51
|
Candas D, Li JJ. MnSOD in oxidative stress response-potential regulation via mitochondrial protein influx. Antioxid Redox Signal 2014; 20:1599-617. [PMID: 23581847 PMCID: PMC3942709 DOI: 10.1089/ars.2013.5305] [Citation(s) in RCA: 466] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
SIGNIFICANCE The mitochondrial antioxidant manganese superoxide dismutase (MnSOD) is encoded by genomic DNA and its dismutase function is fully activated in the mitochondria to detoxify free radical O2(•-) generated by mitochondrial respiration. Accumulating evidence shows an extensive communication between the mitochondria and cytoplasm under oxidative stress. Not only is the MnSOD gene upregulated by oxidative stress, but MnSOD activity can be enhanced via the mitochondrial protein influx (MPI). RECENT ADVANCES A cluster of MPI containing cytoplasmic/nuclear proteins, such as cyclins, cyclin-dependent kinases, and p53 interact with and alter MnSOD activity. These proteins modulate MnSOD superoxide scavenging activity via post-translational modifications in the mitochondria. In addition to well-established pathways in gene expression, recent findings suggest that MnSOD enzymatic activity can also be enhanced by phosphorylation of specific motifs in mitochondria. This review attempts to discuss the pre- and post-translational regulation of MnSOD, and how these modifications alter MnSOD activity, which induces a cell adaptive response to oxidative stress. CRITICAL ISSUES MnSOD is biologically significant to aerobic cells. Its role in protecting the cells against the deleterious effects of reactive oxygen species is evident. However, the exact network of MnSOD-associated cellular adaptive reaction to oxidative stress and its post-translational modifications, especially its enzymatic enhancement via phosphorylation, is not yet fully understood. FUTURE DIRECTIONS The broad discussion of the multiple aspects of MnSOD regulation, including gene expression, protein modifications, and enzymatic activity, will shed light onto the unknown mechanisms that govern the prosurvival networks involved in cellular and mitochondrial adaptive response to genotoxic environment.
Collapse
Affiliation(s)
- Demet Candas
- 1 Department of Radiation Oncology, University of California Davis , Sacramento, California
| | | |
Collapse
|
52
|
Li W, Wang H, Wang Q, Tan X. Structural, spectroscopic and functional investigation into Fe-substituted MnSOD from human pathogen Clostridium difficile. Metallomics 2014; 6:1540-8. [DOI: 10.1039/c4mt00090k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
SODcd could modulate the Fe and Mn dependent activity through its active site microenvironment.
Collapse
Affiliation(s)
- Wei Li
- Department of Chemistry & Institutes of Biomedical Sciences
- Fudan University
- Shanghai 200433, China
| | - Hongfei Wang
- Institute of Molecular Science
- Shanxi University
- Taiyuan 030006, China
| | - Qingli Wang
- College of Chemistry
- Chemical Engineering and Materials Science
- Shandong Normal University
- Jinan 250014, China
| | - Xiangshi Tan
- Department of Chemistry & Institutes of Biomedical Sciences
- Fudan University
- Shanghai 200433, China
| |
Collapse
|
53
|
