51
|
Comaills V, Castellano-Pozo M. Chromosomal Instability in Genome Evolution: From Cancer to Macroevolution. BIOLOGY 2023; 12:671. [PMID: 37237485 PMCID: PMC10215859 DOI: 10.3390/biology12050671] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023]
Abstract
The integrity of the genome is crucial for the survival of all living organisms. However, genomes need to adapt to survive certain pressures, and for this purpose use several mechanisms to diversify. Chromosomal instability (CIN) is one of the main mechanisms leading to the creation of genomic heterogeneity by altering the number of chromosomes and changing their structures. In this review, we will discuss the different chromosomal patterns and changes observed in speciation, in evolutional biology as well as during tumor progression. By nature, the human genome shows an induction of diversity during gametogenesis but as well during tumorigenesis that can conclude in drastic changes such as the whole genome doubling to more discrete changes as the complex chromosomal rearrangement chromothripsis. More importantly, changes observed during speciation are strikingly similar to the genomic evolution observed during tumor progression and resistance to therapy. The different origins of CIN will be treated as the importance of double-strand breaks (DSBs) or the consequences of micronuclei. We will also explain the mechanisms behind the controlled DSBs, and recombination of homologous chromosomes observed during meiosis, to explain how errors lead to similar patterns observed during tumorigenesis. Then, we will also list several diseases associated with CIN, resulting in fertility issues, miscarriage, rare genetic diseases, and cancer. Understanding better chromosomal instability as a whole is primordial for the understanding of mechanisms leading to tumor progression.
Collapse
Affiliation(s)
- Valentine Comaills
- Andalusian Center for Molecular Biology and Regenerative Medicine—CABIMER, University of Pablo de Olavide—University of Seville—CSIC, Junta de Andalucía, 41092 Seville, Spain
| | - Maikel Castellano-Pozo
- Andalusian Center for Molecular Biology and Regenerative Medicine—CABIMER, University of Pablo de Olavide—University of Seville—CSIC, Junta de Andalucía, 41092 Seville, Spain
- Genetic Department, Faculty of Biology, University of Seville, 41080 Seville, Spain
| |
Collapse
|
52
|
Dharanipragada P, Zhang X, Liu S, Lomeli SH, Hong A, Wang Y, Yang Z, Lo KZ, Vega-Crespo A, Ribas A, Moschos SJ, Moriceau G, Lo RS. Blocking Genomic Instability Prevents Acquired Resistance to MAPK Inhibitor Therapy in Melanoma. Cancer Discov 2023; 13:880-909. [PMID: 36700848 PMCID: PMC10068459 DOI: 10.1158/2159-8290.cd-22-0787] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/27/2022] [Accepted: 01/23/2023] [Indexed: 01/27/2023]
Abstract
Blocking cancer genomic instability may prevent tumor diversification and escape from therapies. We show that, after MAPK inhibitor (MAPKi) therapy in patients and mice bearing patient-derived xenografts (PDX), acquired resistant genomes of metastatic cutaneous melanoma specifically amplify resistance-driver, nonhomologous end-joining (NHEJ), and homologous recombination repair (HRR) genes via complex genomic rearrangements (CGR) and extrachromosomal DNAs (ecDNA). Almost all sensitive and acquired-resistant genomes harbor pervasive chromothriptic regions with disproportionately high mutational burdens and significant overlaps with ecDNA and CGR spans. Recurrently, somatic mutations within ecDNA and CGR amplicons enrich for HRR signatures, particularly within acquired resistant tumors. Regardless of sensitivity or resistance, breakpoint-junctional sequence analysis suggests NHEJ as critical to double-stranded DNA break repair underlying CGR and ecDNA formation. In human melanoma cell lines and PDXs, NHEJ targeting by a DNA-PKCS inhibitor prevents/delays acquired MAPKi resistance by reducing the size of ecDNAs and CGRs early on combination treatment. Thus, targeting the causes of genomic instability prevents acquired resistance. SIGNIFICANCE Acquired resistance often results in heterogeneous, redundant survival mechanisms, which challenge strategies aimed at reversing resistance. Acquired-resistant melanomas recurrently evolve resistance-driving and resistance-specific amplicons via ecDNAs and CGRs, thereby nominating chromothripsis-ecDNA-CGR biogenesis as a resistance-preventive target. Specifically, targeting DNA-PKCS/NHEJ prevents resistance by suppressing ecDNA/CGR rearrangements in MAPKi-treated melanomas. This article is highlighted in the In This Issue feature, p. 799.
