51
|
Abstract
Click chemistry, proposed nearly 20 years ago, promised access to novel chemical space by empowering combinatorial library synthesis with a "few good reactions". These click reactions fulfilled key criteria (broad scope, quantitative yield, abundant starting material, mild reaction conditions, and high chemoselectivity), keeping the focus on molecules that would be easy to make, yet structurally diverse. This philosophy bears a striking resemblance to DNA-encoded library (DEL) technology, the now-dominant combinatorial chemistry paradigm. This review highlights the similarities between click and DEL reaction design and deployment in combinatorial library settings, providing a framework for the design of new DEL synthesis technologies to enable next-generation drug discovery.
Collapse
Affiliation(s)
- Patrick R Fitzgerald
- Skaggs Doctoral Program in the Chemical and Biological Sciences, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Brian M Paegel
- Departments of Pharmaceutical Sciences, Chemistry, & Biomedical Engineering, University of California, Irvine, 101 Theory Suite 100, Irvine, California 92617, United States
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| |
Collapse
|
52
|
Favalli N, Bassi G, Pellegrino C, Millul J, De Luca R, Cazzamalli S, Yang S, Trenner A, Mozaffari NL, Myburgh R, Moroglu M, Conway SJ, Sartori AA, Manz MG, Lerner RA, Vogt PK, Scheuermann J, Neri D. Stereo- and regiodefined DNA-encoded chemical libraries enable efficient tumour-targeting applications. Nat Chem 2021; 13:540-548. [PMID: 33833446 PMCID: PMC8405038 DOI: 10.1038/s41557-021-00660-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 02/10/2021] [Indexed: 02/01/2023]
Abstract
The encoding of chemical compounds with amplifiable DNA tags facilitates the discovery of small-molecule ligands for proteins. To investigate the impact of stereo- and regiochemistry on ligand discovery, we synthesized a DNA-encoded library of 670,752 derivatives based on 2-azido-3-iodophenylpropionic acids. The library was selected against multiple proteins and yielded specific ligands. The selection fingerprints obtained for a set of protein targets of pharmaceutical relevance clearly showed the preferential enrichment of ortho-, meta- or para-regioisomers, which was experimentally verified by affinity measurements in the absence of DNA. The discovered ligands included novel selective enzyme inhibitors and binders to tumour-associated antigens, which enabled conditional chimeric antigen receptor T-cell activation and tumour targeting.
Collapse
Affiliation(s)
- Nicholas Favalli
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zurich), Zurich, Switzerland
| | - Gabriele Bassi
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zurich), Zurich, Switzerland
| | - Christian Pellegrino
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zurich), Zurich, Switzerland
| | | | | | | | - Su Yang
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA, USA
| | - Anika Trenner
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Nour L Mozaffari
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Renier Myburgh
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Comprehensive Cancer Center Zurich (CCCZ), Zurich, Switzerland
| | - Mustafa Moroglu
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, UK
| | - Stuart J Conway
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, UK
| | - Alessandro A Sartori
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Markus G Manz
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Comprehensive Cancer Center Zurich (CCCZ), Zurich, Switzerland
| | - Richard A Lerner
- Department of Chemistry, Scripps Research Institute, La Jolla, CA, USA
| | - Peter K Vogt
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA, USA
| | - Jörg Scheuermann
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zurich), Zurich, Switzerland.
| | - Dario Neri
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zurich), Zurich, Switzerland.
| |
Collapse
|
53
|
Lenci E, Baldini L, Trabocchi A. Diversity-oriented synthesis as a tool to expand the chemical space of DNA-encoded libraries. Bioorg Med Chem 2021; 41:116218. [PMID: 34030087 DOI: 10.1016/j.bmc.2021.116218] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 12/12/2022]
Abstract
DNA-encoded libraries (DEL) represent a powerful technology for generating compound collections for drug discovery campaigns, that have allowed for the selection of many hit compounds over last three decades. However, the application of split-and-pool combinatorial methodologies, as well as the limitation imposed by DNA-compatible chemistry, has often brought to a limited exploration of the chemical space, with an over-representation of flat aromatic or peptide-like structures, whereas a higher scaffold complexity is generally associated with a more successful biological activity of the library. In this context, the application of Diversity-Oriented Synthesis, capable of creating sp3-rich molecular entities even starting from simple flat building blocks, can represent an efficient strategy to significantly broaden the chemical space explored by DELs. In this review, we present selected examples of DNA-compatible complexity-generating reactions that can be applied for the generation of DNA-encoded DOS libraries, including: (i) multicomponent reactions; (ii) C-H/C-X functionalization; (iii) tandem approaches; (iv) cycloadditions; (v) reactions introducing privileged elements. Also, selected case studies on the generation of DELs with high scaffold diversity are discussed, reporting their application in drug discovery programs.
Collapse
Affiliation(s)
- Elena Lenci
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 13, 50019 Sesto Fiorentino, Italy
| | - Lorenzo Baldini
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 13, 50019 Sesto Fiorentino, Italy
| | - Andrea Trabocchi
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 13, 50019 Sesto Fiorentino, Italy; Interdepartmental Center for Preclinical Development of Molecular Imaging (CISPIM), University of Florence, Viale Morgagni 85, 50134 Florence, Italy.
| |
Collapse
|
54
|
Liu W, Huang W, Lin Q, Tsai MH, Zhang R, Fan L, Scott JD, Liu G, Wan J. Development of DNA-compatible hydroxycarbonylation reactions using chloroform as a source of carbon monoxide. Bioorg Med Chem 2021; 38:116118. [PMID: 33839592 DOI: 10.1016/j.bmc.2021.116118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/18/2021] [Accepted: 03/18/2021] [Indexed: 11/26/2022]
Abstract
A robust palladium-catalyzed hydroxycarbonylation of aryl halides on DNA has been developed. Instead of Mo(CO)6 as a source of carbon monoxide as previously described in the literature, chloroform was used as a surrogate in this report for the purpose of avoiding to use a large excess of molybdenum reagent which is not totally soluble in aqueous reaction mixtures.
Collapse
Affiliation(s)
- Wentao Liu
- HitGen Inc., Building 6, No. 8 Huigu 1(st) East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, PR China
| | - Wei Huang
- HitGen Inc., Building 6, No. 8 Huigu 1(st) East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, PR China
| | - Qian Lin
- HitGen Inc., Building 6, No. 8 Huigu 1(st) East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, PR China
| | - Mei-Hsuan Tsai
- HitGen Inc., Building 6, No. 8 Huigu 1(st) East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, PR China
| | - Rui Zhang
- New Jersey Discovery Chemistry, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ 07033, United States
| | - Lijun Fan
- New Jersey Discovery Chemistry, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ 07033, United States.
| | - Jack D Scott
- New Jersey Discovery Chemistry, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ 07033, United States.
| | - Guansai Liu
- HitGen Inc., Building 6, No. 8 Huigu 1(st) East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, PR China.
| | - Jinqiao Wan
- HitGen Inc., Building 6, No. 8 Huigu 1(st) East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, PR China.
| |
Collapse
|
55
|
Large screening of DNA-compatible reaction conditions for Suzuki and Sonogashira cross-coupling reactions and for reverse amide bond formation. Bioorg Med Chem 2021; 41:116206. [PMID: 34038862 DOI: 10.1016/j.bmc.2021.116206] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/20/2021] [Accepted: 04/28/2021] [Indexed: 02/02/2023]
Abstract
Progress in DNA-encoded chemical library synthesis and screening crucially relies on the availability of DNA-compatible reactions, which proceed with high yields and excellent purity for a large number of possible building blocks. In the past, experimental conditions have been presented for the execution of Suzuki and Sonogashira cross-coupling reactions on-DNA. In this article, our aim was to optimize Suzuki and Sonogashira reactions, comparing our results to previously published procedures. We have tested the performance of improved conditions using 606 building blocks (including boronic acids, pinacol boranes and terminal alkynes), achieving >70% conversion for 84% of the tested molecules. Moreover, we describe efficient experimental conditions for the on-DNA synthesis of amide bonds, starting from DNA derivatives carrying a carboxylic acid moiety and 300 primary, secondary and aromatic amines, as amide bonds are frequently found in DNA-encoded chemical libraries thanks to their excellent DNA compatibility.
Collapse
|
56
|
Wu R, Du T, Sun W, Shaginian A, Gao S, Li J, Wan J, Liu G. Functionalization of DNA-Tagged Alkenes Enabled by Visible-Light-Induced C–H Activation of N-Aryl Tertiary Amines. Org Lett 2021; 23:3486-3490. [DOI: 10.1021/acs.orglett.1c00924] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Rongfeng Wu
- HitGen Inc., Building 6, No. 8 Huigu First East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| | - Tian Du
- HitGen Inc., Building 6, No. 8 Huigu First East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| | - Wenbo Sun
- HitGen Inc., Building 6, No. 8 Huigu First East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| | - Alex Shaginian
- HitGen Inc., Building 6, No. 8 Huigu First East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| | - Sen Gao
- HitGen Inc., Building 6, No. 8 Huigu First East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| | - Jin Li
- HitGen Inc., Building 6, No. 8 Huigu First East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| | - Jinqiao Wan
- HitGen Inc., Building 6, No. 8 Huigu First East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| | - Guansai Liu
- HitGen Inc., Building 6, No. 8 Huigu First East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| |
Collapse
|
57
|
Onda Y, Bassi G, Elsayed A, Ulrich F, Oehler S, Plais L, Scheuermann J, Neri D. A DNA-Encoded Chemical Library Based on Peptide Macrocycles. Chemistry 2021; 27:7160-7167. [PMID: 33586277 DOI: 10.1002/chem.202005423] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Indexed: 11/07/2022]
Abstract
The synthesis and characterization of a novel DNA-encoded library of macrocyclic peptide derivatives are described; the macrocycles are based on three sets of proteinogenic and non-proteinogenic amino acid building blocks and featuring the use of copper(I)-catalyzed alkyne-azide cycloaddition (CuAAC) reaction for ring closure. The library (termed YO-DEL) which contains 1 254 838 compounds, was encoded with DNA in single-stranded format and was screened against target proteins of interest using affinity capture procedures and photocrosslinking. YO-DEL selections yielded specific binders against serum albumins, carbonic anhydrases and NKp46, a marker of activated Natural Killer cells.
