51
|
Lansky S, Betancourt JM, Zhang J, Jiang Y, Kim ED, Paknejad N, Nimigean CM, Yuan P, Scheuring S. A pentameric TRPV3 channel with a dilated pore. Nature 2023; 621:206-214. [PMID: 37648856 PMCID: PMC10584365 DOI: 10.1038/s41586-023-06470-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 07/21/2023] [Indexed: 09/01/2023]
Abstract
Transient receptor potential (TRP) channels are a large, eukaryotic ion channel superfamily that control diverse physiological functions, and therefore are attractive drug targets1-5. More than 210 structures from more than 20 different TRP channels have been determined, and all are tetramers4. Despite this wealth of structures, many aspects concerning TRPV channels remain poorly understood, including the pore-dilation phenomenon, whereby prolonged activation leads to increased conductance, permeability to large ions and loss of rectification6,7. Here, we used high-speed atomic force microscopy (HS-AFM) to analyse membrane-embedded TRPV3 at the single-molecule level and discovered a pentameric state. HS-AFM dynamic imaging revealed transience and reversibility of the pentamer in dynamic equilibrium with the canonical tetramer through membrane diffusive protomer exchange. The pentamer population increased upon diphenylboronic anhydride (DPBA) addition, an agonist that has been shown to induce TRPV3 pore dilation. On the basis of these findings, we designed a protein production and data analysis pipeline that resulted in a cryogenic-electron microscopy structure of the TRPV3 pentamer, showing an enlarged pore compared to the tetramer. The slow kinetics to enter and exit the pentameric state, the increased pentamer formation upon DPBA addition and the enlarged pore indicate that the pentamer represents the structural correlate of pore dilation. We thus show membrane diffusive protomer exchange as an additional mechanism for structural changes and conformational variability. Overall, we provide structural evidence for a non-canonical pentameric TRP-channel assembly, laying the foundation for new directions in TRP channel research.
Collapse
Affiliation(s)
- Shifra Lansky
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, USA
| | - John Michael Betancourt
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, USA
- Neuroscience Graduate Program, Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Jingying Zhang
- Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, MO, USA
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, MO, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yining Jiang
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, USA
- Biochemistry and Structural Biology, Cell and Developmental Biology, and Molecular Biology Program, Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Elizabeth D Kim
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, USA
| | - Navid Paknejad
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Physiology, Biophysics and Systems Biology Graduate Program, Weill Cornell Medical College, New York, NY, USA
| | - Crina M Nimigean
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Peng Yuan
- Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, MO, USA
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, MO, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Simon Scheuring
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, USA.
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
52
|
Liu X, Wang W. Gating mechanism of the human α1β GlyR by glycine. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.08.552474. [PMID: 37609197 PMCID: PMC10441291 DOI: 10.1101/2023.08.08.552474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Glycine receptors (GlyRs) are members of the Cys-loop receptors that constitute a major portion of neurotransmitter receptors in the human nervous system. GlyRs are found in the spinal cord and brain mediating locomotive, sensory and cognitive functions, and are targets for pharmaceutical development. GlyRs share a general gating scheme with Cys-loop receptor family members, but the underlying mechanism is unclear. Recent resolution of heteromeric GlyRs structures in multiple functional states identified an invariable 4:1 α:β subunit stoichiometry and provided snapshots in the gating cycle, challenging previous beliefs and raising the fundamental questions of how α and β subunit functions in glycine binding and channel activation. In addition, how a single glycine-bound extracellular domain conformation leads to structurally and functionally different open and desensitized states remained enigmatic. In this study, we characterized in detail equilibrium properties as well as the transition kinetics between functional states. We show that while all allosteric sites bind cooperatively to glycine, occupation of 2 sites at the α-α interfaces is necessary and sufficient for GlyR activation. We also demonstrate differential glycine concentration dependence of desensitization rate, extent, and its recovery, which suggests separate but concerted roles of ligand-binding and ionophore reorganization. Based on these observations and available structural information, we developed a comprehensive quantitative gating model that accurately predicts both equilibrium and kinetical properties throughout glycine gating cycle. This model likely applies generally to the Cys-loop receptor family and informs on pharmaceutical endeavors in function modulation of this receptor family.
