51
|
Caspy I, Schwartz T, Bayro-Kaiser V, Fadeeva M, Kessel A, Ben-Tal N, Nelson N. Dimeric and high-resolution structures of Chlamydomonas Photosystem I from a temperature-sensitive Photosystem II mutant. Commun Biol 2021; 4:1380. [PMID: 34887518 PMCID: PMC8660910 DOI: 10.1038/s42003-021-02911-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 11/19/2021] [Indexed: 11/30/2022] Open
Abstract
Water molecules play a pivotal functional role in photosynthesis, primarily as the substrate for Photosystem II (PSII). However, their importance and contribution to Photosystem I (PSI) activity remains obscure. Using a high-resolution cryogenic electron microscopy (cryo-EM) PSI structure from a Chlamydomonas reinhardtii temperature-sensitive photoautotrophic PSII mutant (TSP4), a conserved network of water molecules - dating back to cyanobacteria - was uncovered, mainly in the vicinity of the electron transport chain (ETC). The high-resolution structure illustrated that the water molecules served as a ligand in every chlorophyll that was missing a fifth magnesium coordination in the PSI core and in the light-harvesting complexes (LHC). The asymmetric distribution of the water molecules near the ETC branches modulated their electrostatic landscape, distinctly in the space between the quinones and FX. The data also disclosed the first observation of eukaryotic PSI oligomerisation through a low-resolution PSI dimer that was comprised of PSI-10LHC and PSI-8LHC. Caspy et al. report the structure of PSI from a temperature-sensitive photoautotrophic PSII mutant of Chlamydomonas reinhardtii (TSP4), and report the distribution of conserved water molecules in the structure from cyanobacterial to higher plant PSI. They suggest that the asymmetric distribution of water molecules near the electron transfer chain modulates the electron transfer from quinones to FX.
Collapse
Affiliation(s)
- Ido Caspy
- Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Tom Schwartz
- Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Vinzenz Bayro-Kaiser
- Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Mariia Fadeeva
- Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Amit Kessel
- Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Nir Ben-Tal
- Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Nathan Nelson
- Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel.
| |
Collapse
|
52
|
Bai T, Guo L, Xu M, Tian L. Structural Diversity of Photosystem I and Its Light-Harvesting System in Eukaryotic Algae and Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:781035. [PMID: 34917114 PMCID: PMC8669154 DOI: 10.3389/fpls.2021.781035] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/08/2021] [Indexed: 06/14/2023]
Abstract
Photosystem I (PSI) is one of the most efficient photoelectric apparatus in nature, converting solar energy into condensed chemical energy with almost 100% quantum efficiency. The ability of PSI to attain such high conversion efficiency depends on the precise spatial arrangement of its protein subunits and binding cofactors. The PSI structures of oxygenic photosynthetic organisms, namely cyanobacteria, eukaryotic algae, and plants, have undergone great variation during their evolution, especially in eukaryotic algae and vascular plants for which light-harvesting complexes (LHCI) developed that surround the PSI core complex. A detailed understanding of the functional and structural properties of this PSI-LHCI is not only an important foundation for understanding the evolution of photosynthetic organisms but is also useful for designing future artificial photochemical devices. Recently, the structures of such PSI-LHCI supercomplexes from red alga, green alga, diatoms, and plants were determined by X-ray crystallography and single-particle cryo-electron microscopy (cryo-EM). These findings provide new insights into the various structural adjustments of PSI, especially with respect to the diversity of peripheral antenna systems arising via evolutionary processes. Here, we review the structural details of the PSI tetramer in cyanobacteria and the PSI-LHCI and PSI-LHCI-LHCII supercomplexes from different algae and plants, and then discuss the diversity of PSI-LHCI in oxygenic photosynthesis organisms.
