51
|
Meng G, Pan Y, Tang W, Zhang L, Cui Y, Schumacher FR, Wang M, Wang R, He S, Krischer J, Li Q, Feng H. imply: improving cell-type deconvolution accuracy using personalized reference profiles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.27.559579. [PMID: 37808714 PMCID: PMC10557724 DOI: 10.1101/2023.09.27.559579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Real-world clinical samples are often admixtures of signal mosaics from multiple pure cell types. Using computational tools, bulk transcriptomics can be deconvoluted to solve for the abundance of constituent cell types. However, existing deconvolution methods are conditioned on the assumption that the whole study population is served by a single reference panel, which ignores person-to-person heterogeneity. Here we present imply, a novel algorithm to deconvolute cell type proportions using personalized reference panels. imply can borrow information across repeatedly measured samples for each subject, and obtain precise cell type proportion estimations. Simulation studies demonstrate reduced bias in cell type abundance estimation compared with existing methods. Real data analyses on large longitudinal consortia show more realistic deconvolution results that align with biological facts. Our results suggest that disparities in cell type proportions are associated with several disease phenotypes in type 1 diabetes and Parkinson's disease. Our proposed tool imply is available through the R/Bioconductor package ISLET at https://bioconductor.org/packages/ISLET/.
Collapse
Affiliation(s)
- Guanqun Meng
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, 44106, OH, USA
| | - Yue Pan
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, 38105, TN, USA
| | - Wen Tang
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, 44106, OH, USA
| | - Lijun Zhang
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, 44106, OH, USA
| | - Ying Cui
- Department of Biomedical Data Science, Stanford University, Stanford, 94305, CA, USA
| | - Fredrick R. Schumacher
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, 44106, OH, USA
| | - Ming Wang
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, 44106, OH, USA
| | - Rui Wang
- Department of Surgery, Division of Surgical Oncology, University Hospitals Cleveland Medical Center, Cleveland, 44106, OH, USA
| | - Sijia He
- Department of Biostatistics, University of Michigan, Ann Arbor, 48109, MI, USA
| | - Jeffrey Krischer
- Health Informatics Institute, University of South Florida, Tampa, 38105, FL, USA
| | - Qian Li
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, 38105, TN, USA
| | - Hao Feng
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, 44106, OH, USA
| |
Collapse
|
52
|
Galvão IC, Kandratavicius L, Messias LA, Athié MCP, Assis-Mendonça GR, Alvim MKM, Ghizoni E, Tedeschi H, Yasuda CL, Cendes F, Vieira AS, Rogerio F, Lopes-Cendes I, Veiga DFT. Identifying cellular markers of focal cortical dysplasia type II with cell-type deconvolution and single-cell signatures. Sci Rep 2023; 13:13321. [PMID: 37587190 PMCID: PMC10432381 DOI: 10.1038/s41598-023-40240-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/07/2023] [Indexed: 08/18/2023] Open
Abstract
Focal cortical dysplasia (FCD) is a brain malformation that causes medically refractory epilepsy. FCD is classified into three categories based on structural and cellular abnormalities, with FCD type II being the most common and characterized by disrupted organization of the cortex and abnormal neuronal development. In this study, we employed cell-type deconvolution and single-cell signatures to analyze bulk RNA-seq from multiple transcriptomic studies, aiming to characterize the cellular composition of brain lesions in patients with FCD IIa and IIb subtypes. Our deconvolution analyses revealed specific cellular changes in FCD IIb, including neuronal loss and an increase in reactive astrocytes (astrogliosis) when compared to FCD IIa. Astrogliosis in FCD IIb was further supported by a gene signature analysis and histologically confirmed by glial fibrillary acidic protein (GFAP) immunostaining. Overall, our findings demonstrate that FCD II subtypes exhibit differential neuronal and glial compositions, with astrogliosis emerging as a hallmark of FCD IIb. These observations, validated in independent patient cohorts and confirmed using immunohistochemistry, offer novel insights into the involvement of glial cells in FCD type II pathophysiology and may contribute to the development of targeted therapies for this condition.