Collapse
Affiliation(s)
- Prashanthi Dharanipragada
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Xiao Zhang
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Sixue Liu
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Shirley H. Lomeli
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Aayoung Hong
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Yan Wang
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Zhentao Yang
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Kara Z. Lo
- Division of Hematology/Oncology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Agustin Vega-Crespo
- Division of Hematology/Oncology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Antoni Ribas
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
- Division of Hematology/Oncology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
- Division of Surgical Oncology, Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Stergios J. Moschos
- Division of Medical Oncology, Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Gatien Moriceau
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Roger S. Lo
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| |
Collapse
|
53
|
MacDonald KM, Nicholson-Puthenveedu S, Tageldein MM, Khasnis S, Arrowsmith CH, Harding SM. Antecedent chromatin organization determines cGAS recruitment to ruptured micronuclei. Nat Commun 2023; 14:556. [PMID: 36732527 PMCID: PMC9894866 DOI: 10.1038/s41467-023-36195-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 01/17/2023] [Indexed: 02/04/2023] Open
Abstract
Micronuclei (MN) are cytosolic bodies that sequester acentric fragments or mis-segregated chromosomes from the primary nucleus. Spontaneous rupture of the MN envelope allows recognition by the viral receptor cyclic GMP-AMP synthase (cGAS), initiating interferon signaling downstream of DNA damage. Here, we demonstrate that MN rupture is permissive but not sufficient for cGAS localization. Chromatin characteristics such as histone 3, lysine 79 dimethylation (H3K79me2) are present in the nucleus before DNA damage, retained in ruptured MN, and regulate cGAS recruitment. cGAS is further responsive to dynamic intra-MN processes occurring prior to rupture, including transcription. MN chromatin tethering via the nucleosome acidic patch is necessary for cGAS-dependent interferon signaling. Our data suggest that both damage-antecedent nuclear chromatin status and MN-contained chromatin organizational changes dictate cGAS recruitment and the magnitude of the cGAS-driven interferon cascade. Our work defines MN as integrative signaling hubs for the cellular response to genotoxic stress.
Collapse
Affiliation(s)
- Kate M MacDonald
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | | | - Maha M Tageldein
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Sarika Khasnis
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada
| | - Cheryl H Arrowsmith
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | - Shane M Harding
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada.
- Departments of Radiation Oncology and Immunology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
54
|
Abstract
In most organisms, the whole genome is maintained throughout the life span. However, exceptions occur in some species where the genome is reduced during development through a process known as programmed DNA elimination (PDE). In the human and pig parasite Ascaris, PDE occurs during the 4 to 16 cell stages of embryogenesis, when germline chromosomes are fragmented and specific DNA sequences are reproducibly lost in all somatic cells. PDE was identified in Ascaris over 120 years ago, but little was known about its molecular details until recently. Genome sequencing revealed that approximately 1,000 germline-expressed genes are eliminated in Ascaris, suggesting PDE is a gene silencing mechanism. All germline chromosome ends are removed and remodeled during PDE. In addition, PDE increases the number of chromosomes in the somatic genome by splitting many germline chromosomes. Comparative genomics indicates that these germline chromosomes arose from fusion events. PDE separates these chromosomes at the fusion sites. These observations indicate that PDE plays a role in chromosome karyotype and evolution. Furthermore, comparative analysis of PDE in other parasitic and free-living nematodes illustrates conserved features of PDE, suggesting it has important biological significance. We summarize what is known about PDE in Ascaris and its relatives. We also discuss other potential functions, mechanisms, and the evolution of PDE in these parasites of humans and animals of veterinary importance.
