51
|
Marinucci M, Ercan C, Taha-Mehlitz S, Fourie L, Panebianco F, Bianco G, Gallon J, Staubli S, Soysal SD, Zettl A, Rauthe S, Vosbeck J, Droeser RA, Bolli M, Peterli R, von Flüe M, Ng CKY, Kollmar O, Coto-Llerena M, Piscuoglio S. Standardizing Patient-Derived Organoid Generation Workflow to Avoid Microbial Contamination From Colorectal Cancer Tissues. Front Oncol 2022; 11:781833. [PMID: 35083141 PMCID: PMC8784867 DOI: 10.3389/fonc.2021.781833] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022] Open
Abstract
The use of patient-derived organoids (PDO) as a valuable alternative to in vivo models significantly increased over the last years in cancer research. The ability of PDOs to genetically resemble tumor heterogeneity makes them a powerful tool for personalized drug screening. Despite the extensive optimization of protocols for the generation of PDOs from colorectal tissue, there is still a lack of standardization of tissue handling prior to processing, leading to microbial contamination of the organoid culture. Here, using a cohort of 16 patients diagnosed with colorectal carcinoma (CRC), we aimed to test the efficacy of phosphate-buffered saline (PBS), penicillin/streptomycin (P/S), and Primocin, alone or in combination, in preventing organoid cultures contamination when used in washing steps prior to tissue processing. Each CRC tissue was divided into 5 tissue pieces, and treated with each different washing solution, or none. After the washing steps, all samples were processed for organoid generation following the same standard protocol. We detected contamination in 62.5% of the non-washed samples, while the use of PBS or P/S-containing PBS reduced the contamination rate to 50% and 25%, respectively. Notably, none of the organoid cultures washed with PBS/Primocin-containing solution were contaminated. Interestingly, addition of P/S to the washing solution reduced the percentage of living cells compared to Primocin. Taken together, our results demonstrate that, prior to tissue processing, adding Primocin to the tissue washing solution is able to eliminate the risk of microbial contamination in PDO cultures, and that the use of P/S negatively impacts organoids growth. We believe that our easy-to-apply protocol might help increase the success rate of organoid generation from CRC patients.
Collapse
Affiliation(s)
- Mattia Marinucci
- Visceral Surgery and Precision Medicine Research Laboratory, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Caner Ercan
- Visceral Surgery and Precision Medicine Research Laboratory, Department of Biomedicine, University of Basel, Basel, Switzerland.,Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Stephanie Taha-Mehlitz
- Visceral Surgery and Precision Medicine Research Laboratory, Department of Biomedicine, University of Basel, Basel, Switzerland.,Clarunis, Department of Visceral Surgery, University Centre for Gastrointestinal and Liver Diseases, St. Clara Hospital and University Hospital Basel, Basel, Switzerland
| | - Lana Fourie
- Clarunis, Department of Visceral Surgery, University Centre for Gastrointestinal and Liver Diseases, St. Clara Hospital and University Hospital Basel, Basel, Switzerland
| | - Federica Panebianco
- Visceral Surgery and Precision Medicine Research Laboratory, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Gaia Bianco
- Visceral Surgery and Precision Medicine Research Laboratory, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - John Gallon
- Visceral Surgery and Precision Medicine Research Laboratory, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Sebastian Staubli
- Clarunis, Department of Visceral Surgery, University Centre for Gastrointestinal and Liver Diseases, St. Clara Hospital and University Hospital Basel, Basel, Switzerland
| | - Savas D Soysal
- Clarunis, Department of Visceral Surgery, University Centre for Gastrointestinal and Liver Diseases, St. Clara Hospital and University Hospital Basel, Basel, Switzerland
| | - Andreas Zettl
- Institute of Pathology, Viollier AG, Allschwil, Switzerland
| | - Stephan Rauthe
- Institute of Pathology, Viollier AG, Allschwil, Switzerland
| | - Jürg Vosbeck
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Raoul A Droeser