Collapse
Affiliation(s)
- Isabella C Galvão
- Department of Translational Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
- The Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, Brazil
| | - Ludmyla Kandratavicius
- Department of Pathology, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
- The Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, Brazil
| | - Lauana A Messias
- Department of Translational Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
- The Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, Brazil
| | - Maria C P Athié
- Department of Translational Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
- The Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, Brazil
| | - Guilherme R Assis-Mendonça
- Department of Pathology, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
- The Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, Brazil
| | - Marina K M Alvim
- Department of Neurology, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil
- The Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, Brazil
| | - Enrico Ghizoni
- Department of Neurology, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil
- The Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, Brazil
| | - Helder Tedeschi
- Department of Neurology, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil
- The Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, Brazil
| | - Clarissa L Yasuda
- Department of Neurology, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil
- The Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, Brazil
| | - Fernando Cendes
- Department of Neurology, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil
- The Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, Brazil
| | - André S Vieira
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
- The Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, Brazil
| | - Fabio Rogerio
- Department of Pathology, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
- The Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, Brazil
| | - Iscia Lopes-Cendes
- Department of Translational Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
- The Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, Brazil
| | - Diogo F T Veiga
- Department of Translational Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil.
- The Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, Brazil.
| |
Collapse
|
53
|
van den Oord EJCG, Aberg KA. Fine-grained cell-type specific association studies with human bulk brain data using a large single-nucleus RNA sequencing based reference panel. Sci Rep 2023; 13:13004. [PMID: 37563216 PMCID: PMC10415334 DOI: 10.1038/s41598-023-39864-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/01/2023] [Indexed: 08/12/2023] Open
Abstract
Brain disorders are leading causes of disability worldwide. Gene expression studies provide promising opportunities to better understand their etiology but it is critical that expression is studied on a cell-type level. Cell-type specific association studies can be performed with bulk expression data using statistical methods that capitalize on cell-type proportions estimated with the help of a reference panel. To create a fine-grained reference panel for the human prefrontal cortex, we performed an integrated analysis of the seven largest single nucleus RNA-seq studies. Our panel included 17 cell-types that were robustly detected across all studies, subregions of the prefrontal cortex, and sex and age groups. To estimate the cell-type proportions, we used an empirical Bayes estimator that substantially outperformed three estimators recommended previously after a comprehensive evaluation of methods to estimate cell-type proportions from brain transcriptome data. This is important as being able to precisely estimate the cell-type proportions may avoid unreliable results in downstream analyses particularly for the multiple cell-types that had low abundances. Transcriptome-wide association studies performed with permuted bulk expression data showed that it is possible to perform transcriptome-wide association studies for even the rarest cell-types without an increased risk of false positives.
Collapse
Affiliation(s)
- Edwin J C G van den Oord
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, McGuire Hall, Room 216A, 1112 East Clay Street, P. O. Box 980533, Richmond, VA, 23298-0581, USA.
| | - Karolina A Aberg
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, McGuire Hall, Room 216A, 1112 East Clay Street, P. O. Box 980533, Richmond, VA, 23298-0581, USA
| |
Collapse
|
54
|
Ghaffari S, Bouchonville KJ, Saleh E, Schmidt RE, Offer SM, Sinha S. BEDwARS: a robust Bayesian approach to bulk gene expression deconvolution with noisy reference signatures. Genome Biol 2023; 24:178. [PMID: 37537644 PMCID: PMC10399072 DOI: 10.1186/s13059-023-03007-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 07/05/2023] [Indexed: 08/05/2023] Open
Abstract
Differential gene expression in bulk transcriptomics data can reflect change of transcript abundance within a cell type and/or change in the proportions of cell types. Expression deconvolution methods can help differentiate these scenarios. BEDwARS is a Bayesian deconvolution method designed to address differences between reference signatures of cell types and corresponding true signatures underlying bulk transcriptomic profiles. BEDwARS is more robust to noisy reference signatures and outperforms leading in-class methods for estimating cell type proportions and signatures. Application of BEDwARS to dihydropyridine dehydrogenase deficiency identified the possible involvement of ciliopathy and impaired translational control in the etiology of the disorder.