Collapse
Affiliation(s)
| | | | | | - Lirong Tian
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| |
Collapse
|
53
|
Li Y, Zhang X, Zeng R, Deng X. Characterization of chloroplast genome of the marine diatom Chaetoceros gracilis. MITOCHONDRIAL DNA PART B-RESOURCES 2021; 6:3159-3161. [PMID: 34746392 PMCID: PMC8567887 DOI: 10.1080/23802359.2021.1987171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
In the present study, the chloroplast genome of Chaetoceros gracilis was sequenced using the PacBio sequencing platform and phylogenetic analysis was conducted using 38 other complete chloroplast genomes of the Bacillariophyta. The chloroplast genome of C. gracilis was 116,421 bp in length with the typical quadripartite structure, including a large single copy (LSC) region of 61,904 bp, a small single copy (SSC) region of 39,367 bp, and a pair of inverted repeats (IR) regions of 7575 bp. The overall GC content of C. gracilis chloroplast genome was 30.79%. This genome encoded 131 genes incuding 93 protein-coding genes, 30 transfer RNA (tRNA) genes and 8 ribosomal RNA (rRNA) genes. Phylogenetic results exhibited that three Chaetoceros species were clustered together. Chaetoceros gracilis was closely related with Chaetoceros muelleri, and then formed a clade with Chaetoceros simplex with 100% bootstrap value This study will facilitate species identification and study of evolutionary in the family Chaetoceroceae.
Collapse
Affiliation(s)
- Yajun Li
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Bioscience and Biotechnology, Hainan Academy of Tropical Agricultural Resource, Chinese Academy of Tropical Agricultural Sciences, Haikou, P. R. China
| | - Xiuxia Zhang
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Bioscience and Biotechnology, Hainan Academy of Tropical Agricultural Resource, Chinese Academy of Tropical Agricultural Sciences, Haikou, P. R. China
| | - Ru Zeng
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Bioscience and Biotechnology, Hainan Academy of Tropical Agricultural Resource, Chinese Academy of Tropical Agricultural Sciences, Haikou, P. R. China
| | - Xiaodong Deng
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Bioscience and Biotechnology, Hainan Academy of Tropical Agricultural Resource, Chinese Academy of Tropical Agricultural Sciences, Haikou, P. R. China
| |
Collapse
|
54
|
Khaw YS, Yusoff FM, Tan HT, Noor Mazli NAI, Nazarudin MF, Shaharuddin NA, Omar AR. The Critical Studies of Fucoxanthin Research Trends from 1928 to June 2021: A Bibliometric Review. Mar Drugs 2021; 19:md19110606. [PMID: 34822476 PMCID: PMC8623609 DOI: 10.3390/md19110606] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 12/26/2022] Open
Abstract
Fucoxanthin is a major carotenoid in brown macroalgae and diatoms that possesses a broad spectrum of health benefits. This review evaluated the research trends of the fucoxanthin field from 1928 to June 2021 using the bibliometric method. The present findings unraveled that the fucoxanthin field has grown quickly in recent years with a total of 2080 publications. Japan was the most active country in producing fucoxanthin publications. Three Japan institutes were listed in the top ten productive institutions, with Hokkaido University being the most prominent institutional contributor in publishing fucoxanthin articles. The most relevant subject area on fucoxanthin was the agricultural and biological sciences category, while most fucoxanthin articles were published in Marine Drugs. A total of four research concepts emerged based on the bibliometric keywords analysis: “bioactivities”, “photosynthesis”, “optimization of process’’, and “environment”. The “bioactivities” of fucoxanthin was identified as the priority in future research. The current analysis highlighted the importance of collaboration and suggested that global collaboration could be the key to valorizing and efficiently boosting the consumer acceptability of fucoxanthin. The present bibliometric analysis offers valuable insights into the research trends of fucoxanthin to construct a better future development of this treasurable carotenoid.
Collapse
Affiliation(s)
- Yam Sim Khaw
- Laboratory of Aquatic Animal Health and Therapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (Y.S.K.); (H.T.T.); (N.A.I.N.M.); (M.F.N.)
| | - Fatimah Md. Yusoff
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- International Institute of Aquaculture and Aquatic Sciences, Universiti Putra Malaysia, Port Dickson 71050, Negeri Sembilan, Malaysia
- Correspondence: ; Tel.: +60-3-89408311
| | - Hui Teng Tan
- Laboratory of Aquatic Animal Health and Therapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (Y.S.K.); (H.T.T.); (N.A.I.N.M.); (M.F.N.)
| | - Nur Amirah Izyan Noor Mazli
- Laboratory of Aquatic Animal Health and Therapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (Y.S.K.); (H.T.T.); (N.A.I.N.M.); (M.F.N.)
| | - Muhammad Farhan Nazarudin
- Laboratory of Aquatic Animal Health and Therapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (Y.S.K.); (H.T.T.); (N.A.I.N.M.); (M.F.N.)
