51
|
Minehart JA, Speer CM. A Picture Worth a Thousand Molecules-Integrative Technologies for Mapping Subcellular Molecular Organization and Plasticity in Developing Circuits. Front Synaptic Neurosci 2021; 12:615059. [PMID: 33469427 PMCID: PMC7813761 DOI: 10.3389/fnsyn.2020.615059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/07/2020] [Indexed: 12/23/2022] Open
Abstract
A key challenge in developmental neuroscience is identifying the local regulatory mechanisms that control neurite and synaptic refinement over large brain volumes. Innovative molecular techniques and high-resolution imaging tools are beginning to reshape our view of how local protein translation in subcellular compartments drives axonal, dendritic, and synaptic development and plasticity. Here we review recent progress in three areas of neurite and synaptic study in situ-compartment-specific transcriptomics/translatomics, targeted proteomics, and super-resolution imaging analysis of synaptic organization and development. We discuss synergies between sequencing and imaging techniques for the discovery and validation of local molecular signaling mechanisms regulating synaptic development, plasticity, and maintenance in circuits.
Collapse
Affiliation(s)
| | - Colenso M. Speer
- Department of Biology, University of Maryland, College Park, MD, United States
| |
Collapse
|
52
|
Lelek M, Gyparaki MT, Beliu G, Schueder F, Griffié J, Manley S, Jungmann R, Sauer M, Lakadamyali M, Zimmer C. Single-molecule localization microscopy. NATURE REVIEWS. METHODS PRIMERS 2021; 1:39. [PMID: 35663461 PMCID: PMC9160414 DOI: 10.1038/s43586-021-00038-x] [Citation(s) in RCA: 394] [Impact Index Per Article: 98.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
Single-molecule localization microscopy (SMLM) describes a family of powerful imaging techniques that dramatically improve spatial resolution over standard, diffraction-limited microscopy techniques and can image biological structures at the molecular scale. In SMLM, individual fluorescent molecules are computationally localized from diffraction-limited image sequences and the localizations are used to generate a super-resolution image or a time course of super-resolution images, or to define molecular trajectories. In this Primer, we introduce the basic principles of SMLM techniques before describing the main experimental considerations when performing SMLM, including fluorescent labelling, sample preparation, hardware requirements and image acquisition in fixed and live cells. We then explain how low-resolution image sequences are computationally processed to reconstruct super-resolution images and/or extract quantitative information, and highlight a selection of biological discoveries enabled by SMLM and closely related methods. We discuss some of the main limitations and potential artefacts of SMLM, as well as ways to alleviate them. Finally, we present an outlook on advanced techniques and promising new developments in the fast-evolving field of SMLM. We hope that this Primer will be a useful reference for both newcomers and practitioners of SMLM.
Collapse
Affiliation(s)
- Mickaël Lelek
- Imaging and Modeling Unit, Department of Computational
Biology, Institut Pasteur, Paris, France
- CNRS, UMR 3691, Paris, France
| | - Melina T. Gyparaki
- Department of Biology, University of Pennsylvania,
Philadelphia, PA, USA
| | - Gerti Beliu
- Department of Biotechnology and Biophysics Biocenter,
University of Würzburg, Würzburg, Germany
| | - Florian Schueder
- Faculty of Physics and Center for Nanoscience, Ludwig
Maximilian University, Munich, Germany
- Max Planck Institute of Biochemistry, Martinsried,
Germany
| | - Juliette Griffié
- Laboratory of Experimental Biophysics, Institute of
Physics, École Polytechnique Fédérale de Lausanne (EPFL),
Lausanne, Switzerland
| | - Suliana Manley
- Laboratory of Experimental Biophysics, Institute of
Physics, École Polytechnique Fédérale de Lausanne (EPFL),
Lausanne, Switzerland
- ;
;
;
;
| | - Ralf Jungmann
- Faculty of Physics and Center for Nanoscience, Ludwig
Maximilian University, Munich, Germany
- Max Planck Institute of Biochemistry, Martinsried,
Germany
- ;
;
;
;
| | - Markus Sauer
- Department of Biotechnology and Biophysics Biocenter,
University of Würzburg, Würzburg, Germany
- ;
;
;
;
| | - Melike Lakadamyali
- Department of Physiology, Perelman School of Medicine,
University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, Perelman
School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Epigenetics Institute, Perelman School of Medicine,
University of Pennsylvania, Philadelphia, PA, USA
- ;
;
;
;
| | - Christophe Zimmer
- Imaging and Modeling Unit, Department of Computational
Biology, Institut Pasteur, Paris, France
- CNRS, UMR 3691, Paris, France
- ;
;
;
;
| |
Collapse
|
53
|
Ambrosetti E, Bernardinelli G, Hoffecker I, Hartmanis L, Kiriako G, de Marco A, Sandberg R, Högberg B, Teixeira AI. A DNA-nanoassembly-based approach to map membrane protein nanoenvironments. NATURE NANOTECHNOLOGY 2021; 16:85-95. [PMID: 33139936 DOI: 10.1038/s41565-020-00785-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 09/21/2020] [Indexed: 06/11/2023]
Abstract
Most proteins at the plasma membrane are not uniformly distributed but localize to dynamic domains of nanoscale dimensions. To investigate their functional relevance, there is a need for methods that enable comprehensive analysis of the compositions and spatial organizations of membrane protein nanodomains in cell populations. Here we describe the development of a non-microscopy-based method for ensemble analysis of membrane protein nanodomains. The method, termed nanoscale deciphering of membrane protein nanodomains (NanoDeep), is based on the use of DNA nanoassemblies to translate membrane protein organization information into a DNA sequencing readout. Using NanoDeep, we characterized the nanoenvironments of Her2, a membrane receptor of critical relevance in cancer. Importantly, we were able to modulate by design the inventory of proteins analysed by NanoDeep. NanoDeep has the potential to provide new insights into the roles of the composition and spatial organization of protein nanoenvironments in the regulation of membrane protein function.