Park J, McCormick SP, Chakrabarti M, Lindahl PA. Insights into the iron-ome and manganese-ome of Δmtm1 Saccharomyces cerevisiae mitochondria. Metallomics 2013; 5:656-72. [PMID: 23598994 DOI: 10.1039/c3mt00041a] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Biophysical spectroscopies and LC-ICP-MS were used to evaluate the iron-ome and manganese-ome of mitochondria from Δmtm1 yeast cells. Deleting the mitochondrial carrier gene MTM1 causes Fe to accumulate in mitochondria and Mn superoxide dismutase (SOD2) activity to decline. One explanation for this is that some accumulated Fe misincorporates into apo-Sod2p. Mössbauer spectroscopy revealed that most of the accumulated Fe was Fe(III) nanoparticles which are unlikely to misincorporate into apo-Sod2p. Under anaerobic conditions, Fe did not accumulate yet SOD2 activity remained low, suggesting that the two phenomena are independent. Mn concentrations were two-fold higher in Δmtm1 mitochondria than in WT mitochondria. Soluble extracts from such samples were subjected to size-exclusion LC and fractions were analyzed with an on-line ICP-MS. Two major Mn peaks were observed, one due to MnSod2p and the other to a Mn species with a mass of 2-3 kDa (called Mn2-3). Mn2-3 may deliver Mn into apo-Sod2p. Most Mn in WT mitochondria was associated with MnSod2p, whereas most Mn in Δmtm1 mitochondria was associated with Mn2-3. The [Mn2-3] increased in cells grown on high MnCl2 while the MnSod2p concentration remained unchanged. Corresponding Fe traces showed numerous peaks, including a complex of ~3 kDa which may be the form of Fe that misincorporates, and an Fe peak with the molecular mass of Sod2p that may correspond to FeSod2p. The intensity of this peak suggests that deleting MTM1 probably diminishes SOD2 activity by some means other than Fe misincorporation. A portion of Sod2p in Δmtm1 mitochondria might be unfolded or immature. Mtm1p may import a species required for apo-Sod2p maturation, activity or stability.
Collapse
Affiliation(s)
- Jinkyu Park
- Texas A&M University, Department of Chemistry, College Station, TX 77843, USA
| | | | | | | |
Collapse
|
54
|
Whittaker MM, Whittaker JW. Expression and purification of recombinant Saccharomyces cerevisiae mitochondrial carrier protein YGR257Cp (Mtm1p). Protein Expr Purif 2013; 93:77-86. [PMID: 24184947 DOI: 10.1016/j.pep.2013.10.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 09/11/2013] [Accepted: 10/23/2013] [Indexed: 12/27/2022]
Abstract
The Saccharomyces cerevisiae mitochondrial carrier YGR257Cp (Mtm1p) is an integral membrane protein that plays an essential role in mitochondrial iron homeostasis and respiratory functions, but its carrier substrate has not previously been identified. Large amounts of pure protein are required for biochemical characterization, including substrate screening. Functional complementation of a Saccharomyces knockout by expression of TwinStrep tagged YGR257Cp demonstrates that an affinity tag does not interfere with protein function, but the expression level is very low. Heterologous expression in Pichia pastoris improves the yield but the product is heterogeneous. Expression has been screened in several Escherichia coli hosts, optimizing yield by modifying induction conditions and supplementing with rare tRNAs to overcome codon bias in the eukaryotic gene. Detection of an additional N-terminal truncation product in E. coli reveals the presence of a secondary intracistronic translation initiation site, which can be eliminated by silent mutagenesis of an alternative (Leu) initiation codon, resulting in production of a single, full-length polypeptide (∼30% of the total protein) as insoluble inclusion bodies. Purified inclusion bodies were successfully refolded and affinity purified, yielding approximately 40mg of pure, soluble product per liter of culture. Refolded YGR257Cp binds pyridoxal 5'-phosphate tightly (KD<1μM), supporting a new hypothesis that the mitochondrial carrier YGR237Cp and its homologs function as high affinity PLP transporters in mitochondria, providing the first evidence for this essential transport function in eukaryotes.
