51
|
Karnkowska A, Bennett MS, Triemer RE. Dynamic evolution of inverted repeats in Euglenophyta plastid genomes. Sci Rep 2018; 8:16071. [PMID: 30375469 PMCID: PMC6207741 DOI: 10.1038/s41598-018-34457-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 10/18/2018] [Indexed: 11/22/2022] Open
Abstract
Photosynthetic euglenids (Euglenophyta) are a monophyletic group of unicellular eukaryotes characterized by the presence of plastids, which arose as the result of the secondary endosymbiosis. Many Euglenophyta plastid (pt) genomes have been characterized recently, but they represented mainly one family - Euglenaceae. Here, we report a comparative analysis of plastid genomes from eight representatives of the family Phacaceae. Newly sequenced plastid genomes share a number of features including synteny and gene content, except for genes mat2 and mat5 encoding maturases. The observed diversity of intron number and presence/absence of maturases corroborated previously suggested correlation between the number of maturases in the pt genome and intron proliferation. Surprisingly, pt genomes of taxa belonging to Discoplastis and Lepocinclis encode two inverted repeat (IR) regions containing the rDNA operon, which are absent from the Euglenaceae. By mapping the presence/absence of IR region on the obtained phylogenomic tree, we reconstructed the most probable events in the evolution of IRs in the Euglenophyta. Our study highlights the dynamic nature of the Euglenophyta plastid genome, in particular with regards to the IR regions that underwent losses repeatedly.
Collapse
Affiliation(s)
- Anna Karnkowska
- Department of Molecular Phylogenetics and Evolution, Biological and Chemical Research Centre, Faculty of Biology, University of Warsaw, ul. Żwirki i Wigury 101, 02-089, Warsaw, Poland.
| | - Matthew S Bennett
- Department of Plant Biology, Michigan State University, 612 Wilson Rd, Room# 166 Plant Biology Labs, East Lansing, Michigan, 48824, USA
| | - Richard E Triemer
- Department of Plant Biology, Michigan State University, 612 Wilson Rd, Room# 166 Plant Biology Labs, East Lansing, Michigan, 48824, USA
| |
Collapse
|
52
|
Cremen MCM, Leliaert F, Marcelino VR, Verbruggen H. Large Diversity of Nonstandard Genes and Dynamic Evolution of Chloroplast Genomes in Siphonous Green Algae (Bryopsidales, Chlorophyta). Genome Biol Evol 2018; 10:1048-1061. [PMID: 29635329 PMCID: PMC5888179 DOI: 10.1093/gbe/evy063] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2018] [Indexed: 12/15/2022] Open
Abstract
Chloroplast genomes have undergone tremendous alterations through the evolutionary history of the green algae (Chloroplastida). This study focuses on the evolution of chloroplast genomes in the siphonous green algae (order Bryopsidales). We present five new chloroplast genomes, which along with existing sequences, yield a data set representing all but one families of the order. Using comparative phylogenetic methods, we investigated the evolutionary dynamics of genomic features in the order. Our results show extensive variation in chloroplast genome architecture and intron content. Variation in genome size is accounted for by the amount of intergenic space and freestanding open reading frames that do not show significant homology to standard plastid genes. We show the diversity of these nonstandard genes based on their conserved protein domains, which are often associated with mobile functions (reverse transcriptase/intron maturase, integrases, phage- or plasmid-DNA primases, transposases, integrases, ligases). Investigation of the introns showed proliferation of group II introns in the early evolution of the order and their subsequent loss in the core Halimedineae, possibly through RT-mediated intron loss.