| | - Noor Azmi Shaharuddin
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Abdul Rahman Omar
- Laboratory of Vaccines and Immunotherapeutic, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| |
Collapse
|
55
|
Xu C, Zhu Q, Chen JH, Shen L, Yi X, Huang Z, Wang W, Chen M, Kuang T, Shen JR, Zhang X, Han G. A unique photosystem I reaction center from a chlorophyll d-containing cyanobacterium Acaryochloris marina. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:1740-1752. [PMID: 34002536 DOI: 10.1111/jipb.13113] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/12/2021] [Indexed: 05/10/2023]
Abstract
Photosystem I (PSI) is a large protein supercomplex that catalyzes the light-dependent oxidation of plastocyanin (or cytochrome c6 ) and the reduction of ferredoxin. This catalytic reaction is realized by a transmembrane electron transfer chain consisting of primary electron donor (a special chlorophyll (Chl) pair) and electron acceptors A0 , A1 , and three Fe4 S4 clusters, FX , FA , and FB . Here we report the PSI structure from a Chl d-dominated cyanobacterium Acaryochloris marina at 3.3 Å resolution obtained by single-particle cryo-electron microscopy. The A. marina PSI exists as a trimer with three identical monomers. Surprisingly, the structure reveals a unique composition of electron transfer chain in which the primary electron acceptor A0 is composed of two pheophytin a rather than Chl a found in any other well-known PSI structures. A novel subunit Psa27 is observed in the A. marina PSI structure. In addition, 77 Chls, 13 α-carotenes, two phylloquinones, three Fe-S clusters, two phosphatidyl glycerols, and one monogalactosyl-diglyceride were identified in each PSI monomer. Our results provide a structural basis for deciphering the mechanism of photosynthesis in a PSI complex with Chl d as the dominating pigments and absorbing far-red light.
Collapse
Affiliation(s)
- Caihuang Xu
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Qingjun Zhu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- College of Life Sciences, University of Chinese Academy of Science, Beijing, 100049, China
| | - Jing-Hua Chen
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Center of Cryo-Electron Microscopy, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Liangliang Shen
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- College of Life Sciences, University of Chinese Academy of Science, Beijing, 100049, China
| | - Xiaohan Yi
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Zihui Huang
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Wenda Wang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
| | - Min Chen
- School of Life and Environmental Science, Faculty of Science, University of Sydney, Sydney, NSW2006, Australia
| | - Tingyun Kuang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
| | - Jian-Ren Shen
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- Division of Photosynthesis and Structural Biology, Institute for Interdisciplinary Science, and Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Xing Zhang
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Center of Cryo-Electron Microscopy, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Guangye Han
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
| |
Collapse
|
56
|
Caspy I, Neumann E, Fadeeva M, Liveanu V, Savitsky A, Frank A, Kalisman YL, Shkolnisky Y, Murik O, Treves H, Hartmann V, Nowaczyk MM, Schuhmann W, Rögner M, Willner I, Kaplan A, Schuster G, Nelson N, Lubitz W, Nechushtai R. Cryo-EM photosystem I structure reveals adaptation mechanisms to extreme high light in Chlorella ohadii. NATURE PLANTS 2021; 7:1314-1322. [PMID: 34462576 DOI: 10.1038/s41477-021-00983-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 07/07/2021] [Indexed: 05/10/2023]
Abstract
Photosynthesis in deserts is challenging since it requires fast adaptation to rapid night-to-day changes, that is, from dawn's low light (LL) to extreme high light (HL) intensities during the daytime. To understand these adaptation mechanisms, we purified photosystem I (PSI) from Chlorella ohadii, a green alga that was isolated from a desert soil crust, and identified the essential functional and structural changes that enable the photosystem to perform photosynthesis under extreme high light conditions. The cryo-electron microscopy structures of PSI from cells grown under low light (PSILL) and high light (PSIHL), obtained at 2.70 and 2.71 Å, respectively, show that part of light-harvesting antenna complex I (LHCI) and the core complex subunit (PsaO) are eliminated from PSIHL to minimize the photodamage. An additional change is in the pigment composition and their number in LHCIHL; about 50% of chlorophyll b is replaced by chlorophyll a. This leads to higher electron transfer rates in PSIHL and might enable C. ohadii PSI to act as a natural photosynthesiser in photobiocatalytic systems. PSIHL or PSILL were attached to an electrode and their induced photocurrent was determined. To obtain photocurrents comparable with PSIHL, 25 times the amount of PSILL was required, demonstrating the high efficiency of PSIHL. Hence, we suggest that C. ohadii PSIHL is an ideal candidate for the design of desert artificial photobiocatalytic systems.