Collapse
|
55
|
Ellwanger JH, Kulmann-Leal B, Ziliotto M, Chies JAB. HIV Infection, Chromosome Instability, and Micronucleus Formation. Viruses 2023; 15:155. [PMID: 36680195 PMCID: PMC9867034 DOI: 10.3390/v15010155] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/28/2022] [Accepted: 01/01/2023] [Indexed: 01/06/2023] Open
Abstract
Genome integrity is critical for proper cell functioning, and chromosome instability can lead to age-related diseases, including cancer and neurodegenerative disorders. Chromosome instability is caused by multiple factors, including replication stress, chromosome missegregation, exposure to pollutants, and viral infections. Although many studies have investigated the effects of environmental or lifestyle genotoxins on chromosomal integrity, information on the effects of viral infections on micronucleus formation and other chromosomal aberrations is still limited. Currently, HIV infection is considered a chronic disease treatable by antiretroviral therapy (ART). However, HIV-infected individuals still face important health problems, such as chronic inflammation and age-related diseases. In this context, this article reviews studies that have evaluated genomic instability using micronucleus assays in the context of HIV infection. In brief, HIV can induce chromosome instability directly through the interaction of HIV proteins with host DNA and indirectly through chronic inflammation or as a result of ART use. Connections between HIV infection, immunosenescence and age-related disease are discussed in this article. The monitoring of HIV-infected individuals should consider the increased risk of chromosome instability, and lifestyle interventions, such as reduced exposure to genotoxins and an antioxidant-rich diet, should be considered. Therapies to reduce chronic inflammation in HIV infection are needed.
Collapse
Affiliation(s)
- Joel Henrique Ellwanger
- Postgraduate Program in Genetics and Molecular Biology (PPGBM), Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 91501-970, Brazil
| | | | | | - José Artur Bogo Chies
- Postgraduate Program in Genetics and Molecular Biology (PPGBM), Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 91501-970, Brazil
| |
Collapse
|
56
|
de Groot D, Spanjaard A, Hogenbirk MA, Jacobs H. Chromosomal Rearrangements and Chromothripsis: The Alternative End Generation Model. Int J Mol Sci 2023; 24:ijms24010794. [PMID: 36614236 PMCID: PMC9821053 DOI: 10.3390/ijms24010794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 01/04/2023] Open
Abstract
Chromothripsis defines a genetic phenomenon where up to hundreds of clustered chromosomal rearrangements can arise in a single catastrophic event. The phenomenon is associated with cancer and congenital diseases. Most current models on the origin of chromothripsis suggest that prior to chromatin reshuffling numerous DNA double-strand breaks (DSBs) have to exist, i.e., chromosomal shattering precedes rearrangements. However, the preference of a DNA end to rearrange in a proximal accessible region led us to propose chromothripsis as the reaction product of successive chromatin rearrangements. We previously coined this process Alternative End Generation (AEG), where a single DSB with a repair-blocking end initiates a domino effect of rearrangements. Accordingly, chromothripsis is the end product of this domino reaction taking place in a single catastrophic event.
Collapse
Affiliation(s)
- Daniel de Groot
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Aldo Spanjaard
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Marc A. Hogenbirk
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
- Agendia NV, Radarweg 60, 1043 NT Amsterdam, The Netherlands
| | - Heinz Jacobs
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
- Correspondence: ; Tel.: +31-20-512-2065
| |
Collapse
|
57
|
Orsolic I, Carrier A, Esteller M. Genetic and epigenetic defects of the RNA modification machinery in cancer. Trends Genet 2023; 39:74-88. [PMID: 36379743 DOI: 10.1016/j.tig.2022.10.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/25/2022] [Accepted: 10/26/2022] [Indexed: 11/13/2022]
Abstract
Cancer was initially considered to be an exclusively genetic disease, but an interplay of dysregulated genetic and epigenetic mechanisms is now known to contribute to the cancer phenotype. More recently, chemical modifications of RNA molecules - the so-called epitranscriptome - have been found to regulate various aspects of RNA function and homeostasis. Specific enzymes, known as RNA-modifying proteins (RMPs), are responsible for depositing, removing, and reading chemical modifications in RNA. Intensive investigations in the epitranscriptomic field in recent years, in conjunction with great technological advances, have revealed the critical role of RNA modifications in regulating numerous cellular pathways. Furthermore, growing evidence has revealed that RNA modification machinery is often altered in human cancers, highlighting the enormous potential of RMPs as pharmacological targets or diagnostic markers.
