51
|
Soeriyadi AH, Ongley SE, Kehr JC, Pickford R, Dittmann E, Neilan BA. Tailoring Enzyme Stringency Masks the Multispecificity of a Lyngbyatoxin (Indolactam Alkaloid) Nonribosomal Peptide Synthetase. Chembiochem 2021; 23:e202100574. [PMID: 34850512 DOI: 10.1002/cbic.202100574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/30/2021] [Indexed: 11/11/2022]
Abstract
Indolactam alkaloids are activators of protein kinase C (PKC) and are of pharmacological interest for the treatment of pathologies involving PKC dysregulation. The marine cyanobacterial nonribosomal peptide synthetase (NRPS) pathway for lyngbyatoxin biosynthesis, which we previously expressed in E. coli, was studied for its amenability towards the biosynthesis of indolactam variants. Modification of culture conditions for our E. coli heterologous expression host and analysis of pathway products suggested the native lyngbyatoxin pathway NRPS does possess a degree of relaxed specificity. Site-directed mutagenesis of two positions within the adenylation domain (A-domain) substrate-binding pocket was performed, resulting in an alteration of substrate preference between valine, isoleucine, and leucine. We observed relative congruence of in vitro substrate activation by the LtxA NRPS to in vivo product formation. While there was a preference for isoleucine over leucine, the substitution of alternative tailoring domains may unveil the true in vivo effects of the mutations introduced herein.
Collapse
Affiliation(s)
- Angela H Soeriyadi
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, 2052, Australia
| | - Sarah E Ongley
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, 2052, Australia.,School of Environmental and Life Sciences, University of Newcastle, Callaghan, 2308, Australia
| | - Jan-Christoph Kehr
- Department of Microbiology, Institute for Biochemistry and Biology, University of Potsdam, Potsdam-Golm, Germany
| | - Russel Pickford
- Bioanalytical Mass Spectrometry Facility, University of New South Wales, Sydney, 2052, Australia
| | - Elke Dittmann
- Department of Microbiology, Institute for Biochemistry and Biology, University of Potsdam, Potsdam-Golm, Germany
| | - Brett A Neilan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, 2052, Australia.,School of Environmental and Life Sciences, University of Newcastle, Callaghan, 2308, Australia
| |
Collapse
|
52
|
Patel KD, Gulick AM. Anti-Zika candidates from a marine fungus with a remarkable biosynthetic repertoire. J Biol Chem 2021; 297:101047. [PMID: 34358564 PMCID: PMC8384895 DOI: 10.1016/j.jbc.2021.101047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
The study of natural products provides exciting opportunities for the discovery of novel biologically active molecules and biosynthetic pathways. Recently, Yuan and colleagues described 30 cyclic depsipeptides that are biosynthesized by proteins encoded by three distinct gene clusters in the marine fungus, Beauveria felina. Genetic and biochemical studies confirmed the involvement of nonribosomal peptide synthetases in the production of multiple compounds, some of which inhibit Zika virus replication.
Collapse
Affiliation(s)
- Ketan D Patel
- Department of Structural Biology, Jacobs School of Medicine and Biological Sciences, University at Buffalo, Buffalo, New York, USA
| | - Andrew M Gulick
- Department of Structural Biology, Jacobs School of Medicine and Biological Sciences, University at Buffalo, Buffalo, New York, USA.
| |
Collapse
|
53
|
Bozhueyuek KAJ, Watzel J, Abbood N, Bode HB. Synthetic Zippers as an Enabling Tool for Engineering of Non-Ribosomal Peptide Synthetases*. Angew Chem Int Ed Engl 2021; 60:17531-17538. [PMID: 34015175 PMCID: PMC8362031 DOI: 10.1002/anie.202102859] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/31/2021] [Indexed: 12/29/2022]
Abstract
Non‐ribosomal peptide synthetases (NRPSs) are the origin of a wide range of natural products, including many clinically used drugs. Efficient engineering of these often giant biosynthetic machineries to produce novel non‐ribosomal peptides (NRPs) is an ongoing challenge. Here we describe a cloning and co‐expression strategy to functionally combine NRPS fragments of Gram‐negative and ‐positive origin, synthesising novel peptides at titres up to 220 mg L−1. Extending from the recently introduced definition of eXchange Units (XUs), we inserted synthetic zippers (SZs) to split single protein NRPSs into independently expressed and translated polypeptide chains. These synthetic type of NRPS (type S) enables easier access to engineering, overcomes cloning limitations, and provides a simple and rapid approach to building peptide libraries via the combination of different NRPS subunits.