Collapse
Affiliation(s)
- Yuichi Onda
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| | - Gabriele Bassi
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| | - Abdullah Elsayed
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| | - Franziska Ulrich
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| | - Sebastian Oehler
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| | - Louise Plais
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| | - Jörg Scheuermann
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| | - Dario Neri
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
- Philochem AG, Libernstrasse 3, 8112, Otelfingen, Switzerland
| |
Collapse
|
58
|
Ekanayake AI, Sobze L, Kelich P, Youk J, Bennett NJ, Mukherjee R, Bhardwaj A, Wuest F, Vukovic L, Derda R. Genetically Encoded Fragment-Based Discovery from Phage-Displayed Macrocyclic Libraries with Genetically Encoded Unnatural Pharmacophores. J Am Chem Soc 2021; 143:5497-5507. [PMID: 33784084 DOI: 10.1021/jacs.1c01186] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Genetically encoded macrocyclic peptide libraries with unnatural pharmacophores are valuable sources for the discovery of ligands for many targets of interest. Traditionally, generation of such libraries employs "early stage" incorporation of unnatural building blocks into the chemically or translationally produced macrocycles. Here, we describe a divergent late-stage approach to such libraries starting from readily available starting material: genetically encoded libraries of peptides. A diketone linchpin 1,5-dichloropentane-2,4-dione converts peptide libraries displayed on phage to 1,3-diketone bearing macrocyclic peptides (DKMP): shelf-stable precursors for Knorr pyrazole synthesis. Ligation of diverse hydrazine derivatives onto DKMP libraries displayed on phage that carries silent DNA-barcodes yields macrocyclic libraries in which the amino acid sequence and the pharmacophore are encoded by DNA. Selection of this library against carbonic anhydrase enriched macrocycles with benzenesulfonamide pharmacophore and nanomolar Kd. The methodology described in this manuscript can graft diverse pharmacophores into many existing genetically encoded phage libraries and significantly increase the value of such libraries in molecular discoveries.
Collapse
Affiliation(s)
- Arunika I Ekanayake
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Lena Sobze
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Payam Kelich
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Jihea Youk
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Nicholas J Bennett
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Raja Mukherjee
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Atul Bhardwaj
- Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada
| | - Frank Wuest
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
- Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada
| | - Lela Vukovic
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Ratmir Derda
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| |
Collapse
|
59
|
Kunig VBK, Potowski M, Klika Škopić M, Brunschweiger A. Scanning Protein Surfaces with DNA-Encoded Libraries. ChemMedChem 2021; 16:1048-1062. [PMID: 33295694 PMCID: PMC8048995 DOI: 10.1002/cmdc.202000869] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Indexed: 12/17/2022]
Abstract
Understanding the ligandability of a target protein, defined as the capability of a protein to bind drug-like compounds on any site, can give important stimuli to drug-development projects. For instance, inhibition of protein-protein interactions usually depends on the identification of protein surface binders. DNA-encoded chemical libraries (DELs) allow scanning of protein surfaces with large chemical space. Encoded library selection screens uncovered several protein-protein interaction inhibitors and compounds binding to the surface of G protein-coupled receptors (GPCRs) and kinases. The protein surface-binding chemotypes from DELs are predominantly chemically modified and cyclized peptides, and functional small-molecule peptidomimetics. Peptoid libraries and structural peptidomimetics have been less studied in the DEL field, hinting at hitherto less populated chemical space and suggesting alternative library designs. Roughly a third of bioactive molecules evolved from smaller, target-focused libraries. They showcase the potential of encoded libraries to identify more potent molecules from weak, for example, fragment-like, starting points.
Collapse
Affiliation(s)
- Verena B. K. Kunig
- Faculty of Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn-Straße 644227DortmundGermany
| | - Marco Potowski
- Faculty of Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn-Straße 644227DortmundGermany
| | - Mateja Klika Škopić
- Faculty of Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn-Straße 644227DortmundGermany
| | - Andreas Brunschweiger
- Faculty of Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn-Straße 644227DortmundGermany
| |
Collapse
|
60
|
Yang P, Wang X, Li B, Yang Y, Yue J, Suo Y, Tong H, He G, Lu X, Chen G. Streamlined construction of peptide macrocycles via palladium-catalyzed intramolecular S-arylation in solution and on DNA. Chem Sci 2021; 12:5804-5810. [PMID: 34168804 PMCID: PMC8179660 DOI: 10.1039/d1sc00789k] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/08/2021] [Indexed: 12/18/2022] Open
Abstract
A highly efficient and versatile method for construction of peptide macrocycles via palladium-catalyzed intramolecular S-arylation of alkyl and aryl thiols with aryl iodides under mild conditions is developed. The method exhibits a broad substrate scope for thiols, aryl iodides and amino acid units. Peptide macrocycles of a wide range of size and composition can be readily assembled in high yield from various easily accessible building blocks. This method has been successfully employed to prepare an 8-million-membered tetrameric cyclic peptide DNA-encoded library (DEL). Preliminary screening of the DEL library against protein p300 identified compounds with single digit micromolar inhibition activity.
Collapse
Affiliation(s)
- Peng Yang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 China
| | - Xuan Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong Shanghai 201203 China
| | - Bo Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 China
| | - Yixuan Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong Shanghai 201203 China
| | - Jinfeng Yue
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong Shanghai 201203 China
| | - Yanrui Suo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong Shanghai 201203 China
| | - Huarong Tong
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 China
| | - Gang He
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 China
| | - Xiaojie Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong Shanghai 201203 China
| | - Gong Chen
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 China
| |
Collapse
|
61
|
Yang Y, Ying H, Li Z, Wang J, Chen Y, Luo B, Gray DL, Ferguson A, Chen Q, Z Y, Cheng J. Near quantitative synthesis of urea macrocycles enabled by bulky N-substituent. Nat Commun 2021; 12:1572. [PMID: 33692349 PMCID: PMC7947004 DOI: 10.1038/s41467-021-21678-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/13/2021] [Indexed: 11/09/2022] Open
Abstract
Macrocycles are unique molecular structures extensively used in the design of catalysts, therapeutics and supramolecular assemblies. Among all reactions reported to date, systems that can produce macrocycles in high yield under high reaction concentrations are rare. Here we report the use of dynamic hindered urea bond (HUB) for the construction of urea macrocycles with very high efficiency. Mixing of equal molar diisocyanate and hindered diamine leads to formation of macrocycles with discrete structures in nearly quantitative yields under high concentration of reactants. The bulky N-tert-butyl plays key roles to facilitate the formation of macrocycles, providing not only the kinetic control due to the formation of the cyclization-promoting cis C = O/tert-butyl conformation, but also possibly the thermodynamic stabilization of macrocycles with weak association interactions. The bulky N-tert-butyl can be readily removed by acid to eliminate the dynamicity of HUB and stabilize the macrocycle structures.
Collapse
Affiliation(s)
- Yingfeng Yang
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Hanze Ying
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Zhixia Li
- Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Jiang Wang
- Department of Chemistry, Rice University, Houston, TX, 77005, USA
| | - Yingying Chen
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Binbin Luo
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Danielle L Gray
- George L. Clark X-Ray Facility & 3M Materials Laboratory, School of Chemical Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Andrew Ferguson
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Qian Chen
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Y Z
- Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Jianjun Cheng
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA. .,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA. .,Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA. .,Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA. .,Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
62
|
Yang G, He D, Zhu Y, Zhu W, Tan Y, Long X, Wan J, Shi Z, Schuman D, Chheda P, Simmons N, Liu G. Cholesterol-Modified Oligonucleotides as Internal Reaction Controls during DNA-Encoded Chemical Library Synthesis. Bioconjug Chem 2021; 32:667-671. [PMID: 33689295 DOI: 10.1021/acs.bioconjchem.1c00045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report two cholesterol-modified oligonucleotides for use as internal controls for on-DNA reactions during the pooled stages of a DNA-encoded chemical library (DECL) synthesis. As these cholesterol-tagged oligonucleotides are chromatographically separable from normal DECL intermediates, they can be directly monitored by mass spectrometry to track reaction progression within a complex pool of DNA. We observed similar product conversions for reactions on substrates linked to a standard DECL DNA headpiece, to the cholesterol-modified oligonucleotides, and to the cholesterol-modified oligonucleotides while in the presence of pooled DECL synthetic intermediates-validating their use as a representative control. We also highlight an example from a DECL production in which the use of the cholesterol-modified oligonucleotides provided quality control information that guided synthetic decisions. We conclude that the use of cholesterol-modified oligonucleotides as a regular control will significantly improve the quality of DECL productions.