Collapse
|
53
|
Wang F, He J, Zhou Y, Ye L, Li B, Ma Z, Chen C, Zhang R, Lin Z, Tang J, Jin Z, Jiang Y, Lin N. A phase 1 study of dimdazenil to evaluate the pharmacokinetics, food effect and safety in Chinese healthy subjects. Front Pharmacol 2023; 14:1226014. [PMID: 37601041 PMCID: PMC10432719 DOI: 10.3389/fphar.2023.1226014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
Background and objective: As a partial positive allosteric modulator of the gamma-aminobutyric acid A (GABAA) receptor, dimdazenil was used for the treatment of insomnia with the potential to alleviate associated side effects compared to full agonists. The objective of this trial is to assess the safety, tolerability, food effect and pharmacokinetics following single and multiple doses of dimdazenil in Chinese healthy subjects. Methods: In this phase 1 trial, 36 healthy subjects aged ≥18 years were assigned to receive a single dose of 1.5, 2.5, or 5 mg dimdazenil, with each dose cohort consisting of 12 subjects, and 14 subjects were assigned to receive a multiple 2.5 mg daily dose of dimdazenil for 5 days. Safety, tolerability, and pharmacokinetic characteristics were evaluated. Results: Of the 50 subjects enrolled and 49 completed the trial, the incidences of treatment-emergent adverse events (AEs) in the single-dose groups of 1.5, 2.5, and 5 mg were 16.7%, 58.3% and 66.7% respectively, while 61.5% in the multiple-dose group. There were no serious AEs, deaths, AEs leading to discontinuation or AEs of requiring clinical intervention in any treatment groups. The most treatment-emergent AEs were dizziness (n = 4, 8.2%), hyperuricemia (n = 2, 6.1%), upper respiratory tract infection (n = 2, 6.1%), diastolic blood pressure decreased (n = 2, 6.1%), blood TG increased (n = 2, 6.1%) and RBC urine positive (n = 2, 6.1%). All AEs were mild-to-moderate and transient, and no severe AEs were documented in any study phase. The PK profile of dimdazenil and its active metabolite Ro46-1927 was linear across 1.5-5 mg oral doses in humans. The median Tmax for dimdazenil was in the range of 0.5-1.5 h, and the apparent terminal t1/2z ranged from 3.50 to 4.32 h. Taking Dimdazenil with food may delay Tmax and decrease Cmax, without affecting the total exposure (AUC). No relevant accumulations of dimdazenil and Ro 46-1927 were observed in multiple-dose group. Conclusion: Dimdazenil was generally well tolerated in healthy Chinese subjects after single and 5 days-multiple dosing. The pharmacokinetic properties of dimdazenil are compatible with a drug for the treatment of insomnia. Clinical Trial Registration: chinadrugtrials.org.cn, identifier CTR20201978.
Collapse
Affiliation(s)
- Fei Wang
- Phase 1 Clinical Trial Center, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jingjing He
- Shanghai Research Institute, Zhejiang Jingxin Pharmaceutical Co., Ltd., Shanghai, China
| | - Yanling Zhou
- Shanghai Research Institute, Zhejiang Jingxin Pharmaceutical Co., Ltd., Shanghai, China
| | - Lijun Ye
- Phase 1 Clinical Trial Center, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Bei Li
- Phase 1 Clinical Trial Center, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhiyuan Ma
- Phase 1 Clinical Trial Center, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chunyan Chen
- Shanghai Research Institute, Zhejiang Jingxin Pharmaceutical Co., Ltd., Shanghai, China
| | - Ruoxi Zhang
- Shanghai Research Institute, Zhejiang Jingxin Pharmaceutical Co., Ltd., Shanghai, China
| | - Zhaocun Lin
- Shanghai Research Institute, Zhejiang Jingxin Pharmaceutical Co., Ltd., Shanghai, China
| | - Jinshan Tang
- Shanghai Research Institute, Zhejiang Jingxin Pharmaceutical Co., Ltd., Shanghai, China
| | - Zhiping Jin
- Zhejiang Jingxin Pharmaceutical Co., Ltd., Shaoxing, China
| | - Yu Jiang
- Shanghai Research Institute, Zhejiang Jingxin Pharmaceutical Co., Ltd., Shanghai, China
| | - Nengming Lin
- Phase 1 Clinical Trial Center, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- West lake Laboratory of Life Sciences and Biomedicine of Zhejiang Province, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| |
Collapse
|
54
|