Collapse
Affiliation(s)
- Kenan A J Bozhueyuek
- Molecular Biotechnology, Institute of Molecular Biosciences, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
| | - Jonas Watzel
- Molecular Biotechnology, Institute of Molecular Biosciences, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
| | - Nadya Abbood
- Molecular Biotechnology, Institute of Molecular Biosciences, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany.,Max-Planck-Institute for Terrestrial Microbiology, Department of Natural Products in Organismic Interactions, 35043, Marburg, Germany
| | - Helge B Bode
- Molecular Biotechnology, Institute of Molecular Biosciences, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany.,Max-Planck-Institute for Terrestrial Microbiology, Department of Natural Products in Organismic Interactions, 35043, Marburg, Germany.,Senckenberg Gesellschaft für Naturforschung, 60325, Frankfurt am Main, Germany
| |
Collapse
|
54
|
Stanišić A, Hüsken A, Stephan P, Niquille DL, Reinstein J, Kries H. Engineered Nonribosomal Peptide Synthetase Shows Opposite Amino Acid Loading and Condensation Specificity. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01270] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Aleksa Stanišić
- Junior Research Group Biosynthetic Design of Natural Products, Leibniz Institute for Natural Product Research and Infection Biology (HKI) e.V., Beutenbergstr. 11a, 07745 Jena, Germany
| | - Annika Hüsken
- Junior Research Group Biosynthetic Design of Natural Products, Leibniz Institute for Natural Product Research and Infection Biology (HKI) e.V., Beutenbergstr. 11a, 07745 Jena, Germany
| | - Philipp Stephan
- Junior Research Group Biosynthetic Design of Natural Products, Leibniz Institute for Natural Product Research and Infection Biology (HKI) e.V., Beutenbergstr. 11a, 07745 Jena, Germany
| | - David L. Niquille
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, 500 Technology Square NE47-140, Cambridge, Massachusetts 02139, United States
| | - Jochen Reinstein
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Hajo Kries
- Junior Research Group Biosynthetic Design of Natural Products, Leibniz Institute for Natural Product Research and Infection Biology (HKI) e.V., Beutenbergstr. 11a, 07745 Jena, Germany
| |
Collapse
|
55
|
Bozhueyuek KAJ, Watzel J, Abbood N, Bode HB. Synthetic Zippers as an Enabling Tool for Engineering of Non‐Ribosomal Peptide Synthetases**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Kenan A. J. Bozhueyuek
- Molecular Biotechnology Institute of Molecular Biosciences Goethe University Frankfurt 60438 Frankfurt am Main Germany
| | - Jonas Watzel
- Molecular Biotechnology Institute of Molecular Biosciences Goethe University Frankfurt 60438 Frankfurt am Main Germany
| | - Nadya Abbood
- Molecular Biotechnology Institute of Molecular Biosciences Goethe University Frankfurt 60438 Frankfurt am Main Germany
- Max-Planck-Institute for Terrestrial Microbiology Department of Natural Products in Organismic Interactions 35043 Marburg Germany
| | - Helge B. Bode
- Molecular Biotechnology Institute of Molecular Biosciences Goethe University Frankfurt 60438 Frankfurt am Main Germany
- Max-Planck-Institute for Terrestrial Microbiology Department of Natural Products in Organismic Interactions 35043 Marburg Germany
- Senckenberg Gesellschaft für Naturforschung 60325 Frankfurt am Main Germany
| |
Collapse
|
56
|
Mayerthaler F, Feldberg AL, Alfermann J, Sun X, Steinchen W, Yang H, Mootz HD. Intermediary conformations linked to the directionality of the aminoacylation pathway of nonribosomal peptide synthetases. RSC Chem Biol 2021; 2:843-854. [PMID: 34458813 PMCID: PMC8341999 DOI: 10.1039/d0cb00220h] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/18/2021] [Indexed: 01/16/2023] Open
Abstract
Nonribosomal peptide synthetases (NRPSs) are multifunctional megaenzymes that govern the stepwise biosynthesis of pharmaceutically important peptides. In an ATP-dependent assembly-line mechanism dedicated domains are responsible for each catalytic step. Crystal structures have provided insight into several conformations of interacting domains. However, the complete picture in solution of how domain dynamics and the timing of conformational changes effect a directional biosynthesis remains only poorly understood and will be important for the efficient reprogramming of NRPSs. Here we dissect the multiple conformational changes associated with the adenylation and thiolation reactions of the aminoacylation pathway under catalytic conditions. We used pyrophosphate (PP i ) to biochemically drive the conformational changes backward and forward while performing an online monitoring with a Förster resonance energy transfer (FRET) didomain sensor, consisting of adenylation (A) and peptidyl-carrier protein (PCP) domains. Notably, we found aminoacyl thioester formation to efficiently occur in the presence of PP i even at millimolar concentrations, despite the chemically and conformationally reversing effect of this metabolite and by-product. This finding settles conflicting reports and explains why intracellular PP i concentrations do not impair NRP biosynthesis. A conserved amino acid was identified to be important for the mechanism under these conditions. FRET time-course analyses revealed that the directionality of the aminoacylation catalysis is correlated with conformational kinetics. Complemented by equilibrium hydrogen-deuterium exchange (HDX) analyses, our data uncovered the existence of at least one new intermediary conformation that is associated with the rate-determining step. We propose an expanded model of conformational changes in the NRPS aminoacylation pathway.