Collapse
Affiliation(s)
- Ines Orsolic
- Josep Carreras Leukemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain
| | - Arnaud Carrier
- Josep Carreras Leukemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain
| | - Manel Esteller
- Josep Carreras Leukemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain; Centro de Investigacion Biomedica en Red Cancer (CIBERONC), 28029 Madrid, Spain; Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain; Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Catalonia, Spain.
| |
Collapse
|
58
|
Guo W, Comai L, Henry IM. Chromoanagenesis in plants: triggers, mechanisms, and potential impact. Trends Genet 2023; 39:34-45. [PMID: 36055901 DOI: 10.1016/j.tig.2022.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 11/30/2022]
Abstract
Chromoanagenesis is a single catastrophic event that involves, in most cases, localized chromosomal shattering and reorganization, resulting in a dramatically restructured chromosome. First discovered in cancer cells, it has since been observed in various other systems, including plants. In this review, we discuss the origin, characteristics, and potential mechanisms underlying chromoanagenesis in plants. We report that multiple processes, including mutagenesis and genetic engineering, can trigger chromoanagenesis via a variety of mechanisms such as micronucleation, breakage-fusion-bridge (BFB) cycles, or chain-like translocations. The resulting rearranged chromosomes can be preserved during subsequent plant growth, and sometimes inherited to the next generation. Because of their high tolerance to genome restructuring, plants offer a unique system for investigating the evolutionary consequences and potential practical applications of chromoanagenesis.
Collapse
Affiliation(s)
- Weier Guo
- Genome Center and Department of Plant Biology, University of California, Davis, Davis, CA 95616, USA
| | - Luca Comai
- Genome Center and Department of Plant Biology, University of California, Davis, Davis, CA 95616, USA
| | - Isabelle M Henry
- Genome Center and Department of Plant Biology, University of California, Davis, Davis, CA 95616, USA.
| |
Collapse
|
59
|
The cGAS-STING pathway and cancer. NATURE CANCER 2022; 3:1452-1463. [PMID: 36510011 DOI: 10.1038/s43018-022-00468-w] [Citation(s) in RCA: 228] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 10/17/2022] [Indexed: 12/14/2022]
Abstract
The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway has emerged as a critical innate immune pathway that, following engagement by DNA, promotes distinct immune effector responses that can impact virtually all aspects of tumorigenesis, from malignant cell transformation to metastasis. Here we address how natural tumor-associated processes and traditional cancer therapies are shaped by cGAS-STING signaling, and how this contributes to beneficial or detrimental outcomes of cancer. We consider current efforts to target the cGAS-STING axis in tumors and highlight new frontiers in cGAS-STING biology to inspire thinking about their connection to cancer.
Collapse
|
60
|
Amin SM, Islam T, Price NE, Wallace A, Guo X, Gomina A, Heidari M, Johnson KM, Lewis CD, Yang Z, Gates KS. Effects of Local Sequence, Reaction Conditions, and Various Additives on the Formation and Stability of Interstrand Cross-Links Derived from the Reaction of an Abasic Site with an Adenine Residue in Duplex DNA. ACS OMEGA 2022; 7:36888-36901. [PMID: 36278095 PMCID: PMC9583646 DOI: 10.1021/acsomega.2c05736] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
The experiments described here examined the effects of reaction conditions, various additives, and local sequence on the formation and stability interstrand cross-links (ICLs) derived from the reaction of an apurinic/apyrimidinic (AP) site with the exocyclic amino group of an adenine residue on the opposing strand in duplex DNA. Cross-link formation was observed in a range of different buffers, with faster formation rates observed at pH 5. Inclusion of the base excision repair enzyme alkyladenine DNA glycosylase (hAAG) which binds tightly to AP-containing duplexes decreased, but did not completely prevent, formation of the dA-AP ICL. Formation of the dA-AP ICL was not altered by the presence of the biological metal ion Mg2+ or the biological thiol, glutathione. Several organocatalysts of imine formation did not enhance the rate of dA-AP ICL formation. Duplex length did not have a large effect on dA-AP yield, so long as the melting temperature of the duplex was not significantly below the reaction temperature (the duplex must remain hybridized for efficient ICL formation). Formation of the dA-AP ICL was examined in over 40 different sequences that varied the neighboring and opposing bases at the cross-linking site. The results indicate that ICL formation can occur in a wide variety of sequence contexts under physiological conditions. Formation of the dA-AP ICL was strongly inhibited by the aldehyde-trapping agents methoxyamine and hydralazine, by NaBH3CN, by the intercalator ethidium bromide, and by the minor groove-binding agent netropsin. ICL formation was inhibited to some extent in bicarbonate and Tris buffers. The dA-AP ICL showed substantial inherent stability under a variety of conditions and was not a substrate for AP-processing enzymes APE1 or Endo IV. Finally, we characterized cross-link formation in a small (11 bp) stem-loop (hairpin) structure and in DNA-RNA hybrid duplexes.