Collapse
Affiliation(s)
- Saba Ghaffari
- Department of Computer Science, University of Illinois at Urbana-Champaign, Thomas M. Siebel Center, 201 N. Goodwin Ave., Urbana, IL, USA
| | - Kelly J Bouchonville
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Gonda 19-476, 200 First St. SW, Rochester, MN, 55905, USA
| | - Ehsan Saleh
- Department of Computer Science, University of Illinois at Urbana-Champaign, Thomas M. Siebel Center, 201 N. Goodwin Ave., Urbana, IL, USA
| | - Remington E Schmidt
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Gonda 19-476, 200 First St. SW, Rochester, MN, 55905, USA
| | - Steven M Offer
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Gonda 19-476, 200 First St. SW, Rochester, MN, 55905, USA.
| | - Saurabh Sinha
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University, Georgia Institute of Technology, 3108 U.A. Whitaker Bldg., 313 Ferst Drive, Atlanta, GA, 30332, USA.
| |
Collapse
|
55
|
Cobos FA, Panah MJN, Epps J, Long X, Man TK, Chiu HS, Chomsky E, Kiner E, Krueger MJ, di Bernardo D, Voloch L, Molenaar J, van Hooff SR, Westermann F, Jansky S, Redell ML, Mestdagh P, Sumazin P. Effective methods for bulk RNA-seq deconvolution using scnRNA-seq transcriptomes. Genome Biol 2023; 24:177. [PMID: 37528411 PMCID: PMC10394903 DOI: 10.1186/s13059-023-03016-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 07/17/2023] [Indexed: 08/03/2023] Open
Abstract
BACKGROUND RNA profiling technologies at single-cell resolutions, including single-cell and single-nuclei RNA sequencing (scRNA-seq and snRNA-seq, scnRNA-seq for short), can help characterize the composition of tissues and reveal cells that influence key functions in both healthy and disease tissues. However, the use of these technologies is operationally challenging because of high costs and stringent sample-collection requirements. Computational deconvolution methods that infer the composition of bulk-profiled samples using scnRNA-seq-characterized cell types can broaden scnRNA-seq applications, but their effectiveness remains controversial. RESULTS We produced the first systematic evaluation of deconvolution methods on datasets with either known or scnRNA-seq-estimated compositions. Our analyses revealed biases that are common to scnRNA-seq 10X Genomics assays and illustrated the importance of accurate and properly controlled data preprocessing and method selection and optimization. Moreover, our results suggested that concurrent RNA-seq and scnRNA-seq profiles can help improve the accuracy of both scnRNA-seq preprocessing and the deconvolution methods that employ them. Indeed, our proposed method, Single-cell RNA Quantity Informed Deconvolution (SQUID), which combines RNA-seq transformation and dampened weighted least-squares deconvolution approaches, consistently outperformed other methods in predicting the composition of cell mixtures and tissue samples. CONCLUSIONS We showed that analysis of concurrent RNA-seq and scnRNA-seq profiles with SQUID can produce accurate cell-type abundance estimates and that this accuracy improvement was necessary for identifying outcomes-predictive cancer cell subclones in pediatric acute myeloid leukemia and neuroblastoma datasets. These results suggest that deconvolution accuracy improvements are vital to enabling its applications in the life sciences.
Collapse
Affiliation(s)
- Francisco Avila Cobos
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent, Ghent, Belgium
| | - Mohammad Javad Najaf Panah
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital Cancer Center, Houston, TX, USA
| | - Jessica Epps
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital Cancer Center, Houston, TX, USA
| | - Xiaochen Long
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital Cancer Center, Houston, TX, USA
- Department of Statistics, Rice University, Houston, TX, 77251, USA
| | - Tsz-Kwong Man
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital Cancer Center, Houston, TX, USA
| | - Hua-Sheng Chiu
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital Cancer Center, Houston, TX, USA
| | | | | | - Michael J Krueger
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital Cancer Center, Houston, TX, USA
| | - Diego di Bernardo
- Department Chemical, Materials and Industrial Engineering, Telethon Institute of Genetics and Medicine, University of Naples "Federico II", Via Campi Flegrei 34, 80078, Naples, Pozzuoli, Italy
| | | | - Jan Molenaar
- Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | | | | | - Selina Jansky
- German Cancer Research Center, DKFZ, Heidelberg, Germany
| | - Michele L Redell
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital Cancer Center, Houston, TX, USA
| | - Pieter Mestdagh
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent, Ghent, Belgium.
| | - Pavel Sumazin
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital Cancer Center, Houston, TX, USA.
