - Sergey V Razin
- To whom correspondence should be addressed. Tel: +7 499 135 3092; Fax: +7 499 135 4105;
| |
Collapse
|
95
|
Fort V, Khelifi G, Hussein SMI. Long non-coding RNAs and transposable elements: A functional relationship. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118837. [PMID: 32882261 DOI: 10.1016/j.bbamcr.2020.118837] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/29/2020] [Accepted: 08/27/2020] [Indexed: 12/30/2022]
Abstract
Long non-coding RNAs (lncRNAs) have become increasingly important in the past decade. They are known to regulate gene expression and to interact with chromatin, proteins and other coding and non-coding RNAs. The study of lncRNAs has been challenging due to their low expression and the lack of tools developed to adapt to their particular features. Studies on lncRNAs performed to date have largely focused on cellular functions, whereas details on the mechanism of action has only been thoroughly investigated for a small number of lncRNAs. Nevertheless, some studies have highlighted the potential of these transcripts to contain functional domains, following the same accepted trend as proteins. Interestingly, many of these identified "domains" are attributed to functional units derived from transposable elements. Here, we review several types of functions of lncRNAs and relate these functions to lncRNA-embedded transposable elements.
Collapse
Affiliation(s)
- Victoire Fort
- Laval University Cancer Research Centre, Canada; Research Center of the CHU of Québec, Laval University, Québec G1R 3S3, Canada
| | - Gabriel Khelifi
- Laval University Cancer Research Centre, Canada; Research Center of the CHU of Québec, Laval University, Québec G1R 3S3, Canada
| | - Samer M I Hussein
- Laval University Cancer Research Centre, Canada; Research Center of the CHU of Québec, Laval University, Québec G1R 3S3, Canada.
| |
Collapse
|
96
|
Mapping Transcriptome-Wide and Genome-Wide RNA-DNA Contacts with Chromatin-Associated RNA Sequencing (ChAR-seq). Methods Mol Biol 2020. [PMID: 32681510 DOI: 10.1007/978-1-0716-0680-3_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
RNAs play key roles in the cell as molecular intermediates for protein synthesis and as regulators of nuclear processes such as splicing, posttranscriptional regulation, or chromatin remodeling. Various classes of non-coding RNAs, including long non-coding RNAs (lncRNAs), can bind chromatin either directly or via interaction with chromatin binding proteins. It has been proposed that lncRNAs regulate cell-state-specific genes by coordinating the locus-dependent activity of chromatin-modifying complexes. Yet, the vast majority of lncRNAs have unknown functions, and we know little about the specific loci they regulate. A key step toward understanding chromatin regulation by RNAs is to map the genomic loci with which every nuclear RNA interacts and, reciprocally, to identify all RNAs that target a given locus. Our ability to generate such data has been limited, until recently, by the lack of methods to probe the genomic localization of more than a few RNAs at a time. Here, we describe a protocol for ChAR-seq, an RNA-DNA proximity ligation method that maps the binding loci for thousands of RNAs at once and without the need for specific RNA or DNA probe sequences. The ChAR-seq approach generates chimeric RNA-DNA molecules in situ and then converts those chimeras to DNA for next-generation sequencing. Using ChAR-seq we detect many types of chromatin-associated RNA, both coding and non-coding. Understanding the RNA-DNA interactome and its changes during differentiation or disease with ChAR-seq will likely provide key insights into chromatin and RNA biology.