Collapse
Affiliation(s)
- Ido Caspy
- Department of Biochemistry, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ehud Neumann
- Institute of Life Science, Faculty of Science and Mathematics, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Maria Fadeeva
- Department of Biochemistry, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Varda Liveanu
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Anton Savitsky
- Faculty of Physics, Technical University Dortmund, Dortmund, Germany
- Max Planck Institute for Chemical Energy Conversion, Mülheim an der Ruhr, Germany
| | - Anna Frank
- Plant Biochemistry, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Yael Levi Kalisman
- Institute of Life Science, Faculty of Science and Mathematics, The Hebrew University of Jerusalem, Jerusalem, Israel
- The Centre for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yoel Shkolnisky
- School of Mathematical Sciences, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Omer Murik
- Institute of Life Science, Faculty of Science and Mathematics, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Haim Treves
- Institute of Life Science, Faculty of Science and Mathematics, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Volker Hartmann
- Plant Biochemistry, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Marc M Nowaczyk
- Plant Biochemistry, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Wolfgang Schuhmann
- Analytical Chemistry-Centre for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Matthias Rögner
- Plant Biochemistry, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Itamar Willner
- Institute of Life Science, Faculty of Science and Mathematics, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Aaron Kaplan
- Institute of Life Science, Faculty of Science and Mathematics, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Gadi Schuster
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Nathan Nelson
- Department of Biochemistry, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.
| | - Wolfgang Lubitz
- Max Planck Institute for Chemical Energy Conversion, Mülheim an der Ruhr, Germany.
| | - Rachel Nechushtai
- Institute of Life Science, Faculty of Science and Mathematics, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
57
|
Arshad R, Calvaruso C, Boekema EJ, Büchel C, Kouřil R. Revealing the architecture of the photosynthetic apparatus in the diatom Thalassiosira pseudonana. PLANT PHYSIOLOGY 2021; 186:2124-2136. [PMID: 33944951 PMCID: PMC8331139 DOI: 10.1093/plphys/kiab208] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/21/2021] [Indexed: 05/04/2023]
Abstract
Diatoms are a large group of marine algae that are responsible for about one-quarter of global carbon fixation. Light-harvesting complexes of diatoms are formed by the fucoxanthin chlorophyll a/c proteins and their overall organization around core complexes of photosystems (PSs) I and II is unique in the plant kingdom. Using cryo-electron tomography, we have elucidated the structural organization of PSII and PSI supercomplexes and their spatial segregation in the thylakoid membrane of the model diatom species Thalassiosira pseudonana. 3D sub-volume averaging revealed that the PSII supercomplex of T. pseudonana incorporates a trimeric form of light-harvesting antenna, which differs from the tetrameric antenna observed previously in another diatom, Chaetoceros gracilis. Surprisingly, the organization of the PSI supercomplex is conserved in both diatom species. These results strongly suggest that different diatom classes have various architectures of PSII as an adaptation strategy, whilst a convergent evolution occurred concerning PSI and the overall plastid structure.
Collapse
Affiliation(s)
- Rameez Arshad
- Department of Biophysics, Faculty of Science, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, Olomouc 78371, Czech Republic
- Electron Microscopy Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen 9747AG, The Netherlands
| | - Claudio Calvaruso
- Institute for Molecular Biosciences, Goethe University of Frankfurt, Frankfurt 60438, Germany
| | - Egbert J Boekema
- Electron Microscopy Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen 9747AG, The Netherlands
| | - Claudia Büchel
- Institute for Molecular Biosciences, Goethe University of Frankfurt, Frankfurt 60438, Germany
| | - Roman Kouřil
- Department of Biophysics, Faculty of Science, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, Olomouc 78371, Czech Republic
- Author for communication:
| |
Collapse
|
58
|
Wang J, Yu LJ, Wang W, Yan Q, Kuang T, Qin X, Shen JR. Structure of plant photosystem I-light harvesting complex I supercomplex at 2.4 Å resolution. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:1367-1381. [PMID: 33788400 DOI: 10.1111/jipb.13095] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/14/2021] [Indexed: 05/19/2023]
Abstract
Photosystem I (PSI) is one of the two photosystems in photosynthesis, and performs a series of electron transfer reactions leading to the reduction of ferredoxin. In higher plants, PSI is surrounded by four light-harvesting complex I (LHCI) subunits, which harvest and transfer energy efficiently to the PSI core. The crystal structure of PSI-LHCI supercomplex has been analyzed up to 2.6 Å resolution, providing much information on the arrangement of proteins and cofactors in this complicated supercomplex. Here we have optimized crystallization conditions, and analyzed the crystal structure of PSI-LHCI at 2.4 Å resolution. Our structure showed some shift of the LHCI, especially the Lhca4 subunit, away from the PSI core, suggesting the indirect connection and inefficiency of energy transfer from this Lhca subunit to the PSI core. We identified five new lipids in the structure, most of them are located in the gap region between the Lhca subunits and the PSI core. These lipid molecules may play important roles in binding of the Lhca subunits to the core, as well as in the assembly of the supercomplex. The present results thus provide novel information for the elucidation of the mechanisms for the light-energy harvesting, transfer and assembly of this supercomplex.