- Clarunis, Department of Visceral Surgery, University Centre for Gastrointestinal and Liver Diseases, St. Clara Hospital and University Hospital Basel, Basel, Switzerland
| | - Martin Bolli
- Clarunis, Department of Visceral Surgery, University Centre for Gastrointestinal and Liver Diseases, St. Clara Hospital and University Hospital Basel, Basel, Switzerland
| | - Ralph Peterli
- Clarunis, Department of Visceral Surgery, University Centre for Gastrointestinal and Liver Diseases, St. Clara Hospital and University Hospital Basel, Basel, Switzerland
| | - Markus von Flüe
- Clarunis, Department of Visceral Surgery, University Centre for Gastrointestinal and Liver Diseases, St. Clara Hospital and University Hospital Basel, Basel, Switzerland
| | - Charlotte K Y Ng
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Otto Kollmar
- Clarunis, Department of Visceral Surgery, University Centre for Gastrointestinal and Liver Diseases, St. Clara Hospital and University Hospital Basel, Basel, Switzerland
| | - Mairene Coto-Llerena
- Visceral Surgery and Precision Medicine Research Laboratory, Department of Biomedicine, University of Basel, Basel, Switzerland.,Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Salvatore Piscuoglio
- Visceral Surgery and Precision Medicine Research Laboratory, Department of Biomedicine, University of Basel, Basel, Switzerland.,Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
52
|
Borozan I, Zaidi SH, Harrison TA, Phipps AI, Zheng J, Lee S, Trinh QM, Steinfelder RS, Adams J, Banbury BL, Berndt SI, Brezina S, Buchanan DD, Bullman S, Cao Y, Farris AB, Figueiredo JC, Giannakis M, Heisler LE, Hopper JL, Lin Y, Luo X, Nishihara R, Mardis ER, Papadopoulos N, Qu C, Reid EEG, Thibodeau SN, Harlid S, Um CY, Hsu L, Gsur A, Campbell PT, Gallinger S, Newcomb PA, Ogino S, Sun W, Hudson TJ, Ferretti V, Peters U. Molecular and Pathology Features of Colorectal Tumors and Patient Outcomes Are Associated with Fusobacterium nucleatum and Its Subspecies animalis. Cancer Epidemiol Biomarkers Prev 2022; 31:210-220. [PMID: 34737207 PMCID: PMC8755593 DOI: 10.1158/1055-9965.epi-21-0463] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 06/27/2021] [Accepted: 10/21/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Fusobacterium nucleatum (F. nucleatum) activates oncogenic signaling pathways and induces inflammation to promote colorectal carcinogenesis. METHODS We characterized F. nucleatum and its subspecies in colorectal tumors and examined associations with tumor characteristics and colorectal cancer-specific survival. We conducted deep sequencing of nusA, nusG, and bacterial 16s rRNA genes in tumors from 1,994 patients with colorectal cancer and assessed associations between F. nucleatum presence and clinical characteristics, colorectal cancer-specific mortality, and somatic mutations. RESULTS F. nucleatum, which was present in 10.3% of tumors, was detected in a higher proportion of right-sided and advanced-stage tumors, particularly subspecies animalis. Presence of F. nucleatum was associated with higher colorectal cancer-specific mortality (HR, 1.97; P = 0.0004). This association was restricted to nonhypermutated, microsatellite-stable tumors (HR, 2.13; P = 0.0002) and those who received chemotherapy [HR, 1.92; confidence interval (CI), 1.07-3.45; P = 0.029). Only F. nucleatum subspecies animalis, the main subspecies detected (65.8%), was associated with colorectal cancer-specific mortality (HR, 2.16; P = 0.0016), subspecies vincentii and nucleatum were not (HR, 1.07; P = 0.86). Additional adjustment for tumor stage suggests that the effect of F. nucleatum on mortality is partly driven by a stage shift. Presence of F. nucleatum was associated with microsatellite instable tumors, tumors with POLE exonuclease domain mutations, and ERBB3 mutations, and suggestively associated with TP53 mutations. CONCLUSIONS F. nucleatum, and particularly subspecies animalis, was associated with a higher colorectal cancer-specific mortality and specific somatic mutated genes. IMPACT Our findings identify the F. nucleatum subspecies animalis as negatively impacting colorectal cancer mortality, which may occur through a stage shift and its effect on chemoresistance.