Collapse
|
97
|
Khelifi G, Hussein SMI. A New View of Genome Organization Through RNA Directed Interactions. Front Cell Dev Biol 2020; 8:517. [PMID: 32760716 PMCID: PMC7371936 DOI: 10.3389/fcell.2020.00517] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 06/02/2020] [Indexed: 12/30/2022] Open
Affiliation(s)
- Gabriel Khelifi
- Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec, QC, Canada.,Université Laval Cancer Research Center, Université Laval, Québec, QC, Canada.,Oncology Division, Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Québec, QC, Canada
| | - Samer M I Hussein
- Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec, QC, Canada.,Université Laval Cancer Research Center, Université Laval, Québec, QC, Canada.,Oncology Division, Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Québec, QC, Canada
| |
Collapse
|
98
|
Papanicolaou N, Bonetti A. The New Frontier of Functional Genomics: From Chromatin Architecture and Noncoding RNAs to Therapeutic Targets. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2020; 25:568-580. [PMID: 32486876 PMCID: PMC7309355 DOI: 10.1177/2472555220926158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 12/11/2022]
Abstract
Common diseases are complex, multifactorial disorders whose pathogenesis is influenced by the interplay of genetic predisposition and environmental factors. Genome-wide association studies have interrogated genetic polymorphisms across genomes of individuals to test associations between genotype and susceptibility to specific disorders, providing insights into the genetic architecture of several complex disorders. However, genetic variants associated with the susceptibility to common diseases are often located in noncoding regions of the genome, such as tissue-specific enhancers or long noncoding RNAs, suggesting that regulatory elements might play a relevant role in human diseases. Enhancers are cis-regulatory genomic sequences that act in concert with promoters to regulate gene expression in a precise spatiotemporal manner. They can be located at a considerable distance from their cognate target promoters, increasing the difficulty of their identification. Genomes are organized in domains of chromatin folding, namely topologically associating domains (TADs). Identification of enhancer-promoter interactions within TADs has revealed principles of cell-type specificity across several organisms and tissues. The vast majority of mammalian genomes are pervasively transcribed, accounting for a previously unappreciated complexity of the noncoding RNA fraction. Particularly, long noncoding RNAs have emerged as key players for the establishment of chromatin architecture and regulation of gene expression. In this perspective, we describe the new advances in the fields of transcriptomics and genome organization, focusing on the role of noncoding genomic variants in the predisposition of common diseases. Finally, we propose a new framework for the identification of the next generation of pharmacological targets for common human diseases.
Collapse
Affiliation(s)
- Natali Papanicolaou
- Division of Biomaterials, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Alessandro Bonetti
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| |
Collapse
|
99
|
Kato M, Carninci P. Genome-Wide Technologies to Study RNA-Chromatin Interactions. Noncoding RNA 2020; 6:ncrna6020020. [PMID: 32471183 PMCID: PMC7345514 DOI: 10.3390/ncrna6020020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 05/23/2020] [Accepted: 05/25/2020] [Indexed: 12/21/2022] Open
Abstract
An increasing number of studies have revealed that long non-coding RNAs (lncRNAs) play important roles in gene regulation and nuclear organization. Although the mechanisms are still largely unknown, many lncRNAs have been shown to interact with chromatin. Thus, one approach to understanding the function of these lncRNAs is to identify their sites of genomic interaction. Hybridization capture methods using oligonucleotide probes have been used for years to study chromatin-associated RNA. Recently, several groups have developed novel methods based on proximity ligation to investigate RNA–chromatin interactions at a genome-wide scale. This review discusses these technologies and highlights their advantages and disadvantages for the consideration of potential users.
Collapse
Affiliation(s)
- Masaki Kato
- Correspondence: (M.K.); (P.C.); Tel.: +81-045-503-9111 (M.K.)
| | - Piero Carninci
- Correspondence: (M.K.); (P.C.); Tel.: +81-045-503-9111 (M.K.)
| |
Collapse
|
100
|
Smith KN, Miller SC, Varani G, Calabrese JM, Magnuson T. Multimodal Long Noncoding RNA Interaction Networks: Control Panels for Cell Fate Specification. Genetics 2019; 213:1093-1110. [PMID: 31796550 PMCID: PMC6893379 DOI: 10.1534/genetics.119.302661] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 10/03/2019] [Indexed: 12/20/2022] Open
Abstract
Lineage specification in early development is the basis for the exquisitely precise body plan of multicellular organisms. It is therefore critical to understand cell fate decisions in early development. Moreover, for regenerative medicine, the accurate specification of cell types to replace damaged/diseased tissue is strongly dependent on identifying determinants of cell identity. Long noncoding RNAs (lncRNAs) have been shown to regulate cellular plasticity, including pluripotency establishment and maintenance, differentiation and development, yet broad phenotypic analysis and the mechanistic basis of their function remains lacking. As components of molecular condensates, lncRNAs interact with almost all classes of cellular biomolecules, including proteins, DNA, mRNAs, and microRNAs. With functions ranging from controlling alternative splicing of mRNAs, to providing scaffolding upon which chromatin modifiers are assembled, it is clear that at least a subset of lncRNAs are far from the transcriptional noise they were once deemed. This review highlights the diversity of lncRNA interactions in the context of cell fate specification, and provides examples of each type of interaction in relevant developmental contexts. Also highlighted are experimental and computational approaches to study lncRNAs.
Collapse
Affiliation(s)
- Keriayn N Smith
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Sarah C Miller
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Gabriele Varani
- Department of Chemistry, University of Washington, Seattle, Washington 98195
| | - J Mauro Calabrese
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Terry Magnuson
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599
| |
Collapse
|