Collapse
Affiliation(s)
- Guanyu Yang
- HitGen Inc., Building 6, No. 8 Huigu 1st East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| | - Dou He
- HitGen Inc., Building 6, No. 8 Huigu 1st East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| | - Yijun Zhu
- HitGen Inc., Building 6, No. 8 Huigu 1st East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| | - Weiwei Zhu
- HitGen Inc., Building 6, No. 8 Huigu 1st East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| | - Yang Tan
- HitGen Inc., Building 6, No. 8 Huigu 1st East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| | - Xingwen Long
- HitGen Inc., Building 6, No. 8 Huigu 1st East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| | - Jinqiao Wan
- HitGen Inc., Building 6, No. 8 Huigu 1st East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| | - Zhicai Shi
- Discovery Chemistry, Janssen Research and Development, Welsh & McKean Roads, Spring House, Pennsylvania 19477, United States
| | - David Schuman
- Discovery Chemistry, Janssen Research and Development, 3210 Merryfield Row, San Diego, California 92121, United States
| | - Pratik Chheda
- Discovery Chemistry, Janssen Research and Development, 3210 Merryfield Row, San Diego, California 92121, United States
| | - Nicholas Simmons
- Discovery Chemistry, Janssen Research and Development, 3210 Merryfield Row, San Diego, California 92121, United States
| | - Guansai Liu
- HitGen Inc., Building 6, No. 8 Huigu 1st East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| |
Collapse
|
63
|
Gao L, Wang W, Wang X, Yang F, Xie L, Shen J, Brimble MA, Xiao Q, Yao SQ. Fluorescent probes for bioimaging of potential biomarkers in Parkinson's disease. Chem Soc Rev 2021; 50:1219-1250. [PMID: 33284303 DOI: 10.1039/d0cs00115e] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Parkinson's disease (PD), as the second most common neurodegenerative disease, is caused by complex pathological processes and currently remains very difficult to treat. PD brings great distress to patients and imposes a heavy economic burden on society. The number of PD patients is growing as the aging population increases worldwide. Therefore, it is crucial to develop new tools for aiding the early diagnosis and treatment of PD. The significant pathological features involved in PD include the abnormal accumulation of α-synuclein, metal ion dyshomeostasis, oxidative stress, mitochondrial dysfunction and neurotransmitter deficiencies. In recent years, fluorescent probes have emerged as a powerful bioimaging tool with potential to help understand the pathological processes of PD via the detection and monitoring of pathological features. In this review, we comprehensively summarize the design and working mechanisms of fluorescent probes along with their applications in the detection of various PD biomarkers. We also discuss the current limitations of fluorescent probes and provide perspectives on how these limitations can be overcome to develop better fluorescent probes suitable for application in clinical trials in the future. We hope that this review provides valuable information and guidance for the development of new fluorescent probes that can be used clinically in the early diagnosis of PD and contributes to the development of efficient PD drugs in the future.
Collapse
Affiliation(s)
- Liqian Gao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Wu Y, Williams J, Calder EDD, Walport LJ. Strategies to expand peptide functionality through hybridisation with a small molecule component. RSC Chem Biol 2021; 2:151-165. [PMID: 34458778 PMCID: PMC8341444 DOI: 10.1039/d0cb00167h] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/09/2020] [Indexed: 02/04/2023] Open
Abstract
Combining different compound classes gives molecular hybrids that can offer access to novel chemical space and unique properties. Peptides provide ideal starting points for such molecular hybrids, which can be easily modified with a variety of molecular entities. The addition of small molecules can improve the potency, stability and cell permeability of therapeutically relevant peptides. Furthermore, they are often applied to create peptide-based tools in chemical biology. In this review, we discuss general methods that allow the discovery of this compound class and highlight key examples of peptide-small molecule hybrids categorised by the application and function of the small molecule entity.
Collapse
Affiliation(s)
- Yuteng Wu
- Protein-Protein Interaction Laboratory, The Francis Crick Institute London UK
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London London UK
| | - Jack Williams
- Protein-Protein Interaction Laboratory, The Francis Crick Institute London UK
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London London UK
| | - Ewen D D Calder
- Protein-Protein Interaction Laboratory, The Francis Crick Institute London UK
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London London UK
| | - Louise J Walport
- Protein-Protein Interaction Laboratory, The Francis Crick Institute London UK
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London London UK
| |
Collapse
|
65
|
Freitag F, Wagner E. Optimizing synthetic nucleic acid and protein nanocarriers: The chemical evolution approach. Adv Drug Deliv Rev 2021; 168:30-54. [PMID: 32246984 DOI: 10.1016/j.addr.2020.03.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/10/2020] [Accepted: 03/30/2020] [Indexed: 12/20/2022]
Abstract
Optimizing synthetic nanocarriers is like searching for a needle in a haystack. How to find the most suitable carrier for intracellular delivery of a specified macromolecular nanoagent for a given disease target location? Here, we review different synthetic 'chemical evolution' strategies that have been pursued. Libraries of nanocarriers have been generated either by unbiased combinatorial chemistry or by variation and novel combination of known functional delivery elements. As in natural evolution, definition of nanocarriers as sequences, as barcode or design principle, may fuel chemical evolution. Screening in appropriate test system may not only provide delivery candidates, but also a refined understanding of cellular delivery including novel, unpredictable mechanisms. Combined with rational design and computational algorithms, candidates can be further optimized in subsequent evolution cycles into nanocarriers with improved safety and efficacy. Optimization of nanocarriers differs for various cargos, as illustrated for plasmid DNA, siRNA, mRNA, proteins, or genome-editing nucleases.
Collapse
|
66
|
Priego J, de Pedro Beato E, Benavides J, Gironda-Martínez A, González F, Blas J, Martín-Ortega MD, Rama-Garda R, Ezquerra J, Toledo MA, Torrado A. On-DNA Palladium-Catalyzed Hydrogenation-like Reaction Suitable for DNA-Encoded Library Synthesis. Bioconjug Chem 2020; 32:88-93. [PMID: 33356163 DOI: 10.1021/acs.bioconjchem.0c00566] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Herein we describe a method to orthogonally remove on-DNA N-Cbz, N-Alloc, N-Allyl, O-Bn, and O-Allyl protecting groups in the presence of other common protecting groups to afford free amines and carboxylic acids, respectively. The developed method uses NaBH4 as the source of hydrogen in the presence of Pd(OAc)2 under DNA aqueous conditions. In addition, under the developed conditions we were able to successfully hydrogenate triple and double bonds to totally saturated compounds. Furthermore, we introduce a new alternative procedure to reduce azides and aromatic nitro compounds to primary amines.
Collapse
Affiliation(s)
- Julián Priego
- Centro de Investigación Lilly, S. A., 28108 Alcobendas, Madrid, Spain
| | | | - Jesús Benavides
- Centro de Investigación Lilly, S. A., 28108 Alcobendas, Madrid, Spain
| | | | - Fernando González
- Centro de Investigación Lilly, S. A., 28108 Alcobendas, Madrid, Spain
| | - Jesús Blas
- Centro de Investigación Lilly, S. A., 28108 Alcobendas, Madrid, Spain
| | | | - Ramón Rama-Garda
- Centro de Investigación Lilly, S. A., 28108 Alcobendas, Madrid, Spain
| | - Jesús Ezquerra
- Centro de Investigación Lilly, S. A., 28108 Alcobendas, Madrid, Spain
| | - Miguel A Toledo
- Centro de Investigación Lilly, S. A., 28108 Alcobendas, Madrid, Spain
| | - Alicia Torrado
- Centro de Investigación Lilly, S. A., 28108 Alcobendas, Madrid, Spain
| |
Collapse
|
67
|
Wu R, Gao S, Du T, Cai K, Cheng X, Fan J, Feng J, Shaginian A, Li J, Wan J, Liu G. Exploring Aldol Reactions on DNA and Applications to Produce Diverse Structures: An Example of Expanding Chemical Space of DNA-Encoded Compounds by Diversity-Oriented Synthesis. Chem Asian J 2020; 15:4033-4037. [PMID: 33119184 DOI: 10.1002/asia.202001105] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/19/2020] [Indexed: 12/27/2022]
Abstract
A DNA-encoded chemical library (DECL) is built with combinatorial chemistry, which works by bringing chemical fragments together to generate diverse structures. However, chemical diversity of DNA-encoded chemical libraries is often limited by DNA compatible synthetic reactions. This report shows a conceptual strategy to expand chemical space of DNA-encoded chemical libraries by incorporation of diversity-oriented synthesis in DECL synthesis. We developed Aldol reactions on DNA in a combinatorial way. After obtaining DNA-tagged α, β-unsaturated ketones which represent important chemical intermediates, many distinct structures with skeletal diversities are achieved by diversity-oriented synthesis.
Collapse
Affiliation(s)
- Rongfeng Wu
- HitGen Inc. Building 6, No 8 Huigu 1st East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu, 610200, Sichuan, P. R. China
| | - Sen Gao
- HitGen Inc. Building 6, No 8 Huigu 1st East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu, 610200, Sichuan, P. R. China
| | - Tian Du
- HitGen Inc. Building 6, No 8 Huigu 1st East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu, 610200, Sichuan, P. R. China
| | - Kunliang Cai
- HitGen Inc. Building 6, No 8 Huigu 1st East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu, 610200, Sichuan, P. R. China
| | - Xuemin Cheng
- HitGen Inc. Building 6, No 8 Huigu 1st East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu, 610200, Sichuan, P. R. China
| | - Jing Fan
- HitGen Inc. Building 6, No 8 Huigu 1st East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu, 610200, Sichuan, P. R. China
| | - Jing Feng
- HitGen Inc. Building 6, No 8 Huigu 1st East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu, 610200, Sichuan, P. R. China
| | - Alex Shaginian
- HitGen Inc. Building 6, No 8 Huigu 1st East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu, 610200, Sichuan, P. R. China
| | - Jin Li
- HitGen Inc. Building 6, No 8 Huigu 1st East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu, 610200, Sichuan, P. R. China
| | - Jinqiao Wan
- HitGen Inc. Building 6, No 8 Huigu 1st East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu, 610200, Sichuan, P. R. China
| | - Guansai Liu
- HitGen Inc. Building 6, No 8 Huigu 1st East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu, 610200, Sichuan, P. R. China
| |
Collapse
|
68
|
Bassi G, Favalli N, Vuk M, Catalano M, Martinelli A, Trenner A, Porro A, Yang S, Tham CL, Moroglu M, Yue WW, Conway SJ, Vogt PK, Sartori AA, Scheuermann J, Neri D. A Single-Stranded DNA-Encoded Chemical Library Based on a Stereoisomeric Scaffold Enables Ligand Discovery by Modular Assembly of Building Blocks. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001970. [PMID: 33240760 PMCID: PMC7675038 DOI: 10.1002/advs.202001970] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/17/2020] [Indexed: 06/11/2023]
Abstract
A versatile and Lipinski-compliant DNA-encoded library (DEL), comprising 366 600 glutamic acid derivatives coupled to oligonucleotides serving as amplifiable identification barcodes is designed, constructed, and characterized. The GB-DEL library, constructed in single-stranded DNA format, allows de novo identification of specific binders against several pharmaceutically relevant proteins. Moreover, hybridization of the single-stranded DEL with a set of known protein ligands of low to medium affinity coupled to a complementary DNA strand results in self-assembled selectable chemical structures, leading to the identification of affinity-matured compounds.