Collapse
Affiliation(s)
- Ivan Borozan
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Syed H Zaidi
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Tabitha A Harrison
- Public Health Sciences Division, Fred Hutchinson Cancer Research Centre, Seattle, Washington
| | - Amanda I Phipps
- Public Health Sciences Division, Fred Hutchinson Cancer Research Centre, Seattle, Washington
| | - Jiayin Zheng
- Public Health Sciences Division, Fred Hutchinson Cancer Research Centre, Seattle, Washington
| | - Stephen Lee
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Quang M Trinh
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Robert S Steinfelder
- Public Health Sciences Division, Fred Hutchinson Cancer Research Centre, Seattle, Washington
| | - Jeremy Adams
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Barbara L Banbury
- Public Health Sciences Division, Fred Hutchinson Cancer Research Centre, Seattle, Washington
| | - Sonja I Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Stefanie Brezina
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Daniel D Buchanan
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia
- The University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia
- Familial Cancer Clinic, Genetic Medicine, The Royal Melbourne Hospital, Parkville, Victoria, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Susan Bullman
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Yin Cao
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine in St. Louis, St Louis, Missouri
- Siteman Cancer Center, Washington University School of Medicine in St. Louis, St Louis, Missouri
| | - Alton B Farris
- Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Jane C Figueiredo
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Marios Giannakis
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | | | - John L Hopper
- The University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia
| | - Yi Lin
- Public Health Sciences Division, Fred Hutchinson Cancer Research Centre, Seattle, Washington
| | - Xuemei Luo
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Reiko Nishihara
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Elaine R Mardis
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio
| | - Nickolas Papadopoulos
- Ludwig Center for Cancer Genetics and Therapeutics, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medicine, Baltimore, Maryland
| | - Conghui Qu
- Public Health Sciences Division, Fred Hutchinson Cancer Research Centre, Seattle, Washington
| | - Emma E G Reid
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Stephen N Thibodeau
- Division of Laboratory Genetics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Sophia Harlid
- Oncology, Department of Radiation Sciences, Faculty of Medicine, Umeå University, Umeå, Sweden
| | - Caroline Y Um
- Behavioral and Epidemiology Research Group, American Cancer Society, Atlanta, Georgia
| | - Li Hsu
- Public Health Sciences Division, Fred Hutchinson Cancer Research Centre, Seattle, Washington
- Department of Biostatistics, School of Public Health, University of Washington, Seattle, Washington
| | - Andrea Gsur
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Peter T Campbell
- Behavioral and Epidemiology Research Group, American Cancer Society, Atlanta, Georgia
| | - Steven Gallinger
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, University of Toronto, Toronto, Ontario, Canada
- General Surgery, Surgery and Critical Care Program, University Health Network Toronto General Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Polly A Newcomb
- Public Health Sciences Division, Fred Hutchinson Cancer Research Centre, Seattle, Washington
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, Washington
| | - Shuji Ogino
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
- Cancer Immunology Program, Dana-Farber/Harvard Cancer Center, Boston, Massachusetts
- Cancer Epidemiology Program, Dana-Farber/Harvard Cancer Center, Boston, Massachusetts
| | - Wei Sun
- Public Health Sciences Division, Fred Hutchinson Cancer Research Centre, Seattle, Washington
| | - Thomas J Hudson
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Vincent Ferretti
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada.
- CHU Sainte-Justine Research Center, University of Montreal, Montreal, Quebec, Canada
| | - Ulrike Peters
- Public Health Sciences Division, Fred Hutchinson Cancer Research Centre, Seattle, Washington.
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, Washington
| |
Collapse
|
53
|
D'Agay MDG, Galland L, Tharin Z, Truntzer C, Ghiringhelli F. Utility of exome sequencing in routine care for metastatic colorectal cancer. Mol Clin Oncol 2021; 15:229. [PMID: 34631054 PMCID: PMC8461624 DOI: 10.3892/mco.2021.2392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 07/01/2021] [Indexed: 12/24/2022] Open
Abstract
Metastatic colorectal cancer (mCRC) is a heterogenous disease and its prognosis depends on clinical features, such as tumor sidedness, and whether it is metachronous or synchronous. However, little is known about the overall genomic characterization of mCRC in these clinical subtypes. This single-center observational study included 77 patients with mCRC who underwent somatic and germline exome analysis during the first or second line of therapy in 2018. Somatic and germline variants were determined in addition to tumor mutational burden, ploidy, clonality, human leucocyte antigen typing, neoantigens, and mutational and copy number signatures. Variables associated with sidedness, synchronous status and RAS status were determined using Fisher's test; and variables associated with overall survival were determined using univariate Cox survival models. The present study successfully generated whole exome sequencing analysis in 77 mCRC cases. Among them, 50 were left- and rectal-sided, while 27 were right-sided. Furthermore, 27 were metachronous and 46 were RAS-mutated. The median OS was 3.75 years. It was observed that signature single nucleotide variation (SNV) 26, oncogenic alterations in receptor tyrosine kinase and nucleotide excision repair pathways were associated with tumor sidedness. SNV signature 3, Hedgehog signaling and mismatch repair pathways were associated with synchronous status. Phosphatidylinositol signaling system, ERK signaling and chromatin organization pathways were associated with RAS mutant status. In the whole cohort, metachronous metastasis was associated with improved survival. On gene variation, PTEN, PDGFRA, MYCN and SMAD4 were associated with poor prognosis, as was SNV signature 15. In conclusion, this study highlighted that structural and pathway genomic features are associated with sidedness, synchronous status, RAS status and overall survival and could be helpful to improve the stratification of patients with colorectal cancer.