Collapse
Affiliation(s)
- Saosan
Binth Md. Amin
- Department
of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Tanhaul Islam
- Department
of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Nathan E. Price
- Department
of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Amanda Wallace
- Department
of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Xu Guo
- Department
of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Anuoluwapo Gomina
- Department
of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Marjan Heidari
- Department
of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Kevin M. Johnson
- Department
of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Calvin D. Lewis
- Department
of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Zhiyu Yang
- Department
of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Kent S. Gates
- Department
of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
- Department
of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
61
|
Audrey A, de Haan L, van Vugt MATM, de Boer HR. Processing DNA lesions during mitosis to prevent genomic instability. Biochem Soc Trans 2022; 50:1105-1118. [PMID: 36040211 PMCID: PMC9444068 DOI: 10.1042/bst20220049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 11/17/2022]
Abstract
Failure of cells to process toxic double-strand breaks (DSBs) constitutes a major intrinsic source of genome instability, a hallmark of cancer. In contrast with interphase of the cell cycle, canonical repair pathways in response to DSBs are inactivated in mitosis. Although cell cycle checkpoints prevent transmission of DNA lesions into mitosis under physiological condition, cancer cells frequently display mitotic DNA lesions. In this review, we aim to provide an overview of how mitotic cells process lesions that escape checkpoint surveillance. We outline mechanisms that regulate the mitotic DNA damage response and the different types of lesions that are carried over to mitosis, with a focus on joint DNA molecules arising from under-replication and persistent recombination intermediates, as well as DNA catenanes. Additionally, we discuss the processing pathways that resolve each of these lesions in mitosis. Finally, we address the acute and long-term consequences of unresolved mitotic lesions on cellular fate and genome stability.
Collapse
Affiliation(s)
- Anastasia Audrey
- Department of Medical Oncology, University Medical Center Groningen, Hanzeplein 1, 9713GZ Groningen, The Netherlands
| | - Lauren de Haan
- Department of Medical Oncology, University Medical Center Groningen, Hanzeplein 1, 9713GZ Groningen, The Netherlands
| | - Marcel A T M van Vugt
- Department of Medical Oncology, University Medical Center Groningen, Hanzeplein 1, 9713GZ Groningen, The Netherlands
| | - H Rudolf de Boer
- Department of Medical Oncology, University Medical Center Groningen, Hanzeplein 1, 9713GZ Groningen, The Netherlands
| |
Collapse
|
62
|
Haber JE. A shattering experience. Mol Cell 2022; 82:2360-2362. [PMID: 35803217 DOI: 10.1016/j.molcel.2022.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Tang et al. (2022) report that the DNA breaks that provoke chromothripsis-the pulverization and dramatic assembly into a rearranged chromosome-are generated by the base excision repair APE1 endonuclease, triggered by removing deoxyinosines that are created in DNA::RNA hybrids.
Collapse
Affiliation(s)
- James E Haber
- Rosenstiel Center and Department of Biology, Brandeis University, Waltham, MA 02154, USA.