Collapse
Affiliation(s)
- Gabriele Bassi
- Department of Chemistry and Applied BiosciencesETH ZürichZürich8092Switzerland
| | - Nicholas Favalli
- Department of Chemistry and Applied BiosciencesETH ZürichZürich8092Switzerland
| | - Miriam Vuk
- Department of Chemistry and Applied BiosciencesETH ZürichZürich8092Switzerland
| | - Marco Catalano
- Department of Chemistry and Applied BiosciencesETH ZürichZürich8092Switzerland
| | - Adriano Martinelli
- Department of Chemistry and Applied BiosciencesETH ZürichZürich8092Switzerland
| | - Anika Trenner
- Institute of Molecular Cancer ResearchUniversity of ZürichZürich8006Switzerland
| | - Antonio Porro
- Institute of Molecular Cancer ResearchUniversity of ZürichZürich8006Switzerland
| | - Su Yang
- Scripps Research InstituteDepartment of Molecular MedicineLa JollaCA92037USA
| | - Chuin Lean Tham
- Structural Genomic Consortium (SGC)Nuffield Department of MedicineUniversity of OxfordOxfordOX1 2JDUK
| | - Mustafa Moroglu
- Department of ChemistryChemistry Research LaboratoryUniversity of OxfordMansfield RoadOxfordOX1 3TAUK
| | - Wyatt W. Yue
- Structural Genomic Consortium (SGC)Nuffield Department of MedicineUniversity of OxfordOxfordOX1 2JDUK
| | - Stuart J. Conway
- Department of ChemistryChemistry Research LaboratoryUniversity of OxfordMansfield RoadOxfordOX1 3TAUK
| | - Peter K. Vogt
- Scripps Research InstituteDepartment of Molecular MedicineLa JollaCA92037USA
| | | | - Jörg Scheuermann
- Department of Chemistry and Applied BiosciencesETH ZürichZürich8092Switzerland
| | - Dario Neri
- Department of Chemistry and Applied BiosciencesETH ZürichZürich8092Switzerland
| |
Collapse
|
69
|
Bao Y, Deng Z, Feng J, Zhu W, Li J, Wan J, Liu G. A B 2(OH) 4-Mediated Synthesis of 2-Substituted Indazolone and Its Application in a DNA-Encoded Library. Org Lett 2020; 22:6277-6282. [PMID: 32806212 DOI: 10.1021/acs.orglett.0c02032] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Indazolone cores are among the most common structural components in medicinal chemistry and can be found in many biologically active molecules. In this report, a mild and efficient approach to 2-substituted indazolones via B2(OH)4-mediated reductive N-N bond formation is developed. This strategy features mild conditions, no request for a metal catalyst, and a wide scope for both aliphatic and aromatic amines. Meanwhile, this method was further successfully applied on DNA to construct indazolone cores for a DNA-encoded library. This will enable the production of a very attractive indazolone-cored library from simple amines and scaffolds, which will provide considerable diversity.
Collapse
Affiliation(s)
- Yapeng Bao
- Discovery Chemistry Unit, HitGen Inc., Building 6, No. 8 Huigu 1st East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| | - Zongfa Deng
- Discovery Chemistry Unit, HitGen Inc., Building 6, No. 8 Huigu 1st East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| | - Jing Feng
- Discovery Chemistry Unit, HitGen Inc., Building 6, No. 8 Huigu 1st East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| | - Weiwei Zhu
- Discovery Chemistry Unit, HitGen Inc., Building 6, No. 8 Huigu 1st East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| | - Jin Li
- Discovery Chemistry Unit, HitGen Inc., Building 6, No. 8 Huigu 1st East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| | - Jinqiao Wan
- Discovery Chemistry Unit, HitGen Inc., Building 6, No. 8 Huigu 1st East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| | - Guansai Liu
- Discovery Chemistry Unit, HitGen Inc., Building 6, No. 8 Huigu 1st East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| |
Collapse
|
70
|
Sharma B, Xie L, Yang F, Wang W, Zhou Q, Xiang M, Zhou S, Lv W, Jia Y, Pokhrel L, Shen J, Xiao Q, Gao L, Deng W. Recent advance on PTP1B inhibitors and their biomedical applications. Eur J Med Chem 2020; 199:112376. [PMID: 32416458 DOI: 10.1016/j.ejmech.2020.112376] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 04/22/2020] [Accepted: 04/22/2020] [Indexed: 12/17/2022]
Abstract
Protein Tyrosine Phosphatase 1B (PTP1B), as one of the most important members in PTP superfamily, plays a vital role in conducting various cellular functions. So far, PTP1B has been reported to be involved in the development of many diseases including obesity, diabetes, cancers and cardiovascular diseases. Development of potent and specific PTP1B inhibitors and studies on the structure-activity relationship (SAR) between their chemical structures and their biological activity have drawn increasing attention as they could not only modulate the PTP1B functions inside the cells but also provide useful lead compounds for the treatment of various PTP1B-associated diseases. To this end, we herein summarized the recent developments of PTP1B inhibitors, and different kinds of high-throughput screening strategies for the identification of potential PTP1B inhibitors as well as their potential biomedical applications, and we also provided some perspectives in the concluding remarks in this work.
Collapse
Affiliation(s)
- Bigyan Sharma
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen, PR China
| | - Liuxing Xie
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen, PR China
| | - Fen Yang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen, PR China
| | - Wei Wang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen, PR China
| | - Quanming Zhou
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen, PR China
| | - Menghua Xiang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen, PR China
| | - Shizhe Zhou
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen, PR China
| | - Wanting Lv
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen, PR China
| | - Yan Jia
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen, PR China
| | - Laxman Pokhrel
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, PR China
| | - Jun Shen
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, PR China
| | - Qicai Xiao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen, PR China.
| | - Liqian Gao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen, PR China.
| | - Wenbin Deng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen, PR China.
| |
Collapse
|
71
|
Qu Y, Wen H, Ge R, Xu Y, Gao H, Shi X, Wang J, Cui W, Su W, Yang H, Kuai L, Satz AL, Peng X. Copper-Mediated DNA-Compatible One-Pot Click Reactions of Alkynes with Aryl Borates and TMS-N3. Org Lett 2020; 22:4146-4150. [DOI: 10.1021/acs.orglett.0c01219] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yi Qu
- HitS Business Unit, WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Huanan Wen
- HitS Business Unit, WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Rui Ge
- HitS Business Unit, WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Yanfen Xu
- HitS Business Unit, WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Hong Gao
- HitS Business Unit, WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Xiaodong Shi
- HitS Business Unit, WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Jiangong Wang
- HitS Business Unit, WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Weiren Cui
- HitS Business Unit, WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Wenji Su
- HitS Business Unit, WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Hongfang Yang
- HitS Business Unit, WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Letian Kuai
- HitS Business Unit, WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Alexander L. Satz
- HitS Business Unit, WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Xuanjia Peng
- HitS Business Unit, WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| |
Collapse
|
72
|
Bassi G, Favalli N, Oehler S, Martinelli A, Catalano M, Scheuermann J, Neri D. Comparative evaluation of DNA-encoded chemical selections performed using DNA in single-stranded or double-stranded format. Biochem Biophys Res Commun 2020; 533:223-229. [PMID: 32386812 DOI: 10.1016/j.bbrc.2020.04.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 04/10/2020] [Indexed: 12/23/2022]
Abstract
DNA-encoded chemical libraries (DEL) are increasingly being used for the discovery and optimization of small organic ligands to proteins of biological or pharmaceutical interest. The DNA fragments, that serve as amplifiable identification barcodes for individual compounds in the library, are typically used in double-stranded DNA format. To the best of our knowledge, a direct comparison of DEL selections featuring DNA in either single- or double-stranded DNA format has not yet been reported. In this article, we describe a comparative evaluation of selections with two DEL libraries (named GB-DEL and NF-DEL), based on different chemical designs and produced in both single- and double-stranded DNA format. The libraries were selected in identical conditions against multiple protein targets, revealing comparable and reproducible fingerprints for both types of DNA formats. Surprisingly, selections performed with single-stranded DNA barcodes exhibited improved enrichment factors compared to double-stranded DNA. Using high-affinity ligands to carbonic anhydrase IX as benchmarks for selection performance, we observed an improved selectivity for the NF-DEL library (on average 2-fold higher enrichment factors) in favor of single-stranded DNA. The enrichment factors were even higher for the GB-DEL selections (approximately 5-fold), compared to the same library in double-stranded DNA format. Collectively, these results indicate that DEL libraries can conveniently be synthesized and screened in both single- and double-stranded DNA format, but single-stranded DNA barcodes typically yield enhanced enrichment factors.
Collapse
Affiliation(s)
- Gabriele Bassi
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, CH-8093, Zürich, Switzerland
| | - Nicholas Favalli
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, CH-8093, Zürich, Switzerland
| | - Sebastian Oehler
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, CH-8093, Zürich, Switzerland
| | - Adriano Martinelli
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, CH-8093, Zürich, Switzerland
| | - Marco Catalano
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, CH-8093, Zürich, Switzerland
| | - Jörg Scheuermann
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, CH-8093, Zürich, Switzerland.
| | - Dario Neri
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, CH-8093, Zürich, Switzerland.
| |
Collapse
|
73
|
Li J, Li Y, Lu F, Liu L, Ji Q, Song K, Yin Q, Lerner RA, Yang G, Xu H, Ma P. A DNA-encoded library for the identification of natural product binders that modulate poly (ADP-ribose) polymerase 1, a validated anti-cancer target. Biochem Biophys Res Commun 2020; 533:241-248. [PMID: 32381359 DOI: 10.1016/j.bbrc.2020.04.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 04/09/2020] [Indexed: 01/01/2023]
Abstract
Natural products have been an invaluable source of drug discovery, but their targets remain largely unknown. Natural products enriched DNA-encoded chemical libraries (nDELs) empower the researchers to rapidly and economically screen numerous natural products against various protein targets, and therefore promote the elucidation of the molecular mechanisms. In this work, we used poly (ADP-ribose) polymerase 1 (PARP1), as an example to explore the usage of nDEL for the functional natural products selection. We used late-stage modification approach to label three positive binders with unique DNA barcodes, whose dissociation constants range from sub-micromolar to micromolar. The selection criterion was set up according to the enrichment of these controls. Five natural products selected by this criterion directly bind to PARP1 in SPR, among which luteolin exhibits the highest inhibitory activity against PARP1. Moreover, luteolin selectively induces accumulation of DNA double-strand breaks and G2/M phase arrest in BRCA-deficient cells. All the findings from these investigations on luteolin support that PARP1 inhibition is one of the mechanisms for its anti-cancer activity.