Collapse
Affiliation(s)
- Melchior De Giraud D'Agay
- Platform of Transfer in Biological Oncology, Georges François Leclerc Cancer Center-UNICANCER, 21000 Dijon, France
- University of Burgundy-Franche Comté, Georges François Leclerc Cancer Center-UNICANCER, 21000 Dijon, France
| | - Loïck Galland
- Platform of Transfer in Biological Oncology, Georges François Leclerc Cancer Center-UNICANCER, 21000 Dijon, France
- University of Burgundy-Franche Comté, Georges François Leclerc Cancer Center-UNICANCER, 21000 Dijon, France
- Department of Medical Oncology, Georges François Leclerc Cancer Center-UNICANCER, 21000 Dijon, France
| | - Zoe Tharin
- Department of Medical Oncology, Georges François Leclerc Cancer Center-UNICANCER, 21000 Dijon, France
| | - Caroline Truntzer
- Platform of Transfer in Biological Oncology, Georges François Leclerc Cancer Center-UNICANCER, 21000 Dijon, France
- Department of Medical Oncology, Georges François Leclerc Cancer Center-UNICANCER, 21000 Dijon, France
- Genomic and Immunotherapy Medical Institute, Dijon University Hospital, 21000 Dijon, France
| | - Francois Ghiringhelli
- Platform of Transfer in Biological Oncology, Georges François Leclerc Cancer Center-UNICANCER, 21000 Dijon, France
- University of Burgundy-Franche Comté, Georges François Leclerc Cancer Center-UNICANCER, 21000 Dijon, France
- Department of Medical Oncology, Georges François Leclerc Cancer Center-UNICANCER, 21000 Dijon, France
- Genomic and Immunotherapy Medical Institute, Dijon University Hospital, 21000 Dijon, France
- Mixed Research Unity (UMR - Unité de Recherche Mixte) 1231 - INSERM, 21000 Dijon, France
| |
Collapse
|
54
|
Li Y, Ma Y, Wu Z, Zeng F, Song B, Zhang Y, Li J, Lui S, Wu M. Tumor Mutational Burden Predicting the Efficacy of Immune Checkpoint Inhibitors in Colorectal Cancer: A Systematic Review and Meta-Analysis. Front Immunol 2021; 12:751407. [PMID: 34659255 PMCID: PMC8511407 DOI: 10.3389/fimmu.2021.751407] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 09/10/2021] [Indexed: 02/05/2023] Open
Abstract
Objectives For colorectal cancer patients, traditional biomarker deficient mismatch repair/microsatellite instability (dMMR/MSI) is an accurate predictor of immune checkpoint inhibitors (ICIs). Recent years, researchers considered tumor mutation burden (TMB) as another predictive biomarker which means the number of nonsynonymous mutations in cancer cells. Several studies have proven that TMB can evaluate the efficacy of ICI therapy in diverse types of cancer, especially in non-small cell lung cancer and melanoma. However, studies on the association between TMB and the response to ICI therapy in colorectal cancer alone are still lacking. In this study, we aim to verify the effect of TMB as a biomarker in predicting the efficacy of ICIs in colorectal cancer. Methods We searched the PubMed and Ovid MEDLINE databases up to May 1, 2021 and screened studies for eligibility. Thirteen studies published from 2015 to 2021 with 5062 patients were included finally. We extracted and calculated hazard ratios (HRs) and odds ratios (ORs) of overall survival (OS) and objective response rates (ORRs) and their 95% confidence intervals (95% CIs). Pooled HR and OR were evaluated to compare OS and ORR between TMB-high and TMB-low groups in colorectal cancer patients. Meanwhile, we assessed heterogeneity with the I2 statistic and p-values and performed publication bias assessments, sensitivity analyses, and subgroup analyses to search the cause of heterogeneity. Results The TMB-high patient group had a longer OS than the TMB-low patient group (HR = 0.68, 95% CI: 0.51, 0.92, p = 0.013) among colorectal cancer patients receiving ICIs. In addition, the TMB-high patient group was superior in terms of ORR (OR = 19.25, 95% CI: 10.06, 36.82, p < 0.001) compared to the TMB-low patient group. Conclusions In conclusion, this meta-analysis revealed that TMB can be used as a potential predictive biomarker of colorectal cancer patients receiving ICI therapy. Nevertheless, this finding is not stable enough. Therefore, many more randomized controlled trials are needed to prove that TMB is reliable enough to be used clinically to predict the efficacy of immunotherapy in colorectal cancer. And the most relevant biomarker remains to be determined when TMB high overlaps with other biomarkers like MSI and TILs.