Collapse
Affiliation(s)
- Mei M Whittaker
- Institute for Environmental Health, Division of Environmental and Biomolecular Systems, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239-3098, United States
| | | |
Collapse
|
55
|
Vest KE, Leary SC, Winge DR, Cobine PA. Copper import into the mitochondrial matrix in Saccharomyces cerevisiae is mediated by Pic2, a mitochondrial carrier family protein. J Biol Chem 2013; 288:23884-92. [PMID: 23846699 DOI: 10.1074/jbc.m113.470674] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Saccharomyces cerevisiae must import copper into the mitochondrial matrix for eventual assembly of cytochrome c oxidase. This copper is bound to an anionic fluorescent molecule known as the copper ligand (CuL). Here, we identify for the first time a mitochondrial carrier family protein capable of importing copper into the matrix. In vitro transport of the CuL into the mitochondrial matrix was saturable and temperature-dependent. Strains with a deletion of PIC2 grew poorly on copper-deficient non-fermentable medium supplemented with silver and under respiratory conditions when challenged with a matrix-targeted copper competitor. Mitochondria from pic2Δ cells had lower total mitochondrial copper and exhibited a decreased capacity for copper uptake. Heterologous expression of Pic2 in Lactococcus lactis significantly enhanced CuL transport into these cells. Therefore, we propose a novel role for Pic2 in copper import into mitochondria.
Collapse
Affiliation(s)
- Katherine E Vest
- Department of Biological Sciences, Auburn University, Auburn, Alabama 36849, USA
| | | | | | | |
Collapse
|
56
|
Abstract
Urease in Cryptococcus neoformans plays an important role in fungal dissemination to the brain and causing meningoencephalitis. Although urea is not required for synthesis of apourease encoded by URE1, the available nitrogen source affected the expression of URE1 as well as the level of the enzyme activity. Activation of the apoenzyme requires three accessory proteins, Ure4, Ure6, and Ure7, which are homologs of the bacterial urease accessory proteins UreD, UreF, and UreG, respectively. A yeast two-hybrid assay showed positive interaction of Ure1 with the three accessory proteins encoded by URE4, URE6, and URE7. Metalloproteomic analysis of cryptococcal lysates using inductively coupled plasma mass spectrometry (ICP-MS) and a biochemical assay of urease activity showed that, as in many other organisms, urease is a metallocentric enzyme that requires nickel transported by Nic1 for its catalytic activity. The Ure7 accessory protein (bacterial UreG homolog) binds nickel likely via its conserved histidine-rich domain and appears to be responsible for the incorporation of Ni2+ into the apourease. Although the cryptococcal genome lacks the bacterial UreE homolog, Ure7 appears to combine the functions of bacterial UreE and UreG, thus making this pathogen more similar to that seen with the plant system. Brain invasion by the ure1, ure7, and nic1 mutant strains that lack urease activity was significantly less effective in a mouse model. This indicated that an activated urease and not the Ure1 protein was responsible for enhancement of brain invasion and that the factors required for urease activation in C. neoformans resemble those of plants more than those of bacteria. Cryptococcus neoformans is the major fungal agent of meningoencephalitis in humans. Although urease is an important factor for cryptococcal brain invasion, the enzyme activation system has not been studied. We show that urease is a nickel-requiring enzyme whose activity level is influenced by the type of available nitrogen source. C. neoformans contains all the bacterial urease accessory protein homologs and nickel transporters except UreE, a nickel chaperone. Cryptococcal Ure7 (a homolog of UreG) apparently functions as both the bacterial UreG and UreE in activating the Ure1 apoenzyme. The cryptococcal urease accessory proteins Ure4, Ure6, and Ure7 interacted with Ure1 in a yeast two-hybrid assay, and deletion of any one of these not only inactivated the enzyme but also reduced the efficacy of brain invasion. This is the first study showing a holistic picture of urease in fungi, clarifying that urease activity, and not Ure1 protein, contributes to pathogenesis in C. neoformans
Collapse
|
57
|