Koniuszewski F, Vogel FD, Dajić I, Seidel T, Kunze M, Willeit M, Ernst M. Navigating the complex landscape of benzodiazepine- and Z-drug diversity: insights from comprehensive FDA adverse event reporting system analysis and beyond. Front Psychiatry 2023; 14:1188101. [PMID: 37457785 PMCID: PMC10345211 DOI: 10.3389/fpsyt.2023.1188101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/05/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction Medications which target benzodiazepine (BZD) binding sites of GABAA receptors (GABAARs) have been in widespread use since the nineteen-sixties. They carry labels as anxiolytics, hypnotics or antiepileptics. All benzodiazepines and several nonbenzodiazepine Z-drugs share high affinity binding sites on certain subtypes of GABAA receptors, from which they can be displaced by the clinically used antagonist flumazenil. Additional binding sites exist and overlap in part with sites used by some general anaesthetics and barbiturates. Despite substantial preclinical efforts, it remains unclear which receptor subtypes and ligand features mediate individual drug effects. There is a paucity of literature comparing clinically observed adverse effect liabilities across substances in methodologically coherent ways. Methods In order to examine heterogeneity in clinical outcome, we screened the publicly available U.S. FDA adverse event reporting system (FAERS) database for reports of individual compounds and analyzed them for each sex individually with the use of disproportionality analysis. The complementary use of physico-chemical descriptors provides a molecular basis for the analysis of clinical observations of wanted and unwanted drug effects. Results and Discussion We found a multifaceted FAERS picture, and suggest that more thorough clinical and pharmacoepidemiologic investigations of the heterogenous side effect profiles for benzodiazepines and Z-drugs are needed. This may lead to more differentiated safety profiles and prescription practice for particular compounds, which in turn could potentially ease side effect burden in everyday clinical practice considerably. From both preclinical literature and pharmacovigilance data, there is converging evidence that this very large class of psychoactive molecules displays a broad range of distinctive unwanted effect profiles - too broad to be explained by the four canonical, so-called "diazepam-sensitive high-affinity interaction sites". The substance-specific signatures of compound effects may partly be mediated by phenomena such as occupancy of additional binding sites, and/or synergistic interactions with endogenous substances like steroids and endocannabinoids. These in turn drive the wanted and unwanted effects and sex differences of individual compounds.
Collapse
Affiliation(s)
- Filip Koniuszewski
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University Vienna, Vienna, Austria
| | - Florian D. Vogel
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University Vienna, Vienna, Austria
| | - Irena Dajić
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Thomas Seidel
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Markus Kunze
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University Vienna, Vienna, Austria
| | - Matthäus Willeit
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Margot Ernst
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University Vienna, Vienna, Austria
| |
Collapse
|
55
|
Lu C, Zhu X, Feng Y, Ao W, Li J, Gao Z, Luo H, Chen M, Cai F, Zhan S, Li H, Sun W, Hu J. Atypical antipsychotics antagonize GABA A receptors in the ventral tegmental area GABA neurons to relieve psychotic behaviors. Mol Psychiatry 2023; 28:2107-2121. [PMID: 36754983 DOI: 10.1038/s41380-023-01982-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/19/2023] [Accepted: 01/24/2023] [Indexed: 02/10/2023]
Abstract
Psychosis is an abnormal mental condition that can cause patients to lose contact with reality. It is a common symptom of schizophrenia, bipolar disorder, sleep deprivation, and other mental disorders. Clinically, antipsychotic medications, such as olanzapine and clozapine, are very effective in treatment for psychosis. To investigate the neural circuit mechanism that is affected by antipsychotics and identify more selective therapeutic targets, we employed a strategy by using these effective antipsychotics to identify antipsychotic neural substrates. We observed that local injection of antipsychotics into the ventral tegmental area (VTA) could reverse the sensorimotor gating defects induced by MK-801 injection in mice. Using in vivo fiber photometry, electrophysiological techniques, and chemogenetics, we found that antipsychotics could activate VTA gamma-aminobutyric acid (GABA) neurons by blocking GABAA receptors. Moreover, we found that the VTAGABA nucleus accumbens (NAc) projection was crucially involved in such antipsychotic effects. In summary, our study identifies a novel therapeutic target for the treatment of psychosis and underscores the utility of a 'bedside-to-bench' approach for identifying neural circuits that influence psychotic disorders.