Collapse
Affiliation(s)
- Yan Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Yiqi Ma
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Zijun Wu
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Fanxin Zeng
- Department of Clinic Medical Center, Dazhou Central Hospital, Dazhou, China.,Department of Radiology, School of Medicine, Stanford University, Stanford, CA, United States
| | - Bin Song
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Yanrong Zhang
- Department of Radiology, School of Medicine, Stanford University, Stanford, CA, United States
| | - Jinxing Li
- Department of Biomedical Engineering, Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI, United States
| | - Su Lui
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Min Wu
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
55
|
Gallois C, Emile JF, Kim S, Monterymard C, Gilabert M, Bez J, Lièvre A, Dahan L, Laurent-Puig P, Mineur L, Coriat R, Legoux JL, Hautefeuille V, Phelip JM, Lecomte T, Sokol H, Capron C, Randrian V, Lepage C, Lomenie N, Kurtz C, Taieb J, Tougeron D. Pembrolizumab with Capox Bevacizumab in patients with microsatellite stable metastatic colorectal cancer and a high immune infiltrate: The FFCD 1703-POCHI trial. Dig Liver Dis 2021; 53:1254-1259. [PMID: 34215534 DOI: 10.1016/j.dld.2021.06.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/03/2021] [Accepted: 06/09/2021] [Indexed: 12/11/2022]
Abstract
Pembrolizumab, a PD1 immune checkpoint inhibitor (ICI), was recently reported to be very effective in patients with microsatellite instable/deficient mismatch repair metastatic colorectal cancer (MSI/dMMR mCRC), unlike patients with microsatellite stable/proficient MMR (MSS/pMMR) mCRC, in whom ICIs are generally ineffective. However, about 15% of MSS/pMMR CRCs are highly infiltrated by tumour infiltrating lymphocytes. In addition, both oxaliplatin and bevacizumab have been shown to have immunomodulatory properties that may increase the efficacy of an ICI. We formulated the hypothesis that patients with MSS/pMMR mCRC with a high immune infiltrate can be sensitive to ICI plus oxalipatin and bevacizumab-based chemotherapy. POCHI is a multicenter, open-label, single-arm phase II trial to evaluate efficacy of Pembrolizumab with Capox Bevacizumab as first-line treatment of MSS/pMMR mCRC with a high immune infiltrate for which we plan to enrol 55 patients. Primary endpoint is progression-free survival (PFS) at 10 months, which is expected greater than 50%, but a 70% rate is hoped for. Main secondary objectives are overall survival, secondary resection rate and depth of response. Patients must have been resected of their primary tumour so as to evaluate two different immune scores (Immunoscore® and TuLIS) and are eligible if one score is "high". The first patient was included on April 20, 2021.
Collapse
Affiliation(s)
- Claire Gallois
- Service de Gastroentérologie et d'Oncologie Digestive, Hôpital Européen George Pompidou, Université de Paris, AP-HP, Paris, France
| | - Jean-François Emile
- Service d'Anatomie et Cytologie Pathologique, Hôpital Ambroise Paré, AP-HP, Paris, France
| | - Stefano Kim
- Service d'Oncologie Médicale, CHRU Jean Minjoz, Besançon, France
| | - Carole Monterymard
- FFCD EPICAD INSERM LNC-UMR 1231, Université Bourgogne Franche-Comté, Dijon, France
| | - Marine Gilabert
- Service d'Oncologie Médicale, Institut Paoli-Calmettes, Marseille, France
| | - Jérémie Bez
- FFCD EPICAD INSERM LNC-UMR 1231, Université Bourgogne Franche-Comté, Dijon, France
| | - Astrid Lièvre
- Service des Maladies de l'Appareil Digestif, CHU Pontchaillou, Université de Rennes 1, INSERM U1242, Rennes, France
| | - Laetitia Dahan
- Service d'Oncologie Digestive, AP-HM, Hôpital La Timone, Aix-Marseille Université, Marseille, France
| | - Pierre Laurent-Puig
- INSERM U1138, Centre de Recherche des Cordeliers, Université Paris, Paris, France
| | | | - Romain Coriat
- Service de Gastroentérologie, Hôpital Cochin, Université de Paris, Paris, France
| | - Jean-Louis Legoux
- Service d'Hépato-gastroentérologie et Oncologie Digestive, CHR d'Orléans, Orléans, France
| | | | - Jean-Marc Phelip
- Service d'Hépato-gastroentérologie, CHU Saint Etienne, Saint Etienne, France
| | - Thierry Lecomte
- Service d'Hépato-gastroentérologie, CHU Tours, Tours, France
| | - Harry Sokol
- Service de Gastroentérologie, Hôpital Saint-Antoine, Paris, France
| | - Claude Capron
- Service d'immunologie, AP-HP, Hôpital Ambroise Paré, Paris, France
| | - Violaine Randrian
- Service d'Hépato-gastroentérologie, CHU de Poitiers et Université de Poitiers, Poitiers, France
| | - Come Lepage
- Service d'Hépato-gastroentérologie, CHU de Dijon, France
| | | | | | - Julien Taieb
- Service de Gastroentérologie et d'Oncologie Digestive, Hôpital Européen George Pompidou, Université de Paris, AP-HP, Paris, France
| | - David Tougeron
- Service d'Hépato-gastroentérologie, CHU de Poitiers et Université de Poitiers, Poitiers, France.