| |
Collapse
|
56
|
Alonso-Moreda N, Berral-González A, De La Rosa E, González-Velasco O, Sánchez-Santos JM, De Las Rivas J. Comparative Analysis of Cell Mixtures Deconvolution and Gene Signatures Generated for Blood, Immune and Cancer Cells. Int J Mol Sci 2023; 24:10765. [PMID: 37445946 DOI: 10.3390/ijms241310765] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
In the last two decades, many detailed full transcriptomic studies on complex biological samples have been published and included in large gene expression repositories. These studies primarily provide a bulk expression signal for each sample, including multiple cell-types mixed within the global signal. The cellular heterogeneity in these mixtures does not allow the activity of specific genes in specific cell types to be identified. Therefore, inferring relative cellular composition is a very powerful tool to achieve a more accurate molecular profiling of complex biological samples. In recent decades, computational techniques have been developed to solve this problem by applying deconvolution methods, designed to decompose cell mixtures into their cellular components and calculate the relative proportions of these elements. Some of them only calculate the cell proportions (supervised methods), while other deconvolution algorithms can also identify the gene signatures specific for each cell type (unsupervised methods). In these work, five deconvolution methods (CIBERSORT, FARDEEP, DECONICA, LINSEED and ABIS) were implemented and used to analyze blood and immune cells, and also cancer cells, in complex mixture samples (using three bulk expression datasets). Our study provides three analytical tools (corrplots, cell-signature plots and bar-mixture plots) that allow a thorough comparative analysis of the cell mixture data. The work indicates that CIBERSORT is a robust method optimized for the identification of immune cell-types, but not as efficient in the identification of cancer cells. We also found that LINSEED is a very powerful unsupervised method that provides precise and specific gene signatures for each of the main immune cell types tested: neutrophils and monocytes (of the myeloid lineage), B-cells, NK cells and T-cells (of the lymphoid lineage), and also for cancer cells.
Collapse
Affiliation(s)
- Natalia Alonso-Moreda
- Cancer Research Center (CiC-IBMCC, CSIC/USAL & IBSAL), Consejo Superior de Investigaciones Científicas (CSIC), University of Salamanca (USAL), & Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Alberto Berral-González
- Cancer Research Center (CiC-IBMCC, CSIC/USAL & IBSAL), Consejo Superior de Investigaciones Científicas (CSIC), University of Salamanca (USAL), & Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Enrique De La Rosa
- Cancer Research Center (CiC-IBMCC, CSIC/USAL & IBSAL), Consejo Superior de Investigaciones Científicas (CSIC), University of Salamanca (USAL), & Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Oscar González-Velasco
- Cancer Research Center (CiC-IBMCC, CSIC/USAL & IBSAL), Consejo Superior de Investigaciones Científicas (CSIC), University of Salamanca (USAL), & Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - José Manuel Sánchez-Santos
- Cancer Research Center (CiC-IBMCC, CSIC/USAL & IBSAL), Consejo Superior de Investigaciones Científicas (CSIC), University of Salamanca (USAL), & Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
- Department of Statistics, University of Salamanca (USAL), 37008 Salamanca, Spain
| | - Javier De Las Rivas
- Cancer Research Center (CiC-IBMCC, CSIC/USAL & IBSAL), Consejo Superior de Investigaciones Científicas (CSIC), University of Salamanca (USAL), & Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
| |
Collapse
|
57
|
Toker L, Nido GS, Tzoulis C. Not every estimate counts - evaluation of cell composition estimation approaches in brain bulk tissue data. Genome Med 2023; 15:41. [PMID: 37287013 DOI: 10.1186/s13073-023-01195-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 05/22/2023] [Indexed: 06/09/2023] Open
Abstract
BACKGROUND Variation in cell composition can dramatically impact analyses in bulk tissue samples. A commonly employed approach to mitigate this issue is to adjust statistical models using estimates of cell abundance derived directly from omics data. While an arsenal of estimation methods exists, the applicability of these methods to brain tissue data and whether or not cell estimates can sufficiently account for confounding cellular composition has not been adequately assessed. METHODS We assessed the correspondence between different estimation methods based on transcriptomic (RNA sequencing, RNA-seq) and epigenomic (DNA methylation and histone acetylation) data from brain tissue samples of 49 individuals. We further evaluated the impact of different estimation approaches on the analysis of H3K27 acetylation chromatin immunoprecipitation sequencing (ChIP-seq) data from entorhinal cortex of individuals with Alzheimer's disease and controls. RESULTS We show that even closely adjacent tissue samples from the same Brodmann area vary greatly in their cell composition. Comparison across different estimation methods indicates that while different estimation methods applied to the same data produce highly similar outcomes, there is a surprisingly low concordance between estimates based on different omics data modalities. Alarmingly, we show that cell type estimates may not always sufficiently account for confounding variation in cell composition. CONCLUSIONS Our work indicates that cell composition estimation or direct quantification in one tissue sample should not be used as a proxy to the cellular composition of another tissue sample from the same brain region of an individual-even if the samples are directly adjacent. The highly similar outcomes observed among vastly different estimation methods, highlight the need for brain benchmark datasets and better validation approaches. Finally, unless validated through complementary experiments, the interpretation of analyses outcomes based on data confounded by cell composition should be done with great caution, and ideally avoided all together.
