51
|
Rabab’h O, Gharaibeh A, Al-Ramadan A, Ismail M, Shah J. Pharmacological Approaches in Neurofibromatosis Type 1-Associated Nervous System Tumors. Cancers (Basel) 2021; 13:cancers13153880. [PMID: 34359780 PMCID: PMC8345673 DOI: 10.3390/cancers13153880] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/28/2021] [Accepted: 07/28/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Neurofibromatosis type 1 (NF1) is a common cancer predisposition genetic disease that is associated with significant morbidity and mortality. In this literature review, we discuss the major pathways in the nervous system that are affected by NF1, tumors that are associated with NF1, drugs that target these pathways, and genetic models of NF1. We also summarize the latest updates from clinical trials that are evaluating pharmacological agents to treat these tumors and discuss the efforts that are being made to cure the disease in the future Abstract Neurofibromatosis type 1 is an autosomal dominant genetic disease and a common tumor predisposition syndrome that affects 1 in 3000 to 4000 patients in the USA. Although studies have been conducted to better understand and manage this disease, the underlying pathogenesis of neurofibromatosis type 1 has not been completely elucidated, and this disease is still associated with significant morbidity and mortality. Treatment options are limited to surgery with chemotherapy for tumors in cases of malignant transformation. In this review, we summarize the advances in the development of targeted pharmacological interventions for neurofibromatosis type 1 and related conditions.
Collapse
Affiliation(s)
- Omar Rabab’h
- Insight Research Institute, Flint, MI 48507, USA; (O.R.); (A.G.); (A.A.-R.); (M.I.)
- Center for Cognition and Neuroethics, University of Michigan-Flint, Flint, MI 48502, USA
| | - Abeer Gharaibeh
- Insight Research Institute, Flint, MI 48507, USA; (O.R.); (A.G.); (A.A.-R.); (M.I.)
- Center for Cognition and Neuroethics, University of Michigan-Flint, Flint, MI 48502, USA
- Insight Institute of Neurosurgery & Neuroscience, Flint, MI 48507, USA
- Insight Surgical Hospital, Warren, MI 48091, USA
| | - Ali Al-Ramadan
- Insight Research Institute, Flint, MI 48507, USA; (O.R.); (A.G.); (A.A.-R.); (M.I.)
- Center for Cognition and Neuroethics, University of Michigan-Flint, Flint, MI 48502, USA
| | - Manar Ismail
- Insight Research Institute, Flint, MI 48507, USA; (O.R.); (A.G.); (A.A.-R.); (M.I.)
| | - Jawad Shah
- Insight Research Institute, Flint, MI 48507, USA; (O.R.); (A.G.); (A.A.-R.); (M.I.)
- Center for Cognition and Neuroethics, University of Michigan-Flint, Flint, MI 48502, USA
- Insight Institute of Neurosurgery & Neuroscience, Flint, MI 48507, USA
- Insight Surgical Hospital, Warren, MI 48091, USA
- Department of Medicine, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA
- Correspondence:
| |
Collapse
|
52
|
Solares I, Viñal D, Morales-Conejo M, Rodriguez-Salas N, Feliu J. Novel molecular targeted therapies for patients with neurofibromatosis type 1 with inoperable plexiform neurofibromas: a comprehensive review. ESMO Open 2021; 6:100223. [PMID: 34388689 PMCID: PMC8363824 DOI: 10.1016/j.esmoop.2021.100223] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 11/30/2022] Open
Abstract
Neurofibromatosis type 1 (NF1) is a genetic disorder that carries a higher risk of tumor development. Plexiform neurofibromas (PNs) are present in 50% of NF1 and cause significant morbidity when surgery is not feasible. Systemic therapies had not succeeded to reduce PN tumor volume until 2016 when the first trial with an MAPK/extracellular-signal-regulated kinase (MEK) inhibitor was published. We performed a systematic research on novel targeted therapies for patients with NF1 and PNs in PubMed, EMBASE, and conference abstracts with the last update in February 2021. Since 2016, seven trials have reported positive results with MEK inhibitors and other molecular targeted therapies (cabozantinib). Selumetinib has shown an overall response rate of 68% in children with NF1 and symptomatic inoperable PNs, and was associated with pain improvement and a manageable adverse events profile. This led to Food and Drug Administration (FDA) approval of selumetinib in May 2020. Recently, cabozantinib and mirdametinib have also proven their efficacy in adult population. Other MEK inhibitors such as trametinib and binimetinib have also communicated promising preliminary results. Ongoing trials in different populations and with intermittent dosing strategies are underway.