| |
Collapse
|
63
|
Guo X, Hintzsche H, Xu W, Ni J, Xue J, Wang X. Interplay of cGAS with micronuclei: Regulation and diseases. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2022; 790:108440. [PMID: 35970331 DOI: 10.1016/j.mrrev.2022.108440] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 08/02/2022] [Accepted: 08/09/2022] [Indexed: 01/01/2023]
Abstract
In higher eukaryotes, sophisticate regulation of genome function requires all chromosomes to be packed into a single nucleus. Micronucleus (MN), the dissociative nucleus-like structure frequently observed in aging and multiple disease settings, has critical, yet under-recognized, pathophysiological functions. Micronuclei (MNi) have recently emerged as major sources of cytosolic DNA that can activate the cGAS-STING axis in a cell-intrinsic manner. However, MNi induced from different genotoxic stressors display great heterogeneity in binding or activating cGAS and the signaling responses downstream of the MN-induced cGAS-STING axis have divergent outcomes including autoimmunity, autoinflammation, metastasis, or cell death. Thus, full characterization of molecular network underpinning the interplay of cGAS and MN is important to elucidate the pathophysiological roles of immunogenic MN and design improved drugs that selectively target cancer via boosting the MN-derived cGAS-STING axis. Here, we summarize our current understanding of the mechanisms for self-DNA discrimination by cGAS. We focus on discussing how MN immunogencity is dictated by multiple mechanisms including integrity of micronuclear envelope, state of nucleosome and DNA, competitive factors, damaged mitochondrial DNA and micronucleophagy. We also describe emerging links between immunogenic MN and human diseases including cancer, neurodegenerative diseases and COVID-19. Particularly, we explore the exciting concept of inducing immunogenic MN as a therapeutic approach in treating cancer. We propose a new theoretical framework to describe immunogenic MN as a biological sensor to modulate cellular processes in response to genotoxic stress and provide perspectives on developing novel experimental approaches to unravel the complexity of MN immunogenicity regulation and immunogenic MN pathophysiology.
Collapse
Affiliation(s)
- Xihan Guo
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming, Yunnan 650500, China.
| | - Henning Hintzsche
- Department of Food Safety, Institute of Nutrition and Food Sciences, University of Bonn, Germany.
| | - Weijiang Xu
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming, Yunnan 650500, China
| | - Juan Ni
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming, Yunnan 650500, China
| | - Jinglun Xue
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Xu Wang
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming, Yunnan 650500, China.
| |
Collapse
|
64
|
Sui Y, Epstein A, Dominska M, Zheng DQ, Petes T, Klein H. Ribodysgenesis: sudden genome instability in the yeast Saccharomyces cerevisiae arising from RNase H2 cleavage at genomic-embedded ribonucleotides. Nucleic Acids Res 2022; 50:6890-6902. [PMID: 35748861 PMCID: PMC9262587 DOI: 10.1093/nar/gkac536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/27/2022] [Accepted: 06/07/2022] [Indexed: 12/24/2022] Open
Abstract
Ribonucleotides can be incorporated into DNA during replication by the replicative DNA polymerases. These aberrant DNA subunits are efficiently recognized and removed by Ribonucleotide Excision Repair, which is initiated by the heterotrimeric enzyme RNase H2. While RNase H2 is essential in higher eukaryotes, the yeast Saccharomyces cerevisiae can survive without RNase H2 enzyme, although the genome undergoes mutation, recombination and other genome instability events at an increased rate. Although RNase H2 can be considered as a protector of the genome from the deleterious events that can ensue from recognition and removal of embedded ribonucleotides, under conditions of high ribonucleotide incorporation and retention in the genome in a RNase H2-negative strain, sudden introduction of active RNase H2 causes massive DNA breaks and genome instability in a condition which we term 'ribodysgenesis'. The DNA breaks and genome instability arise solely from RNase H2 cleavage directed to the ribonucleotide-containing genome. Survivors of ribodysgenesis have massive loss of heterozygosity events stemming from recombinogenic lesions on the ribonucleotide-containing DNA, with increases of over 1000X from wild-type. DNA breaks are produced over one to two divisions and subsequently cells adapt to RNase H2 and ribonucleotides in the genome and grow with normal levels of genome instability.
Collapse
Affiliation(s)
- Yang Sui
- State Key Laboratory of Motor Vehicle Biofuel Technology, Ocean College, Zhejiang University, Zhoushan 316021, China,Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Anastasiya Epstein
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Margaret Dominska
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Dao-Qiong Zheng
- State Key Laboratory of Motor Vehicle Biofuel Technology, Ocean College, Zhejiang University, Zhoushan 316021, China,Hainan Institute of Zhejiang University, Sanya 572000, China,ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311200, China
| | - Thomas D Petes
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Hannah L Klein
- To whom correspondence should be addressed. Tel: +1 212 263 5778;
| |
Collapse
|