Collapse
Affiliation(s)
| | - Frederik Leliaert
- Botanic Garden Meise, 1860 Meise, Belgium.,Department of Biology, Phycology Research Group, Ghent University, 9000 Ghent, Belgium
| | - Vanessa R Marcelino
- School of BioSciences, University of Melbourne, Parkville, Australia.,Centre for Infectious Diseases and Microbiology, Westmead Institute for Medical Research, and Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, New South Wales, Australia
| | - Heroen Verbruggen
- School of BioSciences, University of Melbourne, Parkville, Australia
| |
Collapse
|
53
|
Smith DR. Haematococcus lacustris: the makings of a giant-sized chloroplast genome. AOB PLANTS 2018; 10:ply058. [PMID: 30393516 PMCID: PMC6205361 DOI: 10.1093/aobpla/ply058] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 09/27/2018] [Indexed: 05/23/2023]
Abstract
Recent work on the chlamydomonadalean green alga Haematococcus lacustris uncovered the largest plastid genome on record: a whopping 1.35 Mb with >90 % non-coding DNA. A 500-word description of this genome was published in the journal Genome Announcements. But such a short report for such a large genome leaves many unanswered questions. For instance, the H. lacustris plastome was found to encode only 12 tRNAs, less than half that of a typical plastome, it appears to have a non-standard genetic code, and is one of only a few known plastid DNAs (ptDNAs), out of thousands of available sequences, not biased in adenine and thymine. Here, I take a closer look at the H. lacustris plastome, comparing its size, content and architecture to other large organelle DNAs, including those from close relatives in the Chlamydomonadales. I show that the H. lacustris plastid coding repertoire is not as unusual as initially thought, representing a standard set of rRNAs, tRNAs and protein-coding genes, where the canonical stop codon UGA appears to sometimes signify tryptophan. The intergenic spacers are dense with repeats, and it is within these regions where potential answers to the source of such extreme genomic expansion lie. By comparing ptDNA sequences of two closely related strains of H. lacustris, I argue that the mutation rate of the non-coding DNA is high and contributing to plastome inflation. Finally, by exploring publicly available RNA-sequencing data, I find that most of the intergenic ptDNA is transcriptionally active.
Collapse
Affiliation(s)
- David Roy Smith
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
54
|
Cremen MCM, Leliaert F, West J, Lam DW, Shimada S, Lopez-Bautista JM, Verbruggen H. Reassessment of the classification of Bryopsidales (Chlorophyta) based on chloroplast phylogenomic analyses. Mol Phylogenet Evol 2018; 130:397-405. [PMID: 30227214 DOI: 10.1016/j.ympev.2018.09.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/04/2018] [Accepted: 09/10/2018] [Indexed: 01/12/2023]
Abstract
The Bryopsidales is a morphologically diverse group of mainly marine green macroalgae characterized by a siphonous structure. The order is composed of three suborders - Ostreobineae, Bryopsidineae, and Halimedineae. While previous studies improved the higher-level classification of the order, the taxonomic placement of some genera in Bryopsidineae (Pseudobryopsis and Lambia) as well as the relationships between the families of Halimedineae remains uncertain. In this study, we re-assess the phylogeny of the order with datasets derived from chloroplast genomes, drastically increasing the taxon sampling by sequencing 32 new chloroplast genomes. The phylogenies presented here provided good support for the major lineages (suborders and most families) in Bryopsidales. In Bryopsidineae, Pseudobryopsis hainanensis was inferred as a distinct lineage from the three established families allowing us to establish the family Pseudobryopsidaceae. The Antarctic species Lambia antarctica was shown to be an early-branching lineage in the family Bryopsidaceae. In Halimedineae, we revealed several inconsistent phylogenetic positions of macroscopic taxa, and several entirely new lineages of microscopic species. A new classification scheme is proposed, which includes the merger of the families Pseudocodiaceae, Rhipiliaceae and Udoteaceae into a more broadly circumscribed Halimedaceae, and the establishment of tribes for the different lineages found therein. In addition, the deep-water genus Johnson-sea-linkia, currently placed in Rhipiliopsis, was reinstated based on our phylogeny.
Collapse
Affiliation(s)
- Ma Chiela M Cremen
- School of BioSciences, University of Melbourne, Parkville, 3010 Victoria, Australia.