| |
Collapse
|
56
|
Implications of Antigen Selection on T Cell-Based Immunotherapy. Pharmaceuticals (Basel) 2021; 14:ph14100993. [PMID: 34681217 PMCID: PMC8537967 DOI: 10.3390/ph14100993] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/17/2021] [Accepted: 09/24/2021] [Indexed: 12/15/2022] Open
Abstract
Many immunotherapies rely on CD8+ effector T cells to recognize and kill cognate tumor cells. These T cell-based immunotherapies include adoptive cell therapy, such as CAR T cells or transgenic TCR T cells, and anti-cancer vaccines which expand endogenous T cell populations. Tumor mutation burden and the choice of antigen are among the most important aspects of T cell-based immunotherapies. Here, we highlight various classes of cancer antigens, including self, neojunction-derived, human endogenous retrovirus (HERV)-derived, and somatic nucleotide variant (SNV)-derived antigens, and consider their utility in T cell-based immunotherapies. We further discuss the respective anti-tumor/anti-self-properties that influence both the degree of immunotolerance and potential off-target effects associated with each antigen class.
Collapse
|
57
|
Gsur A, Baierl A, Brezina S. Colorectal Cancer Study of Austria (CORSA): A Population-Based Multicenter Study. BIOLOGY 2021; 10:722. [PMID: 34439954 PMCID: PMC8389216 DOI: 10.3390/biology10080722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 12/14/2022]
Abstract
The Colorectal cancer Study of Austria (CORSA) is comprised more than 13,500 newly diagnosed colorectal cancer (CRC) patients, patients with high- and low-risk adenomas as well as population-based controls. The recruitment for the CORSA biobank is performed in close cooperation with the invited two-stage CRC screening project "Burgenland PREvention trial of colorectal Disease with ImmunologiCal Testing" (B-PREDICT). Annually, more than 150,000 inhabitants of the Austrian federal state Burgenland aged between 40 and 80 are invited to participate using FIT-tests as an initial screening. FIT-positive tested participants are offered a diagnostic colonoscopy and are asked to take part in CORSA, sign a written informed consent, complete questionnaires concerning dietary and lifestyle habits and provide an ethylenediaminetetraacetic acid (EDTA) blood sample as well as a stool sample. Additional CRC cases have been recruited at four hospitals in Vienna and a hospital in lower Austria. A major strength of CORSA is the population-based controls who are FIT-positive and colonoscopy-confirmed to be free of polyps and/or CRC.
Collapse
Affiliation(s)
- Andrea Gsur
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria;
| | - Andreas Baierl
- Department of Statistics and Operations Research, University of Vienna, 1010 Vienna, Austria;
| | - Stefanie Brezina
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria;
| |
Collapse
|
58
|
Liebl MC, Hofmann TG. The Role of p53 Signaling in Colorectal Cancer. Cancers (Basel) 2021; 13:2125. [PMID: 33924934 PMCID: PMC8125348 DOI: 10.3390/cancers13092125] [Citation(s) in RCA: 167] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 12/24/2022] Open
Abstract
The transcription factor p53 functions as a critical tumor suppressor by orchestrating a plethora of cellular responses such as DNA repair, cell cycle arrest, cellular senescence, cell death, cell differentiation, and metabolism. In unstressed cells, p53 levels are kept low due to its polyubiquitination by the E3 ubiquitin ligase MDM2. In response to various stress signals, including DNA damage and aberrant growth signals, the interaction between p53 and MDM2 is blocked and p53 becomes stabilized, allowing p53 to regulate a diverse set of cellular responses mainly through the transactivation of its target genes. The outcome of p53 activation is controlled by its dynamics, its interactions with other proteins, and post-translational modifications. Due to its involvement in several tumor-suppressing pathways, p53 function is frequently impaired in human cancers. In colorectal cancer (CRC), the TP53 gene is mutated in 43% of tumors, and the remaining tumors often have compromised p53 functioning because of alterations in the genes encoding proteins involved in p53 regulation, such as ATM (13%) or DNA-PKcs (11%). TP53 mutations in CRC are usually missense mutations that impair wild-type p53 function (loss-of-function) and that even might provide neo-morphic (gain-of-function) activities such as promoting cancer cell stemness, cell proliferation, invasion, and metastasis, thereby promoting cancer progression. Although the first compounds targeting p53 are in clinical trials, a better understanding of wild-type and mutant p53 functions will likely pave the way for novel CRC therapies.