Collapse
Affiliation(s)
- Florian Mayerthaler
- Institute of Biochemistry, Department of Chemistry and Pharmacy, University of Muenster Münster Germany
| | - Anna-Lena Feldberg
- Institute of Biochemistry, Department of Chemistry and Pharmacy, University of Muenster Münster Germany
| | - Jonas Alfermann
- Institute of Biochemistry, Department of Chemistry and Pharmacy, University of Muenster Münster Germany
| | - Xun Sun
- Department of Chemistry, Princeton University Princeton New Jersey USA
| | - Wieland Steinchen
- SYNMIKRO Research Center & Faculty of Chemistry, Philipps-University Marburg Germany
| | - Haw Yang
- Department of Chemistry, Princeton University Princeton New Jersey USA
| | - Henning D Mootz
- Institute of Biochemistry, Department of Chemistry and Pharmacy, University of Muenster Münster Germany
| |
Collapse
|
57
|
Bonhomme S, Dessen A, Macheboeuf P. The inherent flexibility of type I non-ribosomal peptide synthetase multienzymes drives their catalytic activities. Open Biol 2021; 11:200386. [PMID: 34034506 PMCID: PMC8150014 DOI: 10.1098/rsob.200386] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Non-ribosomal peptide synthetases (NRPSs) are multienzymes that produce complex natural metabolites with many applications in medicine and agriculture. They are composed of numerous catalytic domains that elongate and chemically modify amino acid substrates or derivatives and of non-catalytic carrier protein domains that can tether and shuttle the growing products to the different catalytic domains. The intrinsic flexibility of NRPSs permits conformational rearrangements that are required to allow interactions between catalytic and carrier protein domains. Their large size coupled to this flexibility renders these multi-domain proteins very challenging for structural characterization. Here, we summarize recent studies that offer structural views of multi-domain NRPSs in various catalytically relevant conformations, thus providing an increased comprehension of their catalytic cycle. A better structural understanding of these multienzymes provides novel perspectives for their re-engineering to synthesize new bioactive metabolites.
Collapse
Affiliation(s)
- Sarah Bonhomme
- Univ. Grenoble Alpes, CNRS, CEA, IBS, F-38000 Grenoble, France
| | - Andréa Dessen
- Univ. Grenoble Alpes, CNRS, CEA, IBS, F-38000 Grenoble, France.,Brazilian Biosciences National Laboratory (LNBio), CNPEM, Campinas 13084-971, São Paulo, Brazil
| | | |
Collapse
|
58
|
Liu D, Rubin GM, Dhakal D, Chen M, Ding Y. Biocatalytic synthesis of peptidic natural products and related analogues. iScience 2021; 24:102512. [PMID: 34041453 PMCID: PMC8141463 DOI: 10.1016/j.isci.2021.102512] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Peptidic natural products (PNPs) represent a rich source of lead compounds for the discovery and development of therapeutic agents for the treatment of a variety of diseases. However, the chemical synthesis of PNPs with diverse modifications for drug research is often faced with significant challenges, including the unavailability of constituent nonproteinogenic amino acids, inefficient cyclization protocols, and poor compatibility with other functional groups. Advances in the understanding of PNP biosynthesis and biocatalysis provide a promising, sustainable alternative for the synthesis of these compounds and their analogues. Here we discuss current progress in using native and engineered biosynthetic enzymes for the production of both ribosomally and nonribosomally synthesized peptides. In addition, we highlight new in vitro and in vivo approaches for the generation and screening of PNP libraries.