Collapse
Affiliation(s)
- Jie Li
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210, Shanghai, China; School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China; Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200031, Shanghai, China; University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yu Li
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210, Shanghai, China; School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China; Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200031, Shanghai, China; University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Fengping Lu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210, Shanghai, China
| | - Lili Liu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210, Shanghai, China
| | - Qun Ji
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210, Shanghai, China
| | - Ke Song
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210, Shanghai, China
| | - Qianqian Yin
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210, Shanghai, China
| | - Richard A Lerner
- Department of Chemistry, Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Guang Yang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210, Shanghai, China
| | - Hongtao Xu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210, Shanghai, China.
| | - Peixiang Ma
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210, Shanghai, China.
| |
Collapse
|
74
|
Götte K, Chines S, Brunschweiger A. Reaction development for DNA-encoded library technology: From evolution to revolution? Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.151889] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
75
|
Xu H, Gu Y, Zhang S, Xiong H, Ma F, Lu F, Ji Q, Liu L, Ma P, Hou W, Yang G, Lerner RA. A Chemistry for Incorporation of Selenium into DNA‐Encoded Libraries. Angew Chem Int Ed Engl 2020; 59:13273-13280. [DOI: 10.1002/anie.202003595] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Hongtao Xu
- Shanghai Institute for Advanced Immunochemical Studies ShanghaiTech University 201210 Shanghai China
| | - Yuang Gu
- Shanghai Institute for Advanced Immunochemical Studies ShanghaiTech University 201210 Shanghai China
- School of Life Science and Technology ShanghaiTech University 201210 Shanghai China
- Institute of Biochemistry and Cell Biology Shanghai Institutes for Biological Sciences Chinese Academy of Sciences Shanghai 200031 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Shuning Zhang
- Shanghai Institute for Advanced Immunochemical Studies ShanghaiTech University 201210 Shanghai China
- School of Life Science and Technology ShanghaiTech University 201210 Shanghai China
- Institute of Biochemistry and Cell Biology Shanghai Institutes for Biological Sciences Chinese Academy of Sciences Shanghai 200031 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Huan Xiong
- Shanghai Institute for Advanced Immunochemical Studies ShanghaiTech University 201210 Shanghai China
| | - Fei Ma
- Shanghai Institute for Advanced Immunochemical Studies ShanghaiTech University 201210 Shanghai China
| | - Fengping Lu
- Shanghai Institute for Advanced Immunochemical Studies ShanghaiTech University 201210 Shanghai China
| | - Qun Ji
- Shanghai Institute for Advanced Immunochemical Studies ShanghaiTech University 201210 Shanghai China
| | - Lili Liu
- Shanghai Institute for Advanced Immunochemical Studies ShanghaiTech University 201210 Shanghai China
| | - Peixiang Ma
- Shanghai Institute for Advanced Immunochemical Studies ShanghaiTech University 201210 Shanghai China
| | - Wei Hou
- College of Pharmaceutical Science Institute of Drug Development & Chemical Biology Zhejiang University of Technology Hangzhou 310014 China
| | - Guang Yang
- Shanghai Institute for Advanced Immunochemical Studies ShanghaiTech University 201210 Shanghai China
| | - Richard A. Lerner
- Department of Chemistry Scripps Research Institute La Jolla CA 92037 USA
| |
Collapse
|
76
|
Xu H, Gu Y, Zhang S, Xiong H, Ma F, Lu F, Ji Q, Liu L, Ma P, Hou W, Yang G, Lerner RA. A Chemistry for Incorporation of Selenium into DNA‐Encoded Libraries. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003595] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Hongtao Xu
- Shanghai Institute for Advanced Immunochemical Studies ShanghaiTech University 201210 Shanghai China
| | - Yuang Gu
- Shanghai Institute for Advanced Immunochemical Studies ShanghaiTech University 201210 Shanghai China
- School of Life Science and Technology ShanghaiTech University 201210 Shanghai China
- Institute of Biochemistry and Cell Biology Shanghai Institutes for Biological Sciences Chinese Academy of Sciences Shanghai 200031 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Shuning Zhang
- Shanghai Institute for Advanced Immunochemical Studies ShanghaiTech University 201210 Shanghai China
- School of Life Science and Technology ShanghaiTech University 201210 Shanghai China
- Institute of Biochemistry and Cell Biology Shanghai Institutes for Biological Sciences Chinese Academy of Sciences Shanghai 200031 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Huan Xiong
- Shanghai Institute for Advanced Immunochemical Studies ShanghaiTech University 201210 Shanghai China
| | - Fei Ma
- Shanghai Institute for Advanced Immunochemical Studies ShanghaiTech University 201210 Shanghai China
| | - Fengping Lu
- Shanghai Institute for Advanced Immunochemical Studies ShanghaiTech University 201210 Shanghai China
| | - Qun Ji
- Shanghai Institute for Advanced Immunochemical Studies ShanghaiTech University 201210 Shanghai China
| | - Lili Liu
- Shanghai Institute for Advanced Immunochemical Studies ShanghaiTech University 201210 Shanghai China
| | - Peixiang Ma
- Shanghai Institute for Advanced Immunochemical Studies ShanghaiTech University 201210 Shanghai China
| | - Wei Hou
- College of Pharmaceutical Science Institute of Drug Development & Chemical Biology Zhejiang University of Technology Hangzhou 310014 China
| | - Guang Yang
- Shanghai Institute for Advanced Immunochemical Studies ShanghaiTech University 201210 Shanghai China
| | - Richard A. Lerner
- Department of Chemistry Scripps Research Institute La Jolla CA 92037 USA
| |
Collapse
|
77
|
Madsen D, Azevedo C, Micco I, Petersen LK, Hansen NJV. An overview of DNA-encoded libraries: A versatile tool for drug discovery. PROGRESS IN MEDICINAL CHEMISTRY 2020; 59:181-249. [PMID: 32362328 DOI: 10.1016/bs.pmch.2020.03.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
DNA-encoded libraries (DELs) are collections of small molecules covalently attached to amplifiable DNA tags carrying unique information about the structure of each library member. A combinatorial approach is used to construct the libraries with iterative DNA encoding steps, facilitating tracking of the synthetic history of the attached compounds by DNA sequencing. Various screening protocols have been developed which allow protein target binders to be selected out of pools containing up to billions of different small molecules. The versatile methodology has allowed identification of numerous biologically active compounds and is now increasingly being adopted as a tool for lead discovery campaigns and identification of chemical probes. A great focus in recent years has been on developing DNA compatible chemistries that expand the structural diversity of the small molecule library members in DELs. This chapter provides an overview of the challenges and accomplishments in DEL technology, reviewing the technological aspects of producing and screening DELs with a perspective on opportunities, limitations, and future directions.
Collapse
|
78
|
Wu W, Sun Z, Wang X, Lu X, Dai D. Construction of Thiazole-Fused Dihydropyrans via Formal [4 + 2] Cycloaddition Reaction on DNA. Org Lett 2020; 22:3239-3244. [PMID: 32243186 DOI: 10.1021/acs.orglett.0c01016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An efficient and facile formal [4 + 2] cycloaddition reaction was developed to synthesize diverse thiazole-fused dihydropyrans (TFDP) on DNA. Mild reaction conditions, broad substrate scope, and compatibility with subsequent enzymatic ligation demonstrated the utility of this methodology in DNA-encoded library synthesis.
Collapse
Affiliation(s)
- Wenting Wu
- Department of Therapeutic Discovery, Amgen Asia R&D Center, Amgen Research, 4560 Jinke Road, Pudong, Shanghai 201210, P. R. China
| | - Zhen Sun
- Department of Therapeutic Discovery, Amgen Asia R&D Center, Amgen Research, 4560 Jinke Road, Pudong, Shanghai 201210, P. R. China
| | - Xuan Wang
- Department of Therapeutic Discovery, Amgen Asia R&D Center, Amgen Research, 4560 Jinke Road, Pudong, Shanghai 201210, P. R. China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Science, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, P. R. China
| | - Xiaojie Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Science, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, P. R. China
| | - Dongcheng Dai
- Department of Therapeutic Discovery, Amgen Asia R&D Center, Amgen Research, 4560 Jinke Road, Pudong, Shanghai 201210, P. R. China
| |
Collapse
|
79
|
Wu Y, Zorzi A, Williams J, Heinis C. A releasable disulfide-linked peptide tag facilitates the synthesis and purification of short peptides. Chem Commun (Camb) 2020; 56:2917-2920. [PMID: 32037436 DOI: 10.1039/c9cc09247a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Combinatorial cyclization of hundreds to thousands of random linear peptides by structurally diverse chemical linkers offers access to large macrocyclic compound libraries. A bottleneck in the development of such libraries is the preparation of large numbers of short random linear peptides. Herein, we present a tag-based strategy that is not dependent on a throughput-limiting chromatographic purification step and thus enables parallel production of short peptides. In brief, peptides are synthesized on solid phase as conjugates with a disulfide-linked Cys-Gly-Arg-Trp tetra-peptide tag. The charged arginine residue in the tag allows for purification of the peptides by diethyl ether-precipitation and the tryptophan allows for quantification of the product by absorption measurement. Addition of a reducing agent releases the short peptides from the tag. The released sulfhydryl group in the peptide can readily be used for cyclization of the peptide library with bis-electrophilic linker reagents.