Collapse
Affiliation(s)
- Chen Lu
- School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Xiaona Zhu
- School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China.
| | - Yifan Feng
- School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Weizhen Ao
- School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
- iHuman Institute, ShanghaiTech University, 201210, Shanghai, China
| | - Jie Li
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 200030, Shanghai, China
| | - Zilong Gao
- School of Life Sciences, Westlake University, 310024, Hangzhou, China
| | - Huoqing Luo
- School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Ming Chen
- Institutes of Brain Science, Fudan University, 200032, Shanghai, China
| | - Fang Cai
- School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Shulu Zhan
- School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Hongxia Li
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Wenzhi Sun
- Chinese Institute for Brain Research, 102206, Beijing, China.
- School of Basic Medical Sciences, Capital Medical University, 100069, Beijing, China.
| | - Ji Hu
- School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China.
| |
Collapse
|
56
|
Sun C, Zhu H, Clark S, Gouaux E. Regulated assembly and neurosteroid modulation constrain GABA A receptor pharmacology in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.16.528867. [PMID: 36824901 PMCID: PMC9949137 DOI: 10.1101/2023.02.16.528867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Type A GABA receptors (GABA A Rs) are the principal inhibitory receptors in the brain and the target of a wide range of clinical agents, including anesthetics, sedatives, hypnotics, and antidepressants. However, our understanding of GABA A R pharmacology has been hindered by the vast number of pentameric assemblies that can be derived from a total 19 different subunits and the lack of structural knowledge of clinically relevant receptors. Here, we isolate native murine GABA A R assemblies containing the widely expressed α 1 subunit, and elucidate their structures in complex with drugs used to treat insomnia (zolpidem and flurazepam) and postpartum depression (the neurosteroid allopregnanolone). Using cryo-EM analysis and single-molecule photobleaching experiments, we uncover only three structural populations in the brain: the canonical α 1 β2γ 2 receptor containing two α 1 subunits and two unanticipated assemblies containing one α 1 and either an α 2 , α 3 or α 5 subunit. Both of the noncanonical assemblies feature a more compact arrangement between the transmembrane and extracellular domains. Interestingly, allopregnanolone is bound at the transmembrane α/β subunit interface, even when not added to the sample, revealing an important role for endogenous neurosteroids in modulating native GABA A Rs. Together with structurally engaged lipids, neurosteroids produce global conformational changes throughout the receptor that modify both the pore diameter and binding environments for GABA and insomnia medications. Together, our data reveal that GABA A R assembly is a strictly regulated process that yields a small number of structurally distinct complexes, defining a structural landscape from which subtype-specific drugs can be developed.
Collapse
|
57
|
Gatta E, Camussi D, Auta J, Guidotti A, Pandey SC. Neurosteroids (allopregnanolone) and alcohol use disorder: From mechanisms to potential pharmacotherapy. Pharmacol Ther 2022; 240:108299. [PMID: 36323379 PMCID: PMC9810076 DOI: 10.1016/j.pharmthera.2022.108299] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022]
Abstract
Alcohol Use Disorder (AUD) is a multifaceted relapsing disorder that is commonly comorbid with psychiatric disorders, including anxiety. Alcohol exposure produces a plethora of effects on neurobiology. Currently, therapeutic strategies are limited, and only a few treatments - disulfiram, acamprosate, and naltrexone - are available. Given the complexity of this disorder, there is a great need for the identification of novel targets to develop new pharmacotherapy. The GABAergic system, the primary inhibitory system in the brain, is one of the well-known targets for alcohol and is responsible for the anxiolytic effects of alcohol. Interestingly, GABAergic neurotransmission is fine-tuned by neuroactive steroids that exert a regulatory role on several endocrine systems involved in neuropsychiatric disorders including AUD. Mounting evidence indicates that alcohol alters the biosynthesis of neurosteroids, whereas acute alcohol increases and chronic alcohol decreases allopregnanolone levels. Our recent work highlighted that chronic alcohol-induced changes in neurosteroid levels are mediated by epigenetic modifications, e.g., DNA methylation, affecting key enzymes involved in neurosteroid biosynthesis. These changes were associated with changes in GABAA receptor subunit expression, suggesting an imbalance between excitatory and inhibitory signaling in AUD. This review will recapitulate the role of neurosteroids in the regulation of the neuroendocrine system, highlight their role in the observed allostatic load in AUD, and develop a framework from mechanisms to potential pharmacotherapy.