Collapse
Affiliation(s)
- Elena Ambrosetti
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Giulio Bernardinelli
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Ian Hoffecker
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Leonard Hartmanis
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Georges Kiriako
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Ario de Marco
- Laboratory for Environmental and Life Sciences, University of Nova Gorica, Nova Gorica, Slovenia
| | - Rickard Sandberg
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Björn Högberg
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Ana I Teixeira
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
54
|
Schueder F, Unterauer EM, Ganji M, Jungmann R. DNA-Barcoded Fluorescence Microscopy for Spatial Omics. Proteomics 2020; 20:e1900368. [PMID: 33030780 DOI: 10.1002/pmic.201900368] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/24/2020] [Indexed: 12/18/2022]
Abstract
Innovation in genomics, transcriptomics, and proteomics research has created a plethora of state-of-the-art techniques such as nucleic acid sequencing and mass-spectrometry-based proteomics with paramount impact in the life sciences. While current approaches yield quantitative abundance analysis of biomolecules on an almost routine basis, coupling this high content to spatial information in a single cell and tissue context is challenging. Here, current implementations of spatial omics are discussed and recent developments in the field of DNA-barcoded fluorescence microscopy are reviewed. Light is shed on the potential of DNA-based imaging techniques to provide a comprehensive toolbox for spatial genomics and transcriptomics and discuss current challenges, which need to be overcome on the way to spatial proteomics using high-resolution fluorescence microscopy.
Collapse
Affiliation(s)
- Florian Schueder
- Department of Physics and Center for Nanoscience, Ludwig Maximilian University, Geschwister-Scholl-Platz 1, Munich, 80539, Germany.,Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, 82152, Germany
| | - Eduard M Unterauer
- Department of Physics and Center for Nanoscience, Ludwig Maximilian University, Geschwister-Scholl-Platz 1, Munich, 80539, Germany.,Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, 82152, Germany
| | - Mahipal Ganji
- Department of Physics and Center for Nanoscience, Ludwig Maximilian University, Geschwister-Scholl-Platz 1, Munich, 80539, Germany.,Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, 82152, Germany
| | - Ralf Jungmann
- Department of Physics and Center for Nanoscience, Ludwig Maximilian University, Geschwister-Scholl-Platz 1, Munich, 80539, Germany.,Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, 82152, Germany
| |
Collapse
|
55
|
Ma H, Liu Y. Super-resolution localization microscopy: Toward high throughput, high quality, and low cost. APL PHOTONICS 2020; 5:060902. [PMID: 34350342 PMCID: PMC8330581 DOI: 10.1063/5.0011731] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
After nearly 15 years since its initial debut, super-resolution localization microscopy that surpasses the diffraction-limited resolution barrier of optical microscopy has rapidly gotten out of the ivory tower and entered a new phase to address various challenging biomedical questions. Recent advances in this technology greatly increased the imaging throughput, improved the imaging quality, simplified the sample preparation, and reduced the system cost, making this technology suitable for routine biomedical research. We will provide our perspective on the recent technical advances and their implications in serving the community of biomedical research.
Collapse
Affiliation(s)
- Hongqiang Ma
- Biomedical Optical Imaging Laboratory, Departments of Medicine and Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Yang Liu
- Biomedical Optical Imaging Laboratory, Departments of Medicine and Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| |
Collapse
|