Collapse
Affiliation(s)
- Yuteng Wu
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.
| | | | | | | |
Collapse
|
80
|
Fleming SR, Himes PM, Ghodge SV, Goto Y, Suga H, Bowers AA. Exploring the Post-translational Enzymology of PaaA by mRNA Display. J Am Chem Soc 2020; 142:5024-5028. [PMID: 32109054 DOI: 10.1021/jacs.0c01576] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PaaA is a RiPP enzyme that catalyzes the transformation of two glutamic acid residues within a substrate peptide into the bicyclic core of Pantocin A. Here, for the first time, we use mRNA display techniques to understand RiPP enzyme-substrate interactions to illuminate PaaA substrate recognition. Additionally, our data revealed insights into the enzymatic timing of glutamic acid modification. The technique developed is quite sensitive and a significant advancement over current RiPP studies and opens the door to enzyme modified mRNA display libraries for natural product-like inhibitor pans.
Collapse
Affiliation(s)
- Steven R Fleming
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Paul M Himes
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Swapnil V Ghodge
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States.,Early Discovery Biochemistry Department, Genentech Inc., South San Francisco, California 94114, United States
| | - Yuki Goto
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.,JST, PRESTO, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.,JST, CREST, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Albert A Bowers
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
81
|
Badir SO, Sim J, Billings K, Csakai A, Zhang X, Dong W, Molander GA. Multifunctional Building Blocks Compatible with Photoredox-Mediated Alkylation for DNA-Encoded Library Synthesis. Org Lett 2020; 22:1046-1051. [PMID: 31940210 PMCID: PMC7060506 DOI: 10.1021/acs.orglett.9b04568] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
DNA-encoded library (DEL) technology has emerged as a novel interrogation modality for ligand discovery in the pharmaceutical industry. Given the increasing demand for a higher proportion of C(sp3)-hybridized centers in DEL platforms, a photoredox-mediated cross-coupling and defluorinative alkylation process is introduced using commercially available alkyl bromides and structurally diverse α-silylamines. Notably, no protecting group strategies for amines are necessary for the incorporation of a variety of amino-acid-based organosilanes, providing crucial branching points for further derivatization.
Collapse
Affiliation(s)
- Shorouk O. Badir
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34 Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Jaehoon Sim
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34 Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Katelyn Billings
- GlaxoSmithKline, 200 Cambridge Park Dr., Cambridge, Massachusetts 02140, USA
| | - Adam Csakai
- GlaxoSmithKline, 200 Cambridge Park Dr., Cambridge, Massachusetts 02140, USA
| | - Xuange Zhang
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34 Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Weizhe Dong
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34 Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Gary A. Molander
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34 Street, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
82
|
Su L, Feng J, Peng T, Wan J, Fan J, Li J, O’Connell J, Lancia DR, Franklin GJ, Liu G. Synthesis of Multifunctional 2-Aminobenzimidazoles on DNA via Iodine-Promoted Cyclization. Org Lett 2020; 22:1290-1294. [DOI: 10.1021/acs.orglett.9b04578] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Liqiang Su
- Discovery Chemistry Unit, HitGen Inc., Building 6, No. 8 Huigu First East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, People’s Republic of China
| | - Jing Feng
- Discovery Chemistry Unit, HitGen Inc., Building 6, No. 8 Huigu First East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, People’s Republic of China
| | - Ting Peng
- Discovery Chemistry Unit, HitGen Inc., Building 6, No. 8 Huigu First East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, People’s Republic of China
| | - Jinqiao Wan
- Discovery Chemistry Unit, HitGen Inc., Building 6, No. 8 Huigu First East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, People’s Republic of China
| | - Jing Fan
- Discovery Chemistry Unit, HitGen Inc., Building 6, No. 8 Huigu First East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, People’s Republic of China
| | - Jin Li
- Discovery Chemistry Unit, HitGen Inc., Building 6, No. 8 Huigu First East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, People’s Republic of China
| | - Jonathan O’Connell
- FORMA Therapeutics Inc., 500 Arsenal Street, Suite 100, Watertown, Massachusetts 02472, United States
| | - David R. Lancia
- FORMA Therapeutics Inc., 500 Arsenal Street, Suite 100, Watertown, Massachusetts 02472, United States
| | - G. Joseph Franklin
- FORMA Therapeutics Inc., 500 Arsenal Street, Suite 100, Watertown, Massachusetts 02472, United States
| | - Guansai Liu
- Discovery Chemistry Unit, HitGen Inc., Building 6, No. 8 Huigu First East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, People’s Republic of China
| |
Collapse
|
83
|
Hackler AL, FitzGerald FG, Dang VQ, Satz AL, Paegel BM. Off-DNA DNA-Encoded Library Affinity Screening. ACS COMBINATORIAL SCIENCE 2020; 22:25-34. [PMID: 31829554 DOI: 10.1021/acscombsci.9b00153] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
DNA-encoded library (DEL) technology is emerging as a key element of the small molecule discovery toolbox. Conventional DEL screens (i.e., on-DNA screening) interrogate large combinatorial libraries via affinity selection of DNA-tagged library members that are ligands of a purified and immobilized protein target. In these selections, the DNA tags can materially and undesirably influence target binding and, therefore, the experiment outcome. Here, we use a solid-phase DEL and droplet-based microfluidic screening to separate the DEL member from its DNA tag (i.e., off-DNA screening), for subsequent in-droplet laser-induced fluorescence polarization (FP) detection of target binding, obviating DNA tag interference. Using the receptor tyrosine kinase (RTK) discoidin domain receptor 1 (DDR1) as a proof-of-concept target in a droplet-scale competition-binding assay, we screened a 67 100-member solid-phase DEL of drug-like small molecules for competitive ligands of DDR1 and identified several known RTK inhibitor pharmacophores, including azaindole- and quinazolinone-containing monomers. Off-DNA DEL affinity screening with FP detection is potentially amenable to a wide array of target classes, including nucleic acid binding proteins, proteins that are difficult to overexpress and purify, or targets with no known activity assay.
Collapse
Affiliation(s)
| | | | | | - Alexander L. Satz
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel Hoffman-La Roche Ltd, Grenzacherstrasse 124, CH-4070 Basel, Switzerland
| | | |
Collapse
|
84
|
Baráth E, Mejía E. Ein Fest der Wissenschaft inmitten der Natur: Die 54. Bürgenstock‐Konferenz. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201906781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Eszter Baráth
- Department ChemieZentralforschungsinstitut für KatalyseTechnische Universität München Lichtenbergstraße 4 85748 Garching Deutschland
| | - Esteban Mejía
- Leibniz-Institut für Katalyse (LIKAT) Albert-Einstein-Straße 29a 18059 Rostock Deutschland
| |
Collapse
|
85
|
Baráth E, Mejía E. A Celebration of Science amidst Nature: The 54th Bürgenstock Conference. Angew Chem Int Ed Engl 2019; 58:17107-17113. [PMID: 31441577 DOI: 10.1002/anie.201906781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Eszter Baráth
- Department of Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, 85748, Garching, Germany
| | - Esteban Mejía
- Leibniz Institute for Catalysis (LIKAT), Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| |
Collapse
|
86
|
Pham MV, Bergeron-Brlek M, Heinis C. Synthesis of DNA-Encoded Disulfide- and Thioether-Cyclized Peptides. Chembiochem 2019; 21:543-549. [PMID: 31381227 DOI: 10.1002/cbic.201900390] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Indexed: 12/19/2022]
Abstract
DNA-encoded chemical library technologies enable the screening of large combinatorial libraries of chemically and structurally diverse molecules, including short cyclic peptides. A challenge in the combinatorial synthesis of cyclic peptides is the final step, the cyclization of linear peptides that typically suffers from incomplete reactions and large variability between substrates. Several efficient peptide cyclization strategies rely on the modification of thiol groups, such as the formation of disulfide or thioether bonds between cysteines. In this work, we established a strategy and reaction conditions for the efficient chemical synthesis of cyclic peptide-DNA conjugates based on linking the side chains of cysteines. We tested two different thiol-protecting groups and found that tert-butylthio (S-tBu) works best for incorporating a pair of cysteines, and we show that the DNA-linked peptides can be efficiently cyclized through disulfide and thioether bond formation. In combination with established procedures for DNA encoding, the strategy for incorporation of cysteines may be readily applied for the generation and screening of disulfide- and thioether-cyclized peptide libraries.
Collapse
Affiliation(s)
- Manh V Pham
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fedérale de Lausanne, CH A3 398, Station 6, 1015, Lausanne, Switzerland
| | - Milan Bergeron-Brlek
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fedérale de Lausanne, CH A3 398, Station 6, 1015, Lausanne, Switzerland
| | - Christian Heinis
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fedérale de Lausanne, CH A3 398, Station 6, 1015, Lausanne, Switzerland
| |
Collapse
|
87
|
Cai P, Yang G, Zhao L, Wan J, Li J, Liu G. Synthesis of C3-Alkylated Indoles on DNA via Indolyl Alcohol Formation Followed by Metal-Free Transfer Hydrogenation. Org Lett 2019; 21:6633-6637. [DOI: 10.1021/acs.orglett.9b02132] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Pinwen Cai
- Discovery Chemistry Unit, HitGen Inc., Building 6, No. 8 Huigu 1st East Road, Tianfu International
Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| | - Guanyu Yang
- Discovery Chemistry Unit, HitGen Inc., Building 6, No. 8 Huigu 1st East Road, Tianfu International
Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| | - Lanzhou Zhao
- Discovery Chemistry Unit, HitGen Inc., Building 6, No. 8 Huigu 1st East Road, Tianfu International
Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| | - Jinqiao Wan
- Discovery Chemistry Unit, HitGen Inc., Building 6, No. 8 Huigu 1st East Road, Tianfu International
Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| | - Jin Li
- Discovery Chemistry Unit, HitGen Inc., Building 6, No. 8 Huigu 1st East Road, Tianfu International
Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| | - Guansai Liu
- Discovery Chemistry Unit, HitGen Inc., Building 6, No. 8 Huigu 1st East Road, Tianfu International
Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| |
Collapse
|
88
|
Kale SS, Bergeron-Brlek M, Wu Y, Kumar MG, Pham MV, Bortoli J, Vesin J, Kong XD, Machado JF, Deyle K, Gonschorek P, Turcatti G, Cendron L, Angelini A, Heinis C. Thiol-to-amine cyclization reaction enables screening of large libraries of macrocyclic compounds and the generation of sub-kilodalton ligands. SCIENCE ADVANCES 2019; 5:eaaw2851. [PMID: 31457083 PMCID: PMC6703864 DOI: 10.1126/sciadv.aaw2851] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 07/12/2019] [Indexed: 06/10/2023]
Abstract
Macrocyclic compounds are an attractive modality for drug development, but the limited availability of large, structurally diverse macrocyclic libraries hampers the discovery of leads. Here, we describe the discovery of efficient macrocyclization reactions based on thiol-to-amine ligations using bis-electrophiles, their application to synthesize and screen large libraries of macrocyclic compounds, and the identification of potent small macrocyclic ligands. The thiol-to-amine cyclization reactions showed unexpectedly high yields for a wide substrate range, which obviated product purification and enabled the generation and screening of an 8988 macrocycle library with a comparatively small effort. X-ray structure analysis of an identified thrombin inhibitor (K i = 42 ± 5 nM) revealed a snug fit with the target, validating the strategy of screening large libraries with a high skeletal diversity. The approach provides a route for screening large sub-kilodalton macrocyclic libraries and may be applied to many challenging drug targets.