Collapse
Affiliation(s)
- Eleonora Gatta
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, Psychiatric Institute, University of Illinois at Chicago, USA
| | - Diletta Camussi
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, Psychiatric Institute, University of Illinois at Chicago, USA
| | - James Auta
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, Psychiatric Institute, University of Illinois at Chicago, USA
| | - Alessandro Guidotti
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, Psychiatric Institute, University of Illinois at Chicago, USA
| | - Subhash C Pandey
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, Psychiatric Institute, University of Illinois at Chicago, USA; Jesse Brown Veterans Affairs Medical Center Chicago, IL 60612, USA.
| |
Collapse
|
58
|
Goldschen-Ohm MP. Benzodiazepine Modulation of GABA A Receptors: A Mechanistic Perspective. Biomolecules 2022; 12:1784. [PMID: 36551212 PMCID: PMC9775625 DOI: 10.3390/biom12121784] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/23/2022] [Accepted: 11/26/2022] [Indexed: 12/05/2022] Open
Abstract
Benzodiazepines (BZDs) are a class of widely prescribed psychotropic drugs that target GABAA receptors (GABAARs) to tune inhibitory synaptic signaling throughout the central nervous system. Despite knowing their molecular target for over 40 years, we still do not fully understand the mechanism of modulation at the level of the channel protein. Nonetheless, functional studies, together with recent cryo-EM structures of GABAA(α1)2(βX)2(γ2)1 receptors in complex with BZDs, provide a wealth of information to aid in addressing this gap in knowledge. Here, mechanistic interpretations of functional and structural evidence for the action of BZDs at GABAA(α1)2(βX)2(γ2)1 receptors are reviewed. The goal is not to describe each of the many studies that are relevant to this discussion nor to dissect in detail all the effects of individual mutations or perturbations but rather to highlight general mechanistic principles in the context of recent structural information.
Collapse
|
59
|
Schmiedhofer P, Vogel FD, Koniuszewski F, Ernst M. Cys-loop receptors on cannabinoids: All high? Front Physiol 2022; 13:1044575. [PMID: 36439263 PMCID: PMC9682269 DOI: 10.3389/fphys.2022.1044575] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/24/2022] [Indexed: 11/10/2022] Open
Abstract
Endocannabinoids (eCBS) are endogenously derived lipid signaling molecules that serve as tissue hormones and interact with multiple targets, mostly within the endocannabinoid system (ECS). The ECS is a highly conserved regulatory system involved in homeostatic regulation, organ formation, and immunomodulation of chordates. The term “cannabinoid” evolved from the distinctive class of plant compounds found in Cannabis sativa, an ancient herb, due to their action on CB1 and CB2 receptors. CB1/2 receptors are the primary targets for eCBs, but their effects are not limited to the ECS. Due to the high interest and extensive research on the ECS, knowledge on its constituents and physiological role is substantial and still growing. Crosstalk and multiple targeting of molecules are common features of endogenous and plant compounds. Cannabimimetic molecules can be divided according to their origin, natural or synthetic, including phytocannabinoids (pCB’s) or synthetic cannabinoids (sCB’s). The endocannabinoid system (ECS) consists of receptors, transporters, enzymes, and signaling molecules. In this review, we focus on the effects of cannabinoids on Cys-loop receptors. Cys-loop receptors belong to the class of membrane-bound pentameric ligand gated ion channels, each family comprising multiple subunits. Mammalians possess GABA type A receptors (GABAAR), glycine receptors (GlyR), serotonin receptors type 3 (5-HT3R), and nicotinic acetylcholine receptors (nAChR). Several studies have shown different modulatory effects of CBs on multiple members of the Cys-loop receptor family. We highlight the existing knowledge, especially on subunits and protein domains with conserved binding sites for CBs and their possible pharmacological and physiological role in epilepsy and in chronic pain. We further discuss the potential for cannabinoids as first line treatments in epilepsy, chronic pain and other neuropsychiatric conditions, indicated by their polypharmacology and therapeutic profile.