Collapse
Affiliation(s)
- Dake Liu
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, FL 32610, USA
| | - Garret M. Rubin
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, FL 32610, USA
| | - Dipesh Dhakal
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, FL 32610, USA
| | - Manyun Chen
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, FL 32610, USA
| | - Yousong Ding
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
59
|
Izoré T, Candace Ho YT, Kaczmarski JA, Gavriilidou A, Chow KH, Steer DL, Goode RJA, Schittenhelm RB, Tailhades J, Tosin M, Challis GL, Krenske EH, Ziemert N, Jackson CJ, Cryle MJ. Structures of a non-ribosomal peptide synthetase condensation domain suggest the basis of substrate selectivity. Nat Commun 2021; 12:2511. [PMID: 33947858 PMCID: PMC8097023 DOI: 10.1038/s41467-021-22623-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 03/23/2021] [Indexed: 02/08/2023] Open
Abstract
Non-ribosomal peptide synthetases are important enzymes for the assembly of complex peptide natural products. Within these multi-modular assembly lines, condensation domains perform the central function of chain assembly, typically by forming a peptide bond between two peptidyl carrier protein (PCP)-bound substrates. In this work, we report structural snapshots of a condensation domain in complex with an aminoacyl-PCP acceptor substrate. These structures allow the identification of a mechanism that controls access of acceptor substrates to the active site in condensation domains. The structures of this complex also allow us to demonstrate that condensation domain active sites do not contain a distinct pocket to select the side chain of the acceptor substrate during peptide assembly but that residues within the active site motif can instead serve to tune the selectivity of these central biosynthetic domains.
Collapse
Affiliation(s)
- Thierry Izoré
- Department of Biochemistry and Molecular Biology, The Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.
- EMBL Australia, Monash University, Clayton, VIC, Australia.
| | - Y T Candace Ho
- Department of Biochemistry and Molecular Biology, The Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- EMBL Australia, Monash University, Clayton, VIC, Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Clayton, VIC, Australia
- Department of Chemistry, University of Warwick, Coventry, UK
| | - Joe A Kaczmarski
- Research School of Chemistry, The Australian National University, Acton, ACT, Australia
| | - Athina Gavriilidou
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Microbiology/Biotechnology, University of Tübingen, Tübingen, Germany
| | - Ka Ho Chow
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - David L Steer
- Department of Biochemistry and Molecular Biology, The Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Monash Proteomics and Metabolomics Facility, Monash University, Clayton, VIC, Australia
| | - Robert J A Goode
- Department of Biochemistry and Molecular Biology, The Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Monash Proteomics and Metabolomics Facility, Monash University, Clayton, VIC, Australia
| | - Ralf B Schittenhelm
- Department of Biochemistry and Molecular Biology, The Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Monash Proteomics and Metabolomics Facility, Monash University, Clayton, VIC, Australia
| | - Julien Tailhades
- Department of Biochemistry and Molecular Biology, The Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- EMBL Australia, Monash University, Clayton, VIC, Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Clayton, VIC, Australia
| | - Manuela Tosin
- Department of Chemistry, University of Warwick, Coventry, UK
| | - Gregory L Challis
- Department of Biochemistry and Molecular Biology, The Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Clayton, VIC, Australia
- Department of Chemistry, University of Warwick, Coventry, UK
- Warwick Integrative Synthetic Biology Centre, University of Warwick, Coventry, UK
| | - Elizabeth H Krenske
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Nadine Ziemert
- German Centre for Infection Research (DZIF), Partnersite Tübingen, Tübingen, Germany
- Interfaculty Institute for Biomedical Informatics (IBMI), University of Tübingen, Tübingen, Germany
| | - Colin J Jackson
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Clayton, VIC, Australia
- Research School of Chemistry, The Australian National University, Acton, ACT, Australia
| | - Max J Cryle
- Department of Biochemistry and Molecular Biology, The Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.
- EMBL Australia, Monash University, Clayton, VIC, Australia.