Collapse
Affiliation(s)
- S. S. Kale
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - M. Bergeron-Brlek
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Y. Wu
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - M. G. Kumar
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - M. V. Pham
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - J. Bortoli
- Biomolecular Screening Facility, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - J. Vesin
- Biomolecular Screening Facility, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - X.-D. Kong
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - J. Franco Machado
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - K. Deyle
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - P. Gonschorek
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - G. Turcatti
- Biomolecular Screening Facility, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - L. Cendron
- Department of Biology, University of Padova, 35131 Padova, Italy
| | - A. Angelini
- Department of Molecular Sciences and Nanosystems, Ca’ Foscari University of Venice, Via Torino 155, Venezia Mestre, Venice 30172, Italy
- European Centre for Living Technologies (ECLT), Ca’ Bottacin, Dorsoduro 3911, Calle Crosera, Venice 30124, Italy
| | - C. Heinis
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
89
|
Zorzi A, Linciano S, Angelini A. Non-covalent albumin-binding ligands for extending the circulating half-life of small biotherapeutics. MEDCHEMCOMM 2019; 10:1068-1081. [PMID: 31391879 PMCID: PMC6644573 DOI: 10.1039/c9md00018f] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 06/01/2019] [Indexed: 12/13/2022]
Abstract
Peptides and small protein scaffolds are gaining increasing interest as therapeutics. Similarly to full-length antibodies, they can bind a target with a high binding affinity and specificity while remaining small enough to diffuse into tissues. However, despite their numerous advantages, small biotherapeutics often suffer from a relatively short circulating half-life, thus requiring frequent applications that ultimately restrict their ease of use and user compliance. To overcome this limitation, a large variety of half-life extension strategies have been developed in the last decades. Linkage to ligands that non-covalently bind to albumin, the most abundant serum protein with a circulating half-life of ∼19 days in humans, represents one of the most successful approaches for the generation of long-lasting biotherapeutics with improved pharmacokinetic properties and superior efficacy in the clinic.
Collapse
Affiliation(s)
- Alessandro Zorzi
- Institute of Chemical Sciences and Engineering , School of Basic Sciences , Ecole Polytechnique Fédérale de Lausanne (EPFL) , Lausanne CH-1015 , Switzerland
| | - Sara Linciano
- Department of Molecular Sciences and Nanosystems , Ca' Foscari University of Venice , Via Torino 155 , Venezia Mestre 30172 , Italy
| | - Alessandro Angelini
- Department of Molecular Sciences and Nanosystems , Ca' Foscari University of Venice , Via Torino 155 , Venezia Mestre 30172 , Italy
- European Centre for Living Technologies (ECLT) , San Marco 2940 , Venice 30124 , Italy .
| |
Collapse
|
90
|
Gerry CJ, Wawer MJ, Clemons PA, Schreiber SL. DNA Barcoding a Complete Matrix of Stereoisomeric Small Molecules. J Am Chem Soc 2019; 141:10225-10235. [PMID: 31184885 DOI: 10.1021/jacs.9b01203] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
It is challenging to incorporate stereochemical diversity and topographic complexity into DNA-encoded libraries (DELs) because DEL syntheses cannot fully exploit the capabilities of modern synthetic organic chemistry. Here, we describe the design, construction, and validation of DOS-DEL-1, a library of 107 616 DNA-barcoded chiral 2,3-disubsituted azetidines and pyrrolidines. We used stereospecific C-H arylation chemistry to furnish complex scaffolds primed for DEL synthesis, and we developed an improved on-DNA Suzuki reaction to maximize library quality. We then studied both the structural diversity of the library and the physicochemical properties of individual compounds using Tanimoto multifusion similarity analysis, among other techniques. These analyses revealed not only that most DOS-DEL-1 members have "drug-like" properties, but also that the library more closely resembles compound collections derived from diversity synthesis than those from other sources (e.g., commercial vendors). Finally, we performed validation screens against horseradish peroxidase and carbonic anhydrase IX, and we developed a novel, Poisson-based statistical framework to analyze the results. A set of assay positives were successfully translated into potent carbonic anhydrase inhibitors (IC50 = 20.1-68.7 nM), which confirmed the success of the synthesis and screening procedures. These results establish a strategy to synthesize DELs with scaffold-based stereochemical diversity and complexity that does not require the development of novel DNA-compatible chemistry.
Collapse
Affiliation(s)
- Christopher J Gerry
- Department of Chemistry and Chemical Biology , Harvard University , 12 Oxford Street , Cambridge , Massachusetts 02138 , United States.,Chemical Biology and Therapeutics Science Program , Broad Institute , 415 Main Street , Cambridge , Massachusetts 02142 , United States
| | - Mathias J Wawer
- Chemical Biology and Therapeutics Science Program , Broad Institute , 415 Main Street , Cambridge , Massachusetts 02142 , United States
| | - Paul A Clemons
- Chemical Biology and Therapeutics Science Program , Broad Institute , 415 Main Street , Cambridge , Massachusetts 02142 , United States
| | - Stuart L Schreiber
- Department of Chemistry and Chemical Biology , Harvard University , 12 Oxford Street , Cambridge , Massachusetts 02138 , United States.,Chemical Biology and Therapeutics Science Program , Broad Institute , 415 Main Street , Cambridge , Massachusetts 02142 , United States
| |
Collapse
|
91
|
Yan M, Zhu Y, Liu X, Lasanajak Y, Xiong J, Lu J, Lin X, Ashline D, Reinhold V, Smith DF, Song X. Next-Generation Glycan Microarray Enabled by DNA-Coded Glycan Library and Next-Generation Sequencing Technology. Anal Chem 2019; 91:9221-9228. [PMID: 31187982 DOI: 10.1021/acs.analchem.9b01988] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Interactions of glycans with proteins, cells, and microorganisms play important roles in cell-cell adhesion and host-pathogen interaction. Glycan microarray technology, in which multiple glycan structures are immobilized on a single glass slide and interrogated with glycan-binding proteins (GBPs), has become an indispensable tool in the study of protein-glycan interactions. Despite its great success, the current format of the glycan microarray requires expensive, specialized instrumentation and labor-intensive assay and image processing procedures, which limit automation and possibilities for high-throughput analyses. Furthermore, the current microarray is not suitable for assaying interaction with intact cells due to their large size compared to the two-dimensional microarray surface. To address these limitations, we developed the next-generation glycan microarray (NGGM) based on artificial DNA coding of glycan structures. In this novel approach, a glycan library is presented as a mixture of glycans and glycoconjugates, each of which is coded with a unique oligonucleotide sequence (code). The glycan mixture is interrogated by GBPs followed by the separation of unbound coded glycans. The DNA sequences that identify individual bound glycans are quantitatively sequenced (decoded) by powerful next-generation sequencing (NGS) technology, and copied numbers of the DNA codes represent relative binding specificities of corresponding glycan structures to GBPs. We demonstrate that NGGM generates glycan-GBP binding data that are consistent with that generated in a slide-based glycan microarray. More importantly, the solution phase binding assay is directly applicable to identifying glycan binding to intact cells, which is often challenging using glass slide-based glycan microarrays.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - David Ashline
- College of Life Sciences and Agriculture , University of New Hampshire , Durham , New Hampshire 03824 , United States
| | - Vernon Reinhold
- College of Life Sciences and Agriculture , University of New Hampshire , Durham , New Hampshire 03824 , United States
| | | | | |
Collapse
|
92
|
Stress CJ, Sauter B, Schneider LA, Sharpe T, Gillingham D. A DNA-Encoded Chemical Library Incorporating Elements of Natural Macrocycles. Angew Chem Int Ed Engl 2019; 58:9570-9574. [PMID: 30938482 DOI: 10.1002/anie.201902513] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/01/2019] [Indexed: 12/22/2022]
Abstract
Here we show a seven-step chemical synthesis of a DNA-encoded macrocycle library (DEML) on DNA. Inspired by polyketide and mixed peptide-polyketide natural products, the library was designed to incorporate rich backbone diversity. Achieving this diversity, however, comes at the cost of the custom synthesis of bifunctional building block libraries. This study outlines the importance of careful retrosynthetic design in DNA-encoded libraries, while revealing areas where new DNA synthetic methods are needed.