Lee SH, Jouihan HA, Cooksey RC, Jones D, Kim HJ, Winge DR, McClain DA. Manganese supplementation protects against diet-induced diabetes in wild type mice by enhancing insulin secretion. Endocrinology 2013; 154:1029-38. [PMID: 23372018 PMCID: PMC3578995 DOI: 10.1210/en.2012-1445] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Mitochondrial dysfunction is both a contributing mechanism and complication of diabetes, and oxidative stress contributes to that dysfunction. Mitochondrial manganese-superoxide dismutase (MnSOD) is a metalloenzyme that provides antioxidant protection. We have previously shown in a mouse model of hereditary iron overload that cytosolic iron levels affected mitochondrial manganese availability, MnSOD activity, and insulin secretion. We therefore sought to determine the metallation status of MnSOD in wild-type mice and whether altering that status affected β-cell function. 129/SvEVTac mice given supplemental manganese exhibited a 73% increase in hepatic MnSOD activity and increased metallation of MnSOD. To determine whether manganese supplementation offered glucose homeostasis under a situation of β-cell stress, we challenged C57BL/6J mice, which are more susceptible to diet-induced diabetes, with a high-fat diet for 12 weeks. Manganese was supplemented or not for the final 8 weeks on that diet, after which we examined glucose tolerance and the function of isolated islets. Liver mitochondria from manganese-injected C57BL/6J mice had similar increases in MnSOD activity (81%) and metallation as were seen in 129/SvEVTac mice. The manganese-treated group fed high fat had improved glucose tolerance (24% decrease in fasting glucose and 41% decrease in area under the glucose curve), comparable with mice on normal chow and increased serum insulin levels. Isolated islets from the manganese-treated group exhibited improved insulin secretion, decreased lipid peroxidation, and improved mitochondrial function. In conclusion, MnSOD metallation and activity can be augmented with manganese supplementation in normal mice on normal chow, and manganese treatment can increase insulin secretion to improve glucose tolerance under conditions of dietary stress.
Collapse
Affiliation(s)
- Soh-Hyun Lee
- Departments of Internal Medicine and Biochemistry, Veterans Affairs Medical Center, Salt Lake City, UT 84132, USA
| | | | | | | | | | | | | |
Collapse
|
58
|
Aguirre JD, Clark HM, McIlvin M, Vazquez C, Palmere SL, Grab DJ, Seshu J, Hart PJ, Saito M, Culotta VC. A manganese-rich environment supports superoxide dismutase activity in a Lyme disease pathogen, Borrelia burgdorferi. J Biol Chem 2013; 288:8468-8478. [PMID: 23376276 DOI: 10.1074/jbc.m112.433540] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The Lyme disease pathogen Borrelia burgdorferi represents a novel organism in which to study metalloprotein biology in that this spirochete has uniquely evolved with no requirement for iron. Not only is iron low, but we show here that B. burgdorferi has the capacity to accumulate remarkably high levels of manganese. This high manganese is necessary to activate the SodA superoxide dismutase (SOD) essential for virulence. Using a metalloproteomic approach, we demonstrate that a bulk of B. burgdorferi SodA directly associates with manganese, and a smaller pool of inactive enzyme accumulates as apoprotein. Other metalloproteins may have similarly adapted to using manganese as co-factor, including the BB0366 aminopeptidase. Whereas B. burgdorferi SodA has evolved in a manganese-rich, iron-poor environment, the opposite is true for Mn-SODs of organisms such as Escherichia coli and bakers' yeast. These Mn-SODs still capture manganese in an iron-rich cell, and we tested whether the same is true for Borrelia SodA. When expressed in the iron-rich mitochondria of Saccharomyces cerevisiae, B. burgdorferi SodA was inactive. Activity was only possible when cells accumulated extremely high levels of manganese that exceeded cellular iron. Moreover, there was no evidence for iron inactivation of the SOD. B. burgdorferi SodA shows strong overall homology with other members of the Mn-SOD family, but computer-assisted modeling revealed some unusual features of the hydrogen bonding network near the enzyme's active site. The unique properties of B. burgdorferi SodA may represent adaptation to expression in the manganese-rich and iron-poor environment of the spirochete.