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Clayton, VIC, Australia.
| |
Collapse
|
60
|
Baunach M, Chowdhury S, Stallforth P, Dittmann E. The Landscape of Recombination Events That Create Nonribosomal Peptide Diversity. Mol Biol Evol 2021; 38:2116-2130. [PMID: 33480992 PMCID: PMC8097286 DOI: 10.1093/molbev/msab015] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Nonribosomal peptides (NRP) are crucial molecular mediators in microbial ecology and provide indispensable drugs. Nevertheless, the evolution of the flexible biosynthetic machineries that correlates with the stunning structural diversity of NRPs is poorly understood. Here, we show that recombination is a key driver in the evolution of bacterial NRP synthetase (NRPS) genes across distant bacterial phyla, which has guided structural diversification in a plethora of NRP families by extensive mixing and matching of biosynthesis genes. The systematic dissection of a large number of individual recombination events did not only unveil a striking plurality in the nature and origin of the exchange units but allowed the deduction of overarching principles that enable the efficient exchange of adenylation (A) domain substrates while keeping the functionality of the dynamic multienzyme complexes. In the majority of cases, recombination events have targeted variable portions of the Acore domains, yet domain interfaces and the flexible Asub domain remained untapped. Our results strongly contradict the widespread assumption that adenylation and condensation (C) domains coevolve and significantly challenge the attributed role of C domains as stringent selectivity filter during NRP synthesis. Moreover, they teach valuable lessons on the choice of natural exchange units in the evolution of NRPS diversity, which may guide future engineering approaches.
Collapse
Affiliation(s)
- Martin Baunach
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam-Golm, Germany
| | - Somak Chowdhury
- Department of Paleobiotechnology, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute (HKI), Jena, Germany
| | - Pierre Stallforth
- Department of Paleobiotechnology, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute (HKI), Jena, Germany
| | - Elke Dittmann
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam-Golm, Germany
| |
Collapse
|
61
|
Niquille DL, Folger IB, Basler S, Hilvert D. Biosynthetic Functionalization of Nonribosomal Peptides. J Am Chem Soc 2021; 143:2736-2740. [PMID: 33570948 DOI: 10.1021/jacs.1c00925] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nonribosomal peptides (NRPs) are a therapeutically important class of secondary metabolites that are produced by modular synthetases in assembly-line fashion. We previously showed that a single Trp-to-Ser mutation in the initial Phe-loading adenylation domain of tyrocidine synthetase completely switches the specificity toward clickable analogues. Here we report that this minimally invasive strategy enables efficient functionalization of the bioactive NRP on the pathway level. In a reconstituted tyrocidine synthetase, the W227S point mutation permitted selective incorporation of Phe analogues with alkyne, halogen, and benzoyl substituents by the initiation module. The respective W2742S mutation in module 4 similarly permits efficient incorporation of these functionalized substrate analogues at position 4, expanding this strategy to elongation modules. Efficient incorporation of an alkyne handle at position 1 or 4 of tyrocidine A allowed site-selective one-step fluorescent labeling of the corresponding tyrocidine analogues by Cu(I)-catalyzed alkyne-azide cycloaddition. By combining synthetic biology with bioorthogonal chemistry, this approach holds great potential for NRP isolation and molecular target elucidation as well as combinatorial optimization of NRP therapeutics.
Collapse
Affiliation(s)
- David L Niquille
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Ines B Folger
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Sophie Basler
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Donald Hilvert
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
62
|
Calzini MA, Malico AA, Mitchler MM, Williams GJ. Protein engineering for natural product biosynthesis and synthetic biology applications. Protein Eng Des Sel 2021; 34:gzab015. [PMID: 34137436 PMCID: PMC8209613 DOI: 10.1093/protein/gzab015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/12/2021] [Accepted: 05/17/2021] [Indexed: 11/14/2022] Open
Abstract
As protein engineering grows more salient, many strategies have emerged to alter protein structure and function, with the goal of redesigning and optimizing natural product biosynthesis. Computational tools, including machine learning and molecular dynamics simulations, have enabled the rational mutagenesis of key catalytic residues for enhanced or altered biocatalysis. Semi-rational, directed evolution and microenvironment engineering strategies have optimized catalysis for native substrates and increased enzyme promiscuity beyond the scope of traditional rational approaches. These advances are made possible using novel high-throughput screens, including designer protein-based biosensors with engineered ligand specificity. Herein, we detail the most recent of these advances, focusing on polyketides, non-ribosomal peptides and isoprenoids, including their native biosynthetic logic to provide clarity for future applications of these technologies for natural product synthetic biology.