Collapse
Affiliation(s)
- Philip Schmiedhofer
- SBR Development Holding, Vienna, Austria
- *Correspondence: Philip Schmiedhofer, ; Margot Ernst,
| | - Florian Daniel Vogel
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University Vienna, Vienna, Austria
| | - Filip Koniuszewski
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University Vienna, Vienna, Austria
| | - Margot Ernst
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University Vienna, Vienna, Austria
- *Correspondence: Philip Schmiedhofer, ; Margot Ernst,
| |
Collapse
|
60
|
Crocetti L, Guerrini G, Melani F, Vergelli C, Mascia MP, Giovannoni MP. GABA A Receptor Modulators with a Pyrazolo[1,5-a]quinazoline Core: Synthesis, Molecular Modelling Studies and Electrophysiological Assays. Int J Mol Sci 2022; 23:13032. [PMID: 36361842 PMCID: PMC9658275 DOI: 10.3390/ijms232113032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 08/06/2023] Open
Abstract
As a continuation of our study in the GABAA receptor modulators field, we report the design and synthesis of new 8-chloropyrazolo[1,5-a]quinazoline derivatives. Molecular docking studies and the evaluation of the 'Proximity Frequencies' (exploiting our reported model) were performed on all the final compounds (3, 4, 6a-c, 7a,b, 8, 9, 12a-c, 13a,b, 14-19) to predict their profile on the α1β2γ2-GABAAR subtype. Furthermore, to verify whether the information coming from this virtual model was valid and, at the same time, to complete the study on this series, we evaluated the effects of compounds (1-100 µM) on the modulation of GABAA receptor function through electrophysiological techniques on recombinant α1β2γ2L-GABAA receptors expressed in Xenopus laevis oocytes. The matching between the virtual prediction and the electrophysiological tests makes our model a useful tool for the study of GABAA receptor modulators.
Collapse
Affiliation(s)
- Letizia Crocetti
- Neurofarba, Pharmaceutical and Nutraceutical Section, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
| | - Gabriella Guerrini
- Neurofarba, Pharmaceutical and Nutraceutical Section, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
| | - Fabrizio Melani
- Neurofarba, Pharmaceutical and Nutraceutical Section, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
| | - Claudia Vergelli
- Neurofarba, Pharmaceutical and Nutraceutical Section, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
| | - Maria Paola Mascia
- CNR-Institute of Neuroscience, Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy
| | - Maria Paola Giovannoni
- Neurofarba, Pharmaceutical and Nutraceutical Section, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
61
|
Recent Insight into Lipid Binding and Lipid Modulation of Pentameric Ligand-Gated Ion Channels. Biomolecules 2022; 12:biom12060814. [PMID: 35740939 PMCID: PMC9221113 DOI: 10.3390/biom12060814] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/03/2022] [Accepted: 06/08/2022] [Indexed: 02/04/2023] Open
Abstract
Pentameric ligand-gated ion channels (pLGICs) play a leading role in synaptic communication, are implicated in a variety of neurological processes, and are important targets for the treatment of neurological and neuromuscular disorders. Endogenous lipids and lipophilic compounds are potent modulators of pLGIC function and may help shape synaptic communication. Increasing structural and biophysical data reveal sites for lipid binding to pLGICs. Here, we update our evolving understanding of pLGIC–lipid interactions highlighting newly identified modes of lipid binding along with the mechanistic understanding derived from the new structural data.
Collapse
|
62
|
Can GABAkines Quiet the Noise? The GABAA Receptor Neurobiology and Pharmacology of Tinnitus. Biochem Pharmacol 2022; 201:115067. [DOI: 10.1016/j.bcp.2022.115067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 11/20/2022]
|