Collapse
Affiliation(s)
- Lilah Toker
- Neuro-SysMed Center of Excellence, Department of Neurology, Department of Clinical Medicine, Haukeland University Hospital, University of Bergen, 5021, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Pb 7804, 5020, Bergen, Norway
- K.G Jebsen Center for Translational Research in Parkinson's Disease, University of Bergen, Bergen, Norway
| | - Gonzalo S Nido
- Neuro-SysMed Center of Excellence, Department of Neurology, Department of Clinical Medicine, Haukeland University Hospital, University of Bergen, 5021, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Pb 7804, 5020, Bergen, Norway
- K.G Jebsen Center for Translational Research in Parkinson's Disease, University of Bergen, Bergen, Norway
| | - Charalampos Tzoulis
- Neuro-SysMed Center of Excellence, Department of Neurology, Department of Clinical Medicine, Haukeland University Hospital, University of Bergen, 5021, Bergen, Norway.
- Department of Clinical Medicine, University of Bergen, Pb 7804, 5020, Bergen, Norway.
- K.G Jebsen Center for Translational Research in Parkinson's Disease, University of Bergen, Bergen, Norway.
| |
Collapse
|
58
|
Maden SK, Kwon SH, Huuki-Myers LA, Collado-Torres L, Hicks SC, Maynard KR. Challenges and opportunities to computationally deconvolve heterogeneous tissue with varying cell sizes using single cell RNA-sequencing datasets. ARXIV 2023:arXiv:2305.06501v1. [PMID: 37214135 PMCID: PMC10197733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Deconvolution of cell mixtures in "bulk" transcriptomic samples from homogenate human tissue is important for understanding the pathologies of diseases. However, several experimental and computational challenges remain in developing and implementing transcriptomics-based deconvolution approaches, especially those using a single cell/nuclei RNA-seq reference atlas, which are becoming rapidly available across many tissues. Notably, deconvolution algorithms are frequently developed using samples from tissues with similar cell sizes. However, brain tissue or immune cell populations have cell types with substantially different cell sizes, total mRNA expression, and transcriptional activity. When existing deconvolution approaches are applied to these tissues, these systematic differences in cell sizes and transcriptomic activity confound accurate cell proportion estimates and instead may quantify total mRNA content. Furthermore, there is a lack of standard reference atlases and computational approaches to facilitate integrative analyses, including not only bulk and single cell/nuclei RNA-seq data, but also new data modalities from spatial -omic or imaging approaches. New multi-assay datasets need to be collected with orthogonal data types generated from the same tissue block and the same individual, to serve as a "gold standard" for evaluating new and existing deconvolution methods. Below, we discuss these key challenges and how they can be addressed with the acquisition of new datasets and approaches to analysis.
Collapse
Affiliation(s)
- Sean K Maden
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Sang Ho Kwon
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Louise A Huuki-Myers
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | | | - Stephanie C Hicks
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Malone Center for Engineering in Healthcare, Johns Hopkins University, Baltimore, MD, USA
| | - Kristen R Maynard
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
59
|
Dai R, Chu T, Zhang M, Wang X, Jourdon A, Wu F, Mariani J, Vaccarino FM, Lee D, Fullard JF, Hoffman GE, Roussos P, Wang Y, Wang X, Pinto D, Wang SH, Zhang C, Chen C, Liu C. Evaluating performance and applications of sample-wise cell deconvolution methods on human brain transcriptomic data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.13.532468. [PMID: 36993743 PMCID: PMC10054947 DOI: 10.1101/2023.03.13.532468] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Sample-wise deconvolution methods have been developed to estimate cell-type proportions and gene expressions in bulk-tissue samples. However, the performance of these methods and their biological applications has not been evaluated, particularly on human brain transcriptomic data. Here, nine deconvolution methods were evaluated with sample-matched data from bulk-tissue RNAseq, single-cell/nuclei (sc/sn) RNAseq, and immunohistochemistry. A total of 1,130,767 nuclei/cells from 149 adult postmortem brains and 72 organoid samples were used. The results showed the best performance of dtangle for estimating cell proportions and bMIND for estimating sample-wise cell-type gene expression. For eight brain cell types, 25,273 cell-type eQTLs were identified with deconvoluted expressions (decon-eQTLs). The results showed that decon-eQTLs explained more schizophrenia GWAS heritability than bulk-tissue or single-cell eQTLs alone. Differential gene expression associated with multiple phenotypes were also examined using the deconvoluted data. Our findings, which were replicated in bulk-tissue RNAseq and sc/snRNAseq data, provided new insights into the biological applications of deconvoluted data.