Collapse
Affiliation(s)
- Miles A Calzini
- Department of Chemistry, NC State University, Raleigh, NC 27695-8204, USA
| | - Alexandra A Malico
- Department of Chemistry, NC State University, Raleigh, NC 27695-8204, USA
| | - Melissa M Mitchler
- Department of Chemistry, NC State University, Raleigh, NC 27695-8204, USA
| | - Gavin J Williams
- Department of Chemistry, NC State University, Raleigh, NC 27695-8204, USA
- Comparative Medicine Institute, NC State University Raleigh, Raleigh, NC 27695-8204, USA
| |
Collapse
|
63
|
Combinatorial biosynthesis for the generation of new-to-nature peptide antimicrobials. Biochem Soc Trans 2021; 49:203-215. [PMID: 33439248 DOI: 10.1042/bst20200425] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/25/2020] [Accepted: 11/27/2020] [Indexed: 12/12/2022]
Abstract
Natural peptide products are a valuable source of important therapeutic agents, including antibiotics, antivirals and crop protection agents. Aided by an increased understanding of structure-activity relationships of these complex molecules and the biosynthetic machineries that produce them, it has become possible to re-engineer complete machineries and biosynthetic pathways to create novel products with improved pharmacological properties or modified structures to combat antimicrobial resistance. In this review, we will address the progress that has been made using non-ribosomally produced peptides and ribosomally synthesized and post-translationally modified peptides as scaffolds for designed biosynthetic pathways or combinatorial synthesis for the creation of novel peptide antimicrobials.
Collapse
|
64
|
Zhong L, Diao X, Zhang N, Li F, Zhou H, Chen H, Bai X, Ren X, Zhang Y, Wu D, Bian X. Engineering and elucidation of the lipoinitiation process in nonribosomal peptide biosynthesis. Nat Commun 2021; 12:296. [PMID: 33436600 PMCID: PMC7804268 DOI: 10.1038/s41467-020-20548-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 12/02/2020] [Indexed: 12/18/2022] Open
Abstract
Nonribosomal peptide synthetases containing starter condensation domains direct the biosynthesis of nonribosomal lipopeptides, which generally exhibit wide bioactivities. The acyl chain has strong impacts on bioactivity and toxicity, but the lack of an in-depth understanding of starter condensation domain-mediated lipoinitiation limits the bioengineering of NRPSs to obtain novel derivatives with desired acyl chains. Here, we show that the acyl chains of the lipopeptides rhizomide, holrhizin, and glidobactin were modified by engineering the starter condensation domain, suggesting a workable approach to change the acyl chain. Based on the structure of the mutated starter condensation domain of rhizomide biosynthetic enzyme RzmA in complex with octanoyl-CoA and related point mutation experiments, we identify a set of residues responsible for the selectivity of substrate acyl chains and extend the acyl chains from acetyl to palmitoyl. Furthermore, we illustrate three possible conformational states of starter condensation domains during the reaction cycle of the lipoinitiation process. Our studies provide further insights into the mechanism of lipoinitiation and the engineering of nonribosomal peptide synthetases.
Collapse
Affiliation(s)
- Lin Zhong
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Xiaotong Diao
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Na Zhang
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Fengwei Li
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Haibo Zhou
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Hanna Chen
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Xianping Bai
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Xintong Ren
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Youming Zhang
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China.
| | - Dalei Wu
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China.
- Suzhou Research Institute, Shandong University, Suzhou, Jiangsu, 215123, China.
| | - Xiaoying Bian
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China.
| |
Collapse
|
65
|
Dekimpe S, Masschelein J. Beyond peptide bond formation: the versatile role of condensation domains in natural product biosynthesis. Nat Prod Rep 2021; 38:1910-1937. [DOI: 10.1039/d0np00098a] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Condensation domains perform highly diverse functions during natural product biosynthesis and are capable of generating remarkable chemical diversity.
Collapse
Affiliation(s)
- Sofie Dekimpe
- Laboratory for Biomolecular Discovery & Engineering
- Department of Biology
- KU Leuven
- Leuven
- Belgium
| | - Joleen Masschelein
- Laboratory for Biomolecular Discovery & Engineering
- Department of Biology
- KU Leuven
- Leuven
- Belgium
| |
Collapse
|
66
|
|