Collapse
Affiliation(s)
- Magdalena C. Liebl
- Institute of Toxicology, University Medical Center Mainz, Johannes Gutenberg University, 55131 Mainz, Germany;
| | | |
Collapse
|
59
|
Sánchez-Fernández P, Riobello C, Costales M, Vivanco B, Cabal VN, García-Marín R, Suárez-Fernández L, López F, Cabanillas R, Hermsen MA, Llorente JL. Next-generation sequencing for identification of actionable gene mutations in intestinal-type sinonasal adenocarcinoma. Sci Rep 2021; 11:2247. [PMID: 33500480 PMCID: PMC7838394 DOI: 10.1038/s41598-020-80242-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 11/26/2020] [Indexed: 01/30/2023] Open
Abstract
Intestinal-type sinonasal adenocarcinoma (ITAC) is a rare tumor carrying poor prognosis and needing new treatment options. The aim of this study was to identify actionable gene mutations that can guide new personalized target-specific therapies in ITAC patients. A series of 48 tumor and 27 corresponding germline DNA samples were analyzed by next generation sequencing using a panel of 120 genes. In total, 223 sequence variants were found in 70 genes. Matched tumor/germline comparison in 27 cases revealed that 57% were in fact germline variants. In 20 of these 27 cases, 58 somatic variants in 33 different genes were identified, the most frequent being PIK3CA (5 cases), APC and ATM (4 cases), and KRAS, NF1, LRP1B and BRCA1 (3 cases). Many of the somatic gene variants affected PI3K, MAPK/ERK, WNT and DNA repair signaling pathways, although not in a mutually exclusive manner. None of the alterations were related to histological ITAC subtype, tumor stage or survival. Our data showed that thorough interpretation of somatic mutations requires sequencing analysis of the corresponding germline DNA. Potentially actionable somatic mutations were found in 20 of 27 cases, 8 of which being biomarkers of FDA-approved targeted therapies. Our data implicate new possibilities for personalized treatment of ITAC patients.
Collapse
Affiliation(s)
- Paula Sánchez-Fernández
- grid.411052.30000 0001 2176 9028Department Otolaryngology, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Cristina Riobello
- grid.10863.3c0000 0001 2164 6351Department Head and Neck Oncology, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Centro de Investigación Biomédica en Red (CIBER-ONC), Edf. FINBA, N-1 F49, C/ Avenida de Roma s/n, 33011 Oviedo, Spain
| | - María Costales
- grid.411052.30000 0001 2176 9028Department Otolaryngology, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Blanca Vivanco
- grid.411052.30000 0001 2176 9028Department Pathology, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Virginia N. Cabal
- grid.10863.3c0000 0001 2164 6351Department Head and Neck Oncology, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Centro de Investigación Biomédica en Red (CIBER-ONC), Edf. FINBA, N-1 F49, C/ Avenida de Roma s/n, 33011 Oviedo, Spain
| | - Rocío García-Marín
- grid.10863.3c0000 0001 2164 6351Department Head and Neck Oncology, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Centro de Investigación Biomédica en Red (CIBER-ONC), Edf. FINBA, N-1 F49, C/ Avenida de Roma s/n, 33011 Oviedo, Spain
| | - Laura Suárez-Fernández
- grid.10863.3c0000 0001 2164 6351Department Head and Neck Oncology, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Centro de Investigación Biomédica en Red (CIBER-ONC), Edf. FINBA, N-1 F49, C/ Avenida de Roma s/n, 33011 Oviedo, Spain
| | - Fernando López
- grid.411052.30000 0001 2176 9028Department Otolaryngology, Hospital Universitario Central de Asturias, Oviedo, Spain
| | | | - Mario A. Hermsen
- grid.10863.3c0000 0001 2164 6351Department Head and Neck Oncology, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Centro de Investigación Biomédica en Red (CIBER-ONC), Edf. FINBA, N-1 F49, C/ Avenida de Roma s/n, 33011 Oviedo, Spain
| | - José Luis Llorente
- grid.411052.30000 0001 2176 9028Department Otolaryngology, Hospital Universitario Central de Asturias, Oviedo, Spain
| |
Collapse
|
60
|
Takano S, Fukasawa M, Shindo H, Takahashi E, Hirose S, Fukasawa Y, Kawakami S, Hayakawa H, Kuratomi N, Kadokura M, Maekawa S, Sato T, Enomoto N. Clinical significance of genetic alterations in endoscopically obtained pancreatic cancer specimens. Cancer Med 2021; 10:1264-1274. [PMID: 33455072 PMCID: PMC7926030 DOI: 10.1002/cam4.3723] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/25/2020] [Accepted: 12/18/2020] [Indexed: 12/30/2022] Open
Abstract
Although comprehensive gene analyses of pancreatic cancer provide new knowledge on molecular mechanisms, the usefulness and possibility of the analyses in routinely available clinical samples remain unclear. We assessed the possibility and utility of target sequencing of endoscopically obtained pancreatic cancer samples. Fifty‐eight pancreatic cancer patients who underwent EUS‐FNA or endoscopic biopsy were enrolled. The extracted DNA quantity was assessed and used for next‐generation sequencing (NGS) of 50 cancer‐related genes from which gene mutations, copy number alterations, and microsatellite instability (MSI) were extracted via secondary analysis. A median of 19.2 ng (3.8–228) of DNA was extracted from formalin‐fixed paraffin‐embedded samples. Gene alterations were detected in 55 of 58 samples (94.8%), including all samples with a DNA concentration below the detection limit (n = 11). Four frequently altered genes were KRAS (83%), TP53 (66%), SMAD4 (26%), and PTEN (17%), and molecular targetable genes were detected in 13 cases (22.4%). Five samples (8.6%) had many mutations and suspected MSI with impaired mismatch repair genes. A Cox regression analysis revealed that metastasis (p < 0.005, hazard ratio [HR] 10.1), serum CEA >5 ng/ml (p = 0.01, HR 2.86), ≤10 detected hotspot mutations (p = 0.03, HR 9.86), and intact Ras signaling (p < 0.005, HR 5.57) were associated with a poor pancreatic cancer prognosis. We performed small, targeted sequencing of pancreatic cancer using available samples from real clinical practice and determined the relationship between gene alterations and prognosis to help determine treatment choices.
