51
|
Hata T, Takada N, Hayakawa C, Kazama M, Uchikoba T, Tachikawa M, Matsuo M, Satoh S, Obokata J. De novo activated transcription of inserted foreign coding sequences is inheritable in the plant genome. PLoS One 2021; 16:e0252674. [PMID: 34111139 PMCID: PMC8191969 DOI: 10.1371/journal.pone.0252674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 05/19/2021] [Indexed: 01/16/2023] Open
Abstract
The manner in which inserted foreign coding sequences become transcriptionally activated and fixed in the plant genome is poorly understood. To examine such processes of gene evolution, we performed an artificial evolutionary experiment in Arabidopsis thaliana. As a model of gene-birth events, we introduced a promoterless coding sequence of the firefly luciferase (LUC) gene and established 386 T2-generation transgenic lines. Among them, we determined the individual LUC insertion loci in 76 lines and found that one-third of them were transcribed de novo even in the intergenic or inherently unexpressed regions. In the transcribed lines, transcription-related chromatin marks were detected across the newly activated transcribed regions. These results agreed with our previous findings in A. thaliana cultured cells under a similar experimental scheme. A comparison of the results of the T2-plant and cultured cell experiments revealed that the de novo-activated transcription concomitant with local chromatin remodelling was inheritable. During one-generation inheritance, it seems likely that the transcription activities of the LUC inserts trapped by the endogenous genes/transcripts became stronger, while those of de novo transcription in the intergenic/untranscribed regions became weaker. These findings may offer a clue for the elucidation of the mechanism by which inserted foreign coding sequences become transcriptionally activated and fixed in the plant genome.
Collapse
Affiliation(s)
- Takayuki Hata
- Graduate School of Life and Environfmental Sciences, Kyoto Prefectural University, Kyoto-shi, Kyoto, Japan
- Faculty of Agriculture, Setsunan University, Hirakata-shi, Osaka, Japan
| | - Naoto Takada
- Graduate School of Life and Environfmental Sciences, Kyoto Prefectural University, Kyoto-shi, Kyoto, Japan
| | - Chihiro Hayakawa
- Graduate School of Life and Environfmental Sciences, Kyoto Prefectural University, Kyoto-shi, Kyoto, Japan
| | - Mei Kazama
- Graduate School of Life and Environfmental Sciences, Kyoto Prefectural University, Kyoto-shi, Kyoto, Japan
| | - Tomohiro Uchikoba
- Faculty of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto-shi, Kyoto, Japan
| | - Makoto Tachikawa
- Graduate School of Life and Environfmental Sciences, Kyoto Prefectural University, Kyoto-shi, Kyoto, Japan
| | - Mitsuhiro Matsuo
- Faculty of Agriculture, Setsunan University, Hirakata-shi, Osaka, Japan
| | - Soichirou Satoh
- Graduate School of Life and Environfmental Sciences, Kyoto Prefectural University, Kyoto-shi, Kyoto, Japan
- Faculty of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto-shi, Kyoto, Japan
| | - Junichi Obokata
- Faculty of Agriculture, Setsunan University, Hirakata-shi, Osaka, Japan
| |
Collapse
|