| | - Frederik Leliaert
- Botanic Garden Meise, 1860 Meise, Belgium; Department of Biology, Phycology Research Group, Ghent University, 9000 Ghent, Belgium
| | - John West
- School of BioSciences, University of Melbourne, Parkville, 3010 Victoria, Australia
| | - Daryl W Lam
- Department of Biological Sciences, The University of Alabama, 35487 AL, USA
| | - Satoshi Shimada
- Faculty of Core Research, Natural Science Division, Ochanomizu University, 2-1-1 Otsuka, Bunkyo, Tokyo 112-8610, Japan
| | | | - Heroen Verbruggen
- School of BioSciences, University of Melbourne, Parkville, 3010 Victoria, Australia
| |
Collapse
|
55
|
Complex Analyses of Short Inverted Repeats in All Sequenced Chloroplast DNAs. BIOMED RESEARCH INTERNATIONAL 2018; 2018:1097018. [PMID: 30140690 PMCID: PMC6081594 DOI: 10.1155/2018/1097018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 06/19/2018] [Accepted: 07/12/2018] [Indexed: 01/14/2023]
Abstract
Chloroplasts are key organelles in the management of oxygen in algae and plants and are therefore crucial for all living beings that consume oxygen. Chloroplasts typically contain a circular DNA molecule with nucleus-independent replication and heredity. Using "palindrome analyser" we performed complete analyses of short inverted repeats (S-IRs) in all chloroplast DNAs (cpDNAs) available from the NCBI genome database. Our results provide basic parameters of cpDNAs including comparative information on localization, frequency, and differences in S-IR presence. In a total of 2,565 cpDNA sequences available, the average frequency of S-IRs in cpDNA genomes is 45 S-IRs/per kbp, significantly higher than that found in mitochondrial DNA sequences. The frequency of S-IRs in cpDNAs generally decreased with S-IR length, but not for S-IRs 15, 22, 24, or 27 bp long, which are significantly more abundant than S-IRs with other lengths. These results point to the importance of specific S-IRs in cpDNA genomes. Moreover, comparison by Levenshtein distance of S-IR similarities showed that a limited number of S-IR sequences are shared in the majority of cpDNAs. S-IRs are not located randomly in cpDNAs, but are length-dependently enriched in specific locations, including the repeat region, stem, introns, and tRNA regions. The highest enrichment was found for 12 bp and longer S-IRs in the stem-loop region followed by 12 bp and longer S-IRs located before the repeat region. On the other hand, S-IRs are relatively rare in rRNA sequences and around introns. These data show nonrandom and conserved arrangements of S-IRs in chloroplast genomes.
Collapse
|
56
|
Fang L, Leliaert F, Novis PM, Zhang Z, Zhu H, Liu G, Penny D, Zhong B. Improving phylogenetic inference of core Chlorophyta using chloroplast sequences with strong phylogenetic signals and heterogeneous models. Mol Phylogenet Evol 2018; 127:248-255. [PMID: 29885933 DOI: 10.1016/j.ympev.2018.06.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/26/2018] [Accepted: 06/04/2018] [Indexed: 01/09/2023]
Abstract
Phylogenetic relationships within the green algal phylum Chlorophyta have proven difficult to resolve. The core Chlorophyta include Chlorophyceae, Ulvophyceae, Trebouxiophyceae, Pedinophyceae and Chlorodendrophyceae, but the relationships among these classes remain unresolved and the monophyly of Ulvophyceae and Trebouxiophyceae are highly controversial. We analyzed a dataset of 101 green algal species and 73 protein-coding genes sampled from complete and partial chloroplast genomes, including six newly sequenced ulvophyte genomes (Blidingia minima NIES-1837, Ulothrix zonata, Halochlorococcum sp. NIES-1838, Scotinosphaera sp. NIES-154, Caulerpa brownii and Cephaleuros sp. HZ-2017). We applied the Tree Certainty (TC) score to quantify the level of incongruence between phylogenetic trees in chloroplast genomic datasets, and show that the conflicting phylogenetic trees of core Chlorophyta stem from the most GC-heterogeneous sites. With removing the most GC-heterogeneous sites, our chloroplast phylogenomic analyses using heterogeneous models consistently support monophyly of the Chlorophyceae and of the Trebouxiophyceae, but the Ulvophyceae was resolved as polyphyletic. Our analytical framework provides an efficient approach to reconstruct the optimal phylogenetic relationships by minimizing conflicting signals.