Collapse
Affiliation(s)
- Cedric J Stress
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, CH-4056, Basel, Switzerland
| | - Basilius Sauter
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, CH-4056, Basel, Switzerland
| | - Lukas A Schneider
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, CH-4056, Basel, Switzerland
| | - Timothy Sharpe
- Biophysics Facility, Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH-4056, Basel, Switzerland
| | - Dennis Gillingham
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, CH-4056, Basel, Switzerland
| |
Collapse
|
93
|
Stress CJ, Sauter B, Schneider LA, Sharpe T, Gillingham D. Eine DNA‐kodierte Molekülbibliothek mit Elementen natürlicher Makrocyclen. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201902513] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Cedric J. Stress
- Department ChemieUniversität Basel St. Johanns-Ring 19 4056 Basel Schweiz
| | - Basilius Sauter
- Department ChemieUniversität Basel St. Johanns-Ring 19 4056 Basel Schweiz
| | - Lukas A. Schneider
- Department ChemieUniversität Basel St. Johanns-Ring 19 4056 Basel Schweiz
| | - Timothy Sharpe
- Biophysikalisches InstitutBiozentrumUniversität Basel Klingelbergstrasse 50/70 4056 Basel Schweiz
| | - Dennis Gillingham
- Department ChemieUniversität Basel St. Johanns-Ring 19 4056 Basel Schweiz
| |
Collapse
|
94
|
Ma P, Xu H, Li J, Lu F, Ma F, Wang S, Xiong H, Wang W, Buratto D, Zonta F, Wang N, Liu K, Hua T, Liu Z, Yang G, Lerner RA. Functionality‐Independent DNA Encoding of Complex Natural Products. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201901485] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Peixiang Ma
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech University 201210 Shanghai China
| | - Hongtao Xu
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech University 201210 Shanghai China
| | - Jie Li
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech University 201210 Shanghai China
- School of Life Science and TechnologyShanghaiTech University 201210 Shanghai China
- Institute of Biochemistry and Cell BiologyShanghai Institutes for Biological SciencesChinese Academy of Sciences 200031 Shanghai China
- University of Chinese Academy of Sciences 100049 Beijing China
| | - Fengping Lu
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech University 201210 Shanghai China
| | - Fei Ma
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech University 201210 Shanghai China
| | - Shuyue Wang
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech University 201210 Shanghai China
- School of Life Science and TechnologyShanghaiTech University 201210 Shanghai China
- Institute of Biochemistry and Cell BiologyShanghai Institutes for Biological SciencesChinese Academy of Sciences 200031 Shanghai China
- University of Chinese Academy of Sciences 100049 Beijing China
| | - Huan Xiong
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech University 201210 Shanghai China
| | - Wei Wang
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech University 201210 Shanghai China
| | - Damiano Buratto
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech University 201210 Shanghai China
| | - Francesco Zonta
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech University 201210 Shanghai China
| | - Nan Wang
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech University 201210 Shanghai China
- School of Life Science and TechnologyShanghaiTech University 201210 Shanghai China
- Institute of Biochemistry and Cell BiologyShanghai Institutes for Biological SciencesChinese Academy of Sciences 200031 Shanghai China
- University of Chinese Academy of Sciences 100049 Beijing China
| | - Kaiwen Liu
- School of Life Science and TechnologyShanghaiTech University 201210 Shanghai China
- Institute of Biochemistry and Cell BiologyShanghai Institutes for Biological SciencesChinese Academy of Sciences 200031 Shanghai China
- University of Chinese Academy of Sciences 100049 Beijing China
- iHuman InstituteShanghaiTech University 201210 Shanghai China
| | - Tian Hua
- iHuman InstituteShanghaiTech University 201210 Shanghai China
| | - Zhi‐Jie Liu
- iHuman InstituteShanghaiTech University 201210 Shanghai China
| | - Guang Yang
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech University 201210 Shanghai China
| | - Richard A. Lerner
- Department of ChemistryScripps Research Institute La Jolla CA 92037 USA
| |
Collapse
|
95
|
Ma P, Xu H, Li J, Lu F, Ma F, Wang S, Xiong H, Wang W, Buratto D, Zonta F, Wang N, Liu K, Hua T, Liu ZJ, Yang G, Lerner RA. Functionality-Independent DNA Encoding of Complex Natural Products. Angew Chem Int Ed Engl 2019; 58:9254-9261. [PMID: 31020752 DOI: 10.1002/anie.201901485] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Indexed: 01/06/2023]
Abstract
DNA encoded chemical libraries (DELs) link the powers of genetics and chemical synthesis via combinatorial optimization. Through combinatorial chemistry, DELs can grow to the unprecedented size of billions to trillions. To take full advantage of the DEL approach, linking the power of genetics directly to chemical structures would offer even greater diversity in a finite chemical world. Natural products have evolved an incredible structural diversity along with their biological evolution. Herein, we used traditional Chinese medicines (TCMs) as examples in a late-stage modification toolbox approach to annotate these complex organic compounds with amplifiable DNA barcodes, which could be easily incorporated into a DEL. The method of end-products labeling also generates a cluster of isomers with a single DNA tag at different sites. These isomers provide an additional spatial diversity for multiple accessible pockets of targeted proteins. Notably, a novel PARP1 inhibitor from TCM has been identified from the natural products enriched DEL (nDEL).
Collapse
Affiliation(s)
- Peixiang Ma
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210, Shanghai, China
| | - Hongtao Xu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210, Shanghai, China
| | - Jie Li
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China.,Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200031, Shanghai, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Fengping Lu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210, Shanghai, China
| | - Fei Ma
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210, Shanghai, China
| | - Shuyue Wang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China.,Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200031, Shanghai, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Huan Xiong
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210, Shanghai, China
| | - Wei Wang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210, Shanghai, China
| | - Damiano Buratto
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210, Shanghai, China
| | - Francesco Zonta
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210, Shanghai, China
| | - Nan Wang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China.,Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200031, Shanghai, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Kaiwen Liu
- School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China.,Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200031, Shanghai, China.,University of Chinese Academy of Sciences, 100049, Beijing, China.,iHuman Institute, ShanghaiTech University, 201210, Shanghai, China
| | - Tian Hua
- iHuman Institute, ShanghaiTech University, 201210, Shanghai, China
| | - Zhi-Jie Liu
- iHuman Institute, ShanghaiTech University, 201210, Shanghai, China
| | - Guang Yang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210, Shanghai, China
| | - Richard A Lerner
- Department of Chemistry, Scripps Research Institute, La Jolla, CA, 92037, USA
| |
Collapse
|
96
|
Zhao G, Huang Y, Zhou Y, Li Y, Li X. Future challenges with DNA-encoded chemical libraries in the drug discovery domain. Expert Opin Drug Discov 2019; 14:735-753. [DOI: 10.1080/17460441.2019.1614559] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Guixian Zhao
- Tumour Targeted Therapy and Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Yiran Huang
- Department of Chemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Yu Zhou
- Department of Chemistry, The University of Hong Kong, Hong Kong SAR, China
- Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Yizhou Li
- Tumour Targeted Therapy and Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Xiaoyu Li
- Department of Chemistry, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
97
|
Macrocyclic peptide-based inhibition and imaging of hepatocyte growth factor. Nat Chem Biol 2019; 15:598-606. [DOI: 10.1038/s41589-019-0285-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 04/03/2019] [Indexed: 11/08/2022]
|
98
|
Dickson P, Kodadek T. Chemical composition of DNA-encoded libraries, past present and future. Org Biomol Chem 2019; 17:4676-4688. [PMID: 31017595 PMCID: PMC6520149 DOI: 10.1039/c9ob00581a] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
DNA-encoded libraries represent an exciting and powerful modality for high-throughput screening. In this article, we highlight recent important advances in this field and also suggest some important directions that would make the technology even more powerful.
Collapse
Affiliation(s)
- Paige Dickson
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA.
| | | |
Collapse
|
99
|
Cochrane WG, Malone ML, Dang VQ, Cavett V, Satz AL, Paegel BM. Activity-Based DNA-Encoded Library Screening. ACS COMBINATORIAL SCIENCE 2019; 21:425-435. [PMID: 30884226 DOI: 10.1021/acscombsci.9b00037] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Robotic high-throughput compound screening (HTS) and, increasingly, DNA-encoded library (DEL) screening are driving bioactive chemical matter discovery in the postgenomic era. HTS enables activity-based investigation of highly complex targets using static compound libraries. Conversely, DEL grants efficient access to novel chemical diversity, although screening is limited to affinity-based selections. Here, we describe an integrated droplet-based microfluidic circuit that directly screens solid-phase DELs for activity. An example screen of a 67 100-member library for inhibitors of the phosphodiesterase autotaxin yielded 35 high-priority structures for nanomole-scale synthesis and validation (20 active), guiding candidate selection for synthesis at scale (5/5 compounds with IC50 values of 4-10 μM). We further compared activity-based hits with those of an analogous affinity-based DEL selection. This miniaturized screening platform paves the way toward applying DELs to more complex targets (signaling pathways, cellular response) and represents a distributable approach to small molecule discovery.
Collapse
Affiliation(s)
| | | | | | | | - Alexander L. Satz
- Roche Pharma Research and Early Development (pRED) Roche Innovation Center Basel F. Hoffman-La Roche Ltd Grenzacherstrasse 124 CH-4070 Basel Switzerland
| | | |
Collapse
|
100
|
Ottl J, Leder L, Schaefer JV, Dumelin CE. Encoded Library Technologies as Integrated Lead Finding Platforms for Drug Discovery. Molecules 2019; 24:E1629. [PMID: 31027189 PMCID: PMC6514559 DOI: 10.3390/molecules24081629] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/17/2019] [Accepted: 04/21/2019] [Indexed: 01/22/2023] Open
Abstract
The scope of targets investigated in pharmaceutical research is continuously moving into uncharted territory. Consequently, finding suitable chemical matter with current compound collections is proving increasingly difficult. Encoded library technologies enable the rapid exploration of large chemical space for the identification of ligands for such targets. These binders facilitate drug discovery projects both as tools for target validation, structural elucidation and assay development as well as starting points for medicinal chemistry. Novartis internalized two complementing encoded library platforms to accelerate the initiation of its drug discovery programs. For the identification of low-molecular weight ligands, we apply DNA-encoded libraries. In addition, encoded peptide libraries are employed to identify cyclic peptides. This review discusses how we apply these two platforms in our research and why we consider it beneficial to run both pipelines in-house.
Collapse
Affiliation(s)
- Johannes Ottl
- Novartis Institutes for Biomedical Research, 4056 Basel, Switzerland.
| | - Lukas Leder
- Novartis Institutes for Biomedical Research, 4056 Basel, Switzerland.
| | - Jonas V Schaefer
- Novartis Institutes for Biomedical Research, 4056 Basel, Switzerland.
| | | |
Collapse
|