Collapse
Affiliation(s)
- Shinichi Takano
- First Department of Internal Medicine, Faculty of Medicine, University of Yamanashi, Chuo, Japan
| | - Mitsuharu Fukasawa
- First Department of Internal Medicine, Faculty of Medicine, University of Yamanashi, Chuo, Japan
| | - Hiroko Shindo
- First Department of Internal Medicine, Faculty of Medicine, University of Yamanashi, Chuo, Japan
| | - Ei Takahashi
- First Department of Internal Medicine, Faculty of Medicine, University of Yamanashi, Chuo, Japan
| | - Sumio Hirose
- First Department of Internal Medicine, Faculty of Medicine, University of Yamanashi, Chuo, Japan
| | - Yoshimitsu Fukasawa
- First Department of Internal Medicine, Faculty of Medicine, University of Yamanashi, Chuo, Japan
| | - Satoshi Kawakami
- First Department of Internal Medicine, Faculty of Medicine, University of Yamanashi, Chuo, Japan
| | - Hiroshi Hayakawa
- First Department of Internal Medicine, Faculty of Medicine, University of Yamanashi, Chuo, Japan
| | - Natsuhiko Kuratomi
- First Department of Internal Medicine, Faculty of Medicine, University of Yamanashi, Chuo, Japan
| | - Makoto Kadokura
- First Department of Internal Medicine, Faculty of Medicine, University of Yamanashi, Chuo, Japan
| | - Shinya Maekawa
- First Department of Internal Medicine, Faculty of Medicine, University of Yamanashi, Chuo, Japan
| | - Tadashi Sato
- First Department of Internal Medicine, Faculty of Medicine, University of Yamanashi, Chuo, Japan
| | - Nobuyuki Enomoto
- First Department of Internal Medicine, Faculty of Medicine, University of Yamanashi, Chuo, Japan
| |
Collapse
|
61
|
Shevchenko E, Poso A, Pantsar T. The autoinhibited state of MKK4: Phosphorylation, putative dimerization and R134W mutant studied by molecular dynamics simulations. Comput Struct Biotechnol J 2020; 18:2687-2698. [PMID: 33101607 PMCID: PMC7550801 DOI: 10.1016/j.csbj.2020.09.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/08/2020] [Accepted: 09/10/2020] [Indexed: 12/19/2022] Open
Abstract
Protein kinases are crucial components of the cell-signalling machinery that orchestrate and convey messages to their downstream targets. Most often, kinases are activated upon a phosphorylation to their activation loop, which will shift the kinase into the active conformation. The Dual specificity mitogen-activated protein kinase kinase 4 (MKK4) exists in a unique conformation in its inactive unphosphorylated state, where its activation segment appears in a stable α-helical conformation. However, the precise role of this unique conformational state of MKK4 is unknown. Here, by all-atom molecular dynamics simulations (MD simulations), we show that this inactive state is unstable as monomer even when unphosphorylated and that the phosphorylation of the activation segment further destabilizes the autoinhibited α-helix. The specific phosphorylation pattern of the activation segment has also a unique influence on MKK4 dynamics. Furthermore, we observed that this specific inactive state is stable as a dimer, which becomes destabilized upon phosphorylation. Finally, we noticed that the most frequent MKK4 mutation observed in cancer, R134W, which role has not been disclosed to date, contributes to the dimer stability. Based on these data we postulate that MKK4 occurs as a dimer in its inactive autoinhibited state, providing an additional layer for its activity regulation.
Collapse
Affiliation(s)
- Ekaterina Shevchenko
- Dept of Internal Medicine VIII, University Hospital Tübingen, Otfried-Müller-Strasse 14, 72076 Tübingen, Germany
| | - Antti Poso
- Dept of Internal Medicine VIII, University Hospital Tübingen, Otfried-Müller-Strasse 14, 72076 Tübingen, Germany
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1C, 70210 Kuopio, Finland
| | - Tatu Pantsar
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1C, 70210 Kuopio, Finland
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
- Corresponding author.
| |
Collapse
|