Collapse
Affiliation(s)
- Jie Wang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Long-Jiang Yu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Wenda Wang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Qiujing Yan
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tingyun Kuang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Xiaochun Qin
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Jian-Ren Shen
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- Research Institute for Interdisciplinary Science, and Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| |
Collapse
|
59
|
Fan Y, Ding XT, Wang LJ, Jiang EY, Van PN, Li FL. Rapid Sorting of Fucoxanthin-Producing Phaeodactylum tricornutum Mutants by Flow Cytometry. Mar Drugs 2021; 19:md19040228. [PMID: 33920502 PMCID: PMC8072577 DOI: 10.3390/md19040228] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/15/2021] [Accepted: 04/15/2021] [Indexed: 12/21/2022] Open
Abstract
Fucoxanthin, which is widely found in seaweeds and diatoms, has many benefits to human health, such as anti-diabetes, anti-obesity, and anti-inflammatory physiological activities. However, the low content of fucoxanthin in brown algae and diatoms limits the commercialization of this product. In this study, we introduced an excitation light at 488 nm to analyze the emitted fluorescence of Phaeodactylum tricornutum, a diatom model organism rich in fucoxanthin. We observed a unique spectrum peak at 710 nm and found a linear correlation between fucoxanthin content and the mean fluorescence intensity. We subsequently used flow cytometry to screen high-fucoxanthin-content mutants created by heavy ion irradiation. After 20 days of cultivation, the fucoxanthin content of sorted cells was 25.5% higher than in the wild type. This method provides an efficient, rapid, and high-throughput approach to screen fucoxanthin-overproducing mutants.
Collapse
Affiliation(s)
- Yong Fan
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; (Y.F.); (X.-T.D.); (L.-J.W.); (E.-Y.J.); (P.N.V.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Xiao-Ting Ding
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; (Y.F.); (X.-T.D.); (L.-J.W.); (E.-Y.J.); (P.N.V.)
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Li-Juan Wang
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; (Y.F.); (X.-T.D.); (L.-J.W.); (E.-Y.J.); (P.N.V.)
| | - Er-Ying Jiang
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; (Y.F.); (X.-T.D.); (L.-J.W.); (E.-Y.J.); (P.N.V.)
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Phung Nghi Van
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; (Y.F.); (X.-T.D.); (L.-J.W.); (E.-Y.J.); (P.N.V.)
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Fu-Li Li
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; (Y.F.); (X.-T.D.); (L.-J.W.); (E.-Y.J.); (P.N.V.)