Collapse
Affiliation(s)
- Rujia Dai
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Tianyao Chu
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Ming Zhang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Xuan Wang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | | | - Feinan Wu
- Child Study Center, Yale University, New Haven, CT, USA
| | | | - Flora M Vaccarino
- Child Study Center, Yale University, New Haven, CT, USA
- Department of Neuroscience, Yale University, New Haven, CT, USA
| | - Donghoon Lee
- Center for Disease Neurogenomics, Departments of Psychiatry and Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John F Fullard
- Center for Disease Neurogenomics, Departments of Psychiatry and Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gabriel E Hoffman
- Center for Disease Neurogenomics, Departments of Psychiatry and Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Panos Roussos
- Center for Disease Neurogenomics, Departments of Psychiatry and Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yue Wang
- Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, VA, USA
| | - Xusheng Wang
- Department of Biology, University of North Dakota, Grand Forks, ND, USA
| | - Dalila Pinto
- Department of Psychiatry, Department of Genetics and Genomic Sciences, Mindich Child Health and Development Institute, and Icahn Genomics Institute for Data Science and Genomic Technology, Seaver Autism Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sidney H Wang
- Center for Human Genetics, The Brown foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Chunling Zhang
- Department of Neuroscience & Physiology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Chao Chen
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Chunyu Liu
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY, USA
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- Department of Neuroscience & Physiology, SUNY Upstate Medical University, Syracuse, NY, USA
| |
Collapse
|
60
|
Gurdon B, Yates SC, Csucs G, Groeneboom NE, Hadad N, Telpoukhovskaia M, Ouellette A, Ouellette T, O'Connell K, Singh S, Murdy T, Merchant E, Bjerke I, Kleven H, Schlegel U, Leergaard TB, Puchades MA, Bjaalie JG, Kaczorowski CC. Detecting the effect of genetic diversity on brain composition in an Alzheimer's disease mouse model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.27.530226. [PMID: 36909528 PMCID: PMC10002670 DOI: 10.1101/2023.02.27.530226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Alzheimer's disease (AD) is characterized by neurodegeneration, pathology accumulation, and progressive cognitive decline. There is significant variation in age at onset and severity of symptoms highlighting the importance of genetic diversity in the study of AD. To address this, we analyzed cell and pathology composition of 6- and 14-month-old AD-BXD mouse brains using the semi-automated workflow (QUINT); which we expanded to allow for nonlinear refinement of brain atlas-registration, and quality control assessment of atlas-registration and brain section integrity. Near global age-related increases in microglia, astrocyte, and amyloid-beta accumulation were measured, while regional variation in neuron load existed among strains. Furthermore, hippocampal immunohistochemistry analyses were combined with bulk RNA-sequencing results to demonstrate the relationship between cell composition and gene expression. Overall, the additional functionality of the QUINT workflow delivers a highly effective method for registering and quantifying cell and pathology changes in diverse disease models.