Collapse
Affiliation(s)
- Ling Fang
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Frederik Leliaert
- Botanic Garden Meise, 1860 Meise, Belgium; Phycology Research Group, Biology Department, Ghent University, 9000 Ghent, Belgium
| | - Phil M Novis
- Allan Herbarium, Manaaki Whenua-Landcare Research, Lincoln 7640, New Zealand
| | - Zhenhua Zhang
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Huan Zhu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Guoxiang Liu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - David Penny
- Institute of Fundamental Sciences, Massey University, Palmerston North 4442, New Zealand
| | - Bojian Zhong
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
57
|
Lavi B, Levy Karin E, Pupko T, Hazkani-Covo E. The Prevalence and Evolutionary Conservation of Inverted Repeats in Proteobacteria. Genome Biol Evol 2018; 10:918-927. [PMID: 29608719 PMCID: PMC5941160 DOI: 10.1093/gbe/evy044] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2018] [Indexed: 12/11/2022] Open
Abstract
Perfect short inverted repeats (IRs) are known to be enriched in a variety of bacterial and eukaryotic genomes. Currently, it is unclear whether perfect IRs are conserved over evolutionary time scales. In this study, we aimed to characterize the prevalence and evolutionary conservation of IRs across 20 proteobacterial strains. We first identified IRs in Escherichia coli K-12 substr MG1655 and showed that they are overabundant. We next aimed to test whether this overabundance is reflected in the conservation of IRs over evolutionary time scales. To this end, for each perfect IR identified in E. coli MG1655, we collected orthologous sequences from related proteobacterial genomes. We next quantified the evolutionary conservation of these IRs, that is, the presence of the exact same IR across orthologous regions. We observed high conservation of perfect IRs: out of the 234 examined orthologous regions, 145 were more conserved than expected, which is statistically significant even after correcting for multiple testing. Our results together with previous experimental findings support a model in which imperfect IRs are corrected to perfect IRs in a preferential manner via a template switching mechanism.
Collapse
Affiliation(s)
- Bar Lavi
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Israel
- Department of Natural and Life Sciences, The Open University of Israel, Ra'anana, Israel
| | - Eli Levy Karin
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Israel
- Department of Molecular Biology & Ecology of Plants, George S. Wise Faculty of Life Sciences, Tel Aviv University, Israel
| | - Tal Pupko
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Israel
| | - Einat Hazkani-Covo
- Department of Natural and Life Sciences, The Open University of Israel, Ra'anana, Israel
| |
Collapse
|
58
|
Jackson C, Knoll AH, Chan CX, Verbruggen H. Plastid phylogenomics with broad taxon sampling further elucidates the distinct evolutionary origins and timing of secondary green plastids. Sci Rep 2018; 8:1523. [PMID: 29367699 PMCID: PMC5784168 DOI: 10.1038/s41598-017-18805-w] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 12/15/2017] [Indexed: 11/08/2022] Open
Abstract
Secondary plastids derived from green algae occur in chlorarachniophytes, photosynthetic euglenophytes, and the dinoflagellate genus Lepidodinium. Recent advances in understanding the origin of these plastids have been made, but analyses suffer from relatively sparse taxon sampling within the green algal groups to which they are related. In this study we aim to derive new insights into the identity of the plastid donors, and when in geological time the independent endosymbiosis events occurred. We use newly sequenced green algal chloroplast genomes from carefully chosen lineages potentially related to chlorarachniophyte and Lepidodinium plastids, combined with recently published chloroplast genomes, to present taxon-rich phylogenetic analyses to further pinpoint plastid origins. We integrate phylogenies with fossil information and relaxed molecular clock analyses. Our results indicate that the chlorarachniophyte plastid may originate from a precusor of siphonous green algae or a closely related lineage, whereas the Lepidodinium plastid originated from a pedinophyte. The euglenophyte plastid putatively originated from a lineage of prasinophytes within the order Pyramimonadales. Our molecular clock analyses narrow in on the likely timing of the secondary endosymbiosis events, suggesting that the event leading to Lepidodinium likely occurred more recently than those leading to the chlorarachniophyte and photosynthetic euglenophyte lineages.
Collapse
Affiliation(s)
- Christopher Jackson
- School of Biosciences, University of Melbourne, Melbourne, Victoria, 3010, Australia.
| | - Andrew H Knoll
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, 02138, USA
| | - Cheong Xin Chan
- Institute for Molecular Bioscience, and School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Heroen Verbruggen
- School of Biosciences, University of Melbourne, Melbourne, Victoria, 3010, Australia
| |
Collapse
|