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
- Correspondence: ; Tel.: +86-532-8066-2655
| |
Collapse
|
60
|
Yan Q, Zhao L, Wang W, Pi X, Han G, Wang J, Cheng L, He YK, Kuang T, Qin X, Sui SF, Shen JR. Antenna arrangement and energy-transfer pathways of PSI-LHCI from the moss Physcomitrella patens. Cell Discov 2021; 7:10. [PMID: 33589616 PMCID: PMC7884438 DOI: 10.1038/s41421-021-00242-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/21/2020] [Indexed: 02/07/2023] Open
Abstract
Plants harvest light energy utilized for photosynthesis by light-harvesting complex I and II (LHCI and LHCII) surrounding photosystem I and II (PSI and PSII), respectively. During the evolution of green plants, moss is at an evolutionarily intermediate position from aquatic photosynthetic organisms to land plants, being the first photosynthetic organisms that landed. Here, we report the structure of the PSI–LHCI supercomplex from the moss Physcomitrella patens (Pp) at 3.23 Å resolution solved by cryo-electron microscopy. Our structure revealed that four Lhca subunits are associated with the PSI core in an order of Lhca1–Lhca5–Lhca2–Lhca3. This number is much decreased from 8 to 10, the number of subunits in most green algal PSI–LHCI, but the same as those of land plants. Although Pp PSI–LHCI has a similar structure as PSI–LHCI of land plants, it has Lhca5, instead of Lhca4, in the second position of Lhca, and several differences were found in the arrangement of chlorophylls among green algal, moss, and land plant PSI–LHCI. One chlorophyll, PsaF–Chl 305, which is found in the moss PSI–LHCI, is located at the gap region between the two middle Lhca subunits and the PSI core, and therefore may make the excitation energy transfer from LHCI to the core more efficient than that of land plants. On the other hand, energy-transfer paths at the two side Lhca subunits are relatively conserved. These results provide a structural basis for unravelling the mechanisms of light-energy harvesting and transfer in the moss PSI–LHCI, as well as important clues on the changes of PSI–LHCI after landing.
Collapse
Affiliation(s)
- Qiujing Yan
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liang Zhao
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Wenda Wang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Xiong Pi
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Guangye Han
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Jie Wang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lingpeng Cheng
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yi-Kun He
- College of Life Sciences, Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Tingyun Kuang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Xiaochun Qin
- School of Biological Science and Technology, University of Jinan, Jinan, Shandong, 250022, China.
| | - Sen-Fang Sui
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, 100084, China. .,Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China.
| | - Jian-Ren Shen
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China. .,Research Institute for Interdisciplinary Science, and Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan.
| |
Collapse
|
61
|
Nagao R, Yokono M, Ueno Y, Suzuki T, Kumazawa M, Kato KH, Tsuboshita N, Dohmae N, Ifuku K, Shen JR, Akimoto S. Enhancement of excitation-energy quenching in fucoxanthin chlorophyll a/c-binding proteins isolated from a diatom Phaeodactylum tricornutum upon excess-light illumination. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2021; 1862:148350. [PMID: 33285102 DOI: 10.1016/j.bbabio.2020.148350] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/06/2020] [Accepted: 11/27/2020] [Indexed: 10/22/2022]
Abstract
Photosynthetic organisms regulate pigment composition and molecular oligomerization of light-harvesting complexes in response to solar light intensities, in order to improve light-harvesting efficiency. Here we report excitation-energy dynamics and relaxation of fucoxanthin chlorophyll a/c-binding protein (FCP) complexes isolated from a diatom Phaeodactylum tricornutum grown under high-light (HL) illumination. Two types of FCP complexes were prepared from this diatom under the HL condition, whereas one FCP complex was isolated from the cells grown under a low-light (LL) condition. The subunit composition and oligomeric states of FCP complexes under the HL condition are different from those under the LL condition. Absorption and fluorescence spectra at 77 K of the FCP complexes also vary between the two conditions, indicating modifications of the pigment composition and arrangement upon the HL illumination. Time-resolved fluorescence curves at 77 K of the FCP complexes under the HL condition showed shorter lifetime components compared with the LL condition. Fluorescence decay-associated spectra at 77 K showed distinct excitation-energy-quenching components and alterations of energy-transfer pathways in the FCP complexes under the HL condition. These findings provide insights into molecular and functional mechanisms of the dynamic regulation of FCPs in this diatom under excess-light conditions.
Collapse
Affiliation(s)
- Ryo Nagao
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan.
| | - Makio Yokono
- Institute of Low Temperature Science, Hokkaido University, Hokkaido 060-0819, Japan
| | - Yoshifumi Ueno
- Graduate School of Science, Kobe University, Hyogo 657-8501, Japan
| | - Takehiro Suzuki
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, Saitama 351-0198, Japan
| | - Minoru Kumazawa
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Ka-Ho Kato
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Naoki Tsuboshita
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Naoshi Dohmae
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, Saitama 351-0198, Japan
| | - Kentaro Ifuku
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Jian-Ren Shen
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Seiji Akimoto
- Graduate School of Science, Kobe University, Hyogo 657-8501, Japan.
| |
Collapse
|