Collapse
Affiliation(s)
- Brianna Gurdon
- The Jackson Laboratory, Bar Harbor, ME
- The University of Maine Graduate School of Biomedical Sciences and Engineering, Orono, ME
| | - Sharon C Yates
- Neural Systems Laboratory, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Gergely Csucs
- Neural Systems Laboratory, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Nicolaas E Groeneboom
- Neural Systems Laboratory, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | | | | | - Andrew Ouellette
- The Jackson Laboratory, Bar Harbor, ME
- The University of Maine Graduate School of Biomedical Sciences and Engineering, Orono, ME
| | - Tionna Ouellette
- The Jackson Laboratory, Bar Harbor, ME
- Tufts University Graduate School of Biomedical Sciences, Medford, MA
| | - Kristen O'Connell
- The Jackson Laboratory, Bar Harbor, ME
- The University of Maine Graduate School of Biomedical Sciences and Engineering, Orono, ME
- Tufts University Graduate School of Biomedical Sciences, Medford, MA
| | | | - Tom Murdy
- The Jackson Laboratory, Bar Harbor, ME
| | | | - Ingvild Bjerke
- Neural Systems Laboratory, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Heidi Kleven
- Neural Systems Laboratory, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Ulrike Schlegel
- Neural Systems Laboratory, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Trygve B Leergaard
- Neural Systems Laboratory, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Maja A Puchades
- Neural Systems Laboratory, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Jan G Bjaalie
- Neural Systems Laboratory, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Catherine C Kaczorowski
- The Jackson Laboratory, Bar Harbor, ME
- The University of Maine Graduate School of Biomedical Sciences and Engineering, Orono, ME
- Tufts University Graduate School of Biomedical Sciences, Medford, MA
| |
Collapse
|
61
|
Shchepina OA, Menshanov PN. Neuron-Glia-Ratio-Like Approach Evidenced for Limited Variability and In-Aggregate Circadian Shifts in Cortical Cell-Specific Transcriptomes. J Mol Neurosci 2023; 73:159-170. [PMID: 36745298 DOI: 10.1007/s12031-023-02103-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/22/2023] [Indexed: 02/07/2023]
Abstract
Regardless of shifts in levels of individual transcripts, it remains elusive whether natural variability in cell-specific transcriptomes within the cerebral cortex is limited in aggregate. It is also unclear whether cortical cell-specific transcriptomes might change dynamically in absence of cell number changes. Total variation in neuron- and glia-specific in-aggregate transcriptomes could be identified in a model-free way via glia-neuron ratio approach, by univariate median-to-median ratios comparing integral levels of cell-specific transcripts within a tissue sample. When deleterious, regenerative or developmental events affecting cortical cell numbers were subtle, median-to-median ratios demonstrated within-group variability not exceeding <20-25% in most cases. These levels of total variability might be explained in part by limited (~5-10%) circadian and stress-induced shifts in cell-specific cortical transcriptomes. Relevant in-aggregate transcriptomic alterations were identified after shifts in cell numbers induced by well-validated deleterious events including ischemia, traumatic injury, microglia's activation/depletion or specific mutations. Cortical median-to-median ratios also follow naturally occurring changes in the numbers of excitatory, inhibitory neurons and glial cells during perinatal brain development. These findings characterize cortical cell-specific transcriptomes as subjects to circadian shifts and lifetime events, urging the importance of reporting full details on an origin of any transcriptomic sample collected in vivo.
Collapse
Affiliation(s)
- Olesya A Shchepina
- Ermine Educational Center, Novosibirsk State University, Novosibirsk, Novosibirsk Region, 630117, Russian Federation.,Higher College of Informatics, Novosibirsk State University, Novosibirsk, Novosibirsk Region, 630058, Russian Federation
| | - Petr N Menshanov
- Physiology Department, Novosibirsk State University, Novosibirsk, Novosibirsk Region, 630090, Russian Federation. .,Laser Systems Department, Novosibirsk State Technical University, Novosibirsk, Novosibirsk Region, 630073, Russian Federation. .,AI Tech Department, Novosibirsk State University, Novosibirsk, Novosibirsk Region, 630090, Russian Federation.
| |
Collapse
|
62
|
Vu HT, Kaur H, Kies KR, Starks RR, Tuteja G. Identifying novel regulators of placental development using time-series transcriptome data. Life Sci Alliance 2023; 6:6/2/e202201788. [PMID: 36622342 PMCID: PMC9748866 DOI: 10.26508/lsa.202201788] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 12/15/2022] Open
Abstract
The placenta serves as a connection between the mother and the fetus during pregnancy, providing the fetus with oxygen, nutrients, and growth hormones. However, the regulatory mechanisms and dynamic gene interaction networks underlying early placental development are understudied. Here, we generated RNA-sequencing data from mouse fetal placenta at embryonic days 7.5, 8.5, and 9.5 to identify genes with timepoint-specific expression, then inferred gene interaction networks to analyze highly connected network modules. We determined that timepoint-specific gene network modules were associated with distinct developmental processes, and with similar expression profiles to specific human placental cell populations. From each module, we identified hub genes and their direct neighboring genes, which were predicted to govern placental functions. We confirmed that four novel candidate regulators identified through our analyses regulate cell migration in the HTR-8/SVneo cell line. Overall, we predicted several novel regulators of placental development expressed in specific placental cell types using network analysis of bulk RNA-sequencing data. Our findings and analysis approaches will be valuable for future studies investigating the transcriptional landscape of early development.