Collapse
Affiliation(s)
- I Solares
- Department of Internal Medicine, Reference Center for Inherited Metabolic Disease - MetabERN, University Hospital 12 de Octubre, UCM Madrid, Madrid, Spain
| | - D Viñal
- Department of Medical Oncology, Hospital Universitario La Paz, Madrid, Spain.
| | - M Morales-Conejo
- Department of Internal Medicine, Reference Center for Inherited Metabolic Disease - MetabERN, University Hospital 12 de Octubre, UCM Madrid, Madrid, Spain; Grupo de Enfermedades Mitocondriales y Neuromusculares, Instituto de Investigación Hospital 12 de Octubre (i+12), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - N Rodriguez-Salas
- Department of Medical Oncology, Hospital Universitario La Paz, Madrid, Spain; Translational Oncology Group, IdiPAZ, Madrid, Spain; Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain; CIBERONC, Madrid, Spain
| | - J Feliu
- Department of Medical Oncology, Hospital Universitario La Paz, Madrid, Spain; Translational Oncology Group, IdiPAZ, Madrid, Spain; Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain; CIBERONC, Madrid, Spain
| |
Collapse
|
53
|
Chang LS, Oblinger JL, Smith AE, Ferrer M, Angus SP, Hawley E, Petrilli AM, Beauchamp RL, Riecken LB, Erdin S, Poi M, Huang J, Bessler WK, Zhang X, Guha R, Thomas C, Burns SS, Gilbert TSK, Jiang L, Li X, Lu Q, Yuan J, He Y, Dixon SAH, Masters A, Jones DR, Yates CW, Haggarty SJ, La Rosa S, Welling DB, Stemmer-Rachamimov AO, Plotkin SR, Gusella JF, Guinney J, Morrison H, Ramesh V, Fernandez-Valle C, Johnson GL, Blakeley JO, Clapp DW. Brigatinib causes tumor shrinkage in both NF2-deficient meningioma and schwannoma through inhibition of multiple tyrosine kinases but not ALK. PLoS One 2021; 16:e0252048. [PMID: 34264955 PMCID: PMC8282008 DOI: 10.1371/journal.pone.0252048] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 05/07/2021] [Indexed: 12/21/2022] Open
Abstract
Neurofibromatosis Type 2 (NF2) is an autosomal dominant genetic syndrome caused by mutations in the NF2 tumor suppressor gene resulting in multiple schwannomas and meningiomas. There are no FDA approved therapies for these tumors and their relentless progression results in high rates of morbidity and mortality. Through a combination of high throughput screens, preclinical in vivo modeling, and evaluation of the kinome en masse, we identified actionable drug targets and efficacious experimental therapeutics for the treatment of NF2 related schwannomas and meningiomas. These efforts identified brigatinib (ALUNBRIG®), an FDA-approved inhibitor of multiple tyrosine kinases including ALK, to be a potent inhibitor of tumor growth in established NF2 deficient xenograft meningiomas and a genetically engineered murine model of spontaneous NF2 schwannomas. Surprisingly, neither meningioma nor schwannoma cells express ALK. Instead, we demonstrate that brigatinib inhibited multiple tyrosine kinases, including EphA2, Fer and focal adhesion kinase 1 (FAK1). These data demonstrate the power of the de novo unbiased approach for drug discovery and represents a major step forward in the advancement of therapeutics for the treatment of NF2 related malignancies.
Collapse
Affiliation(s)
- Long-Sheng Chang
- The Research Institute at Nationwide Children’s Hospital and Department of Pediatrics, Center for Childhood Cancer and Blood Diseases, The Ohio State University College of Medicine, Columbus, Ohio, United States of America
| | - Janet L. Oblinger
- The Research Institute at Nationwide Children’s Hospital and Department of Pediatrics, Center for Childhood Cancer and Blood Diseases, The Ohio State University College of Medicine, Columbus, Ohio, United States of America
| | - Abbi E. Smith
- Department of Pediatrics, Indiana University, School of Medicine, Indianapolis, Indiana, United States of America
| | - Marc Ferrer
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Steven P. Angus
- Department of Pediatrics, Indiana University, School of Medicine, Indianapolis, Indiana, United States of America
- University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Eric Hawley
- Department of Pediatrics, Indiana University, School of Medicine, Indianapolis, Indiana, United States of America
| | - Alejandra M. Petrilli
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Lake Nona-Orlando, Florida, United States of America
| | - Roberta L. Beauchamp
- Massachusetts General Hospital and Department of Neurology, Center for Genomic Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | | | - Serkan Erdin
- Massachusetts General Hospital and Department of Neurology, Center for Genomic Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ming Poi
- Division of Pharmacy Practice and Science, The Ohio State University College of Pharmacy, Columbus, Ohio, United States of America
| | - Jie Huang
- The Research Institute at Nationwide Children’s Hospital and Department of Pediatrics, Center for Childhood Cancer and Blood Diseases, The Ohio State University College of Medicine, Columbus, Ohio, United States of America
| | - Waylan K. Bessler
- Department of Pediatrics, Indiana University, School of Medicine, Indianapolis, Indiana, United States of America
| | - Xiaohu Zhang
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Rajarshi Guha
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Craig Thomas
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sarah S. Burns
- The Research Institute at Nationwide Children’s Hospital and Department of Pediatrics, Center for Childhood Cancer and Blood Diseases, The Ohio State University College of Medicine, Columbus, Ohio, United States of America
| | - Thomas S. K. Gilbert
- University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Li Jiang
- Department of Pediatrics, Indiana University, School of Medicine, Indianapolis, Indiana, United States of America
| | - Xiaohong Li
- Department of Pediatrics, Indiana University, School of Medicine, Indianapolis, Indiana, United States of America
| | - Qingbo Lu
- Department of Pediatrics, Indiana University, School of Medicine, Indianapolis, Indiana, United States of America
| | - Jin Yuan
- Department of Pediatrics, Indiana University, School of Medicine, Indianapolis, Indiana, United States of America
| | - Yongzheng He
- Department of Pediatrics, Indiana University, School of Medicine, Indianapolis, Indiana, United States of America
| | - Shelley A. H. Dixon
- Department of Pediatrics, Indiana University, School of Medicine, Indianapolis, Indiana, United States of America
| | - Andrea Masters
- Department of Pediatrics, Indiana University, School of Medicine, Indianapolis, Indiana, United States of America
| | - David R. Jones
- Department of Pediatrics, Indiana University, School of Medicine, Indianapolis, Indiana, United States of America
| | - Charles W. Yates
- Department of Otolaryngology and Head/Neck Surgery, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Stephen J. Haggarty
- Massachusetts General Hospital and Department of Neurology, Center for Genomic Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Salvatore La Rosa
- Children’s Tumor Foundation, New York, New York, United States of America
| | - D. Bradley Welling
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Massachusetts General Hospital and Harvard University, Boston, Massachusetts, United States of America
| | - Anat O. Stemmer-Rachamimov
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Scott R. Plotkin
- Massachusetts General Hospital and Department of Neurology, Center for Genomic Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - James F. Gusella
- Center for Genomic Medicine, Massachusetts General Hospital and Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Justin Guinney
- Sage Bionetworks, Seattle, Washington, United States of America
| | - Helen Morrison
- Leibniz Institute on Aging–Fritz-Lipmann Institute (FLI), Jena, Germany
| | - Vijaya Ramesh
- Massachusetts General Hospital and Department of Neurology, Center for Genomic Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Cristina Fernandez-Valle
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Lake Nona-Orlando, Florida, United States of America
| | - Gary L. Johnson
- University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Jaishri O. Blakeley
- Departments of Neurology, Neurosurgery and Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - D. Wade Clapp
- Department of Pediatrics, Indiana University, School of Medicine, Indianapolis, Indiana, United States of America
| | | |
Collapse
|