Collapse
Affiliation(s)
- Ha Th Vu
- Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, USA.,Bioinformatics and Computational Biology, Iowa State University, Ames, IA, USA
| | - Haninder Kaur
- Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, USA
| | - Kelby R Kies
- Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, USA.,Bioinformatics and Computational Biology, Iowa State University, Ames, IA, USA
| | - Rebekah R Starks
- Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, USA.,Bioinformatics and Computational Biology, Iowa State University, Ames, IA, USA
| | - Geetu Tuteja
- Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, USA .,Bioinformatics and Computational Biology, Iowa State University, Ames, IA, USA
| |
Collapse
|
63
|
Ediriwickrema A, Gentles AJ, Majeti R. Single-cell genomics in AML: extending the frontiers of AML research. Blood 2023; 141:345-355. [PMID: 35926108 PMCID: PMC10082362 DOI: 10.1182/blood.2021014670] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/06/2022] [Accepted: 07/23/2022] [Indexed: 01/31/2023] Open
Abstract
The era of genomic medicine has allowed acute myeloid leukemia (AML) researchers to improve disease characterization, optimize risk-stratification systems, and develop new treatments. Although there has been significant progress, AML remains a lethal cancer because of its remarkably complex and plastic cellular architecture. This degree of heterogeneity continues to pose a major challenge, because it limits the ability to identify and therefore eradicate the cells responsible for leukemogenesis and treatment failure. In recent years, the field of single-cell genomics has led to unprecedented strides in the ability to characterize cellular heterogeneity, and it holds promise for the study of AML. In this review, we highlight advancements in single-cell technologies, outline important shortcomings in our understanding of AML biology and clinical management, and discuss how single-cell genomics can address these shortcomings as well as provide unique opportunities in basic and translational AML research.
Collapse
Affiliation(s)
- Asiri Ediriwickrema
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, CA
- Cancer Institute, Stanford University School of Medicine, Stanford, CA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA
| | - Andrew J. Gentles
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA
| | - Ravindra Majeti
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, CA
- Cancer Institute, Stanford University School of Medicine, Stanford, CA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
64
|
Song X, Ji J, Rothstein JH, Alexeeff SE, Sakoda LC, Sistig A, Achacoso N, Jorgenson E, Whittemore AS, Klein RJ, Habel LA, Wang P, Sieh W. MiXcan: a framework for cell-type-aware transcriptome-wide association studies with an application to breast cancer. Nat Commun 2023; 14:377. [PMID: 36690614 PMCID: PMC9871010 DOI: 10.1038/s41467-023-35888-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 01/05/2023] [Indexed: 01/25/2023] Open
Abstract
Human bulk tissue samples comprise multiple cell types with diverse roles in disease etiology. Conventional transcriptome-wide association study approaches predict genetically regulated gene expression at the tissue level, without considering cell-type heterogeneity, and test associations of predicted tissue-level expression with disease. Here we develop MiXcan, a cell-type-aware transcriptome-wide association study approach that predicts cell-type-level expression, identifies disease-associated genes via combination of cell-type-level association signals for multiple cell types, and provides insight into the disease-critical cell type. As a proof of concept, we conducted cell-type-aware analyses of breast cancer in 58,648 women and identified 12 transcriptome-wide significant genes using MiXcan compared with only eight genes using conventional approaches. Importantly, MiXcan identified genes with distinct associations in mammary epithelial versus stromal cells, including three new breast cancer susceptibility genes. These findings demonstrate that cell-type-aware transcriptome-wide analyses can reveal new insights into the genetic and cellular etiology of breast cancer and other diseases.
Collapse
Affiliation(s)
- Xiaoyu Song
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Jiayi Ji
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joseph H Rothstein
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Stacey E Alexeeff
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Lori C Sakoda
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Adriana Sistig
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ninah Achacoso
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Eric Jorgenson
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
- Regeneron Genetics Center, Tarrytown, NY, USA
| | - Alice S Whittemore
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA
| | - Robert J Klein
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Laurel A Habel
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Pei Wang
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Weiva Sieh
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|