Collapse
Affiliation(s)
- J Dafhne Aguirre
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205
| | - Hillary M Clark
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205
| | - Matthew McIlvin
- Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543
| | - Christine Vazquez
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205
| | - Shaina L Palmere
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205
| | - Dennis J Grab
- Department of Pathology, Division of Medical Microbiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - J Seshu
- Department of Biology, University of Texas, San Antonio, Texas 78249
| | - P John Hart
- Geriatric Research, Education, and Clinical Center, South Texas Veterans Health Care System, Department of Veterans Affairs, San Antonio, Texas 78229; Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas 78229
| | - Mak Saito
- Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543
| | - Valeria C Culotta
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205.
| |
Collapse
|
59
|
Abstract
This chapter is focused on the iron metallome in eukaryotes at the cellular and subcellular level, including properties, utilization in metalloproteins, trafficking, storage, and regulation of these processes. Studies in the model eukaryote Saccharomyces cerevisiae and mammalian cells will be highlighted. The discussion of iron properties will center on the speciation and localization of intracellular iron as well as the cellular and molecular mechanisms for coping with both low iron bioavailability and iron toxicity. The section on iron metalloproteins will emphasize heme, iron-sulfur cluster, and non-heme iron centers, particularly their cellular roles and mechanisms of assembly. The section on iron uptake, trafficking, and storage will compare methods used by yeast and mammalian cells to import iron, how this iron is brought into various organelles, and types of iron storage proteins. Regulation of these processes will be compared between yeast and mammalian cells at the transcriptional, post-transcriptional, and post-translational levels.
Collapse
Affiliation(s)
- Adrienne C. Dlouhy
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Caryn E. Outten
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
60
|
Amer N, Al Chami Z, Al Bitar L, Mondelli D, Dumontet S. Evaluation of Atriplex halimus, Medicago lupulina and Portulaca oleracea for phytoremediation of Ni, Pb, and Zn. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2013; 15:498-512. [PMID: 23488175 DOI: 10.1080/15226514.2012.716102] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Suitable plant species are able to accumulate heavy metals and to produce biomass useful for non-food purposes. In this study, three endemic Mediterranean plant species, Atriplex halimus, Portulaca oleracea and Medicago lupulina were grown hydroponically to assess their potential use in phytoremediation and biomass production. The experiment was carried out in a growth chamber using half strength Hoagland's solutions separately spiked with 5 concentrations of Pb and Zn (5, 10, 25, 50, and 100 mg L(-1)), and 3 concentrations of Ni (1, 2 and 5 mg L(-1)). Shoot and root biomass were determined and analyzed for their metals contents. A. halimus and M. lupulina gave high shoot biomass with relatively low metal translocation to the above ground parts. Metals uptake was a function of both metals and plant species. It is worth noting that M. lupulina was the only tested plant able to grow in treatment Pb50 and to accumulate significant amount of metal in roots. Plant metal uptake efficiency ranked as follows: A. halimus > M. lupulina > P. oleracea. Due to its high biomass production and the relatively high roots metal contents, A. halimus and M. lupulina could be successfully used in phytoremediation, and in phytostabilization, in particular.
Collapse
Affiliation(s)
- Nasser Amer
- Dipartimento di Scienze per l 'Ambiente, Università degli Studi di Napoli "Parthenope", Napoli, Italy
| | | | | | | | | |
Collapse
|
61
|
Farina M, Avila DS, da Rocha JBT, Aschner M. Metals, oxidative stress and neurodegeneration: a focus on iron, manganese and mercury. Neurochem Int 2012; 62:575-94. [PMID: 23266600 DOI: 10.1016/j.neuint.2012.12.006] [Citation(s) in RCA: 369] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2012] [Revised: 12/07/2012] [Accepted: 12/10/2012] [Indexed: 02/08/2023]
Abstract
Essential metals are crucial for the maintenance of cell homeostasis. Among the 23 elements that have known physiological functions in humans, 12 are metals, including iron (Fe) and manganese (Mn). Nevertheless, excessive exposure to these metals may lead to pathological conditions, including neurodegeneration. Similarly, exposure to metals that do not have known biological functions, such as mercury (Hg), also present great health concerns. This review focuses on the neurodegenerative mechanisms and effects of Fe, Mn and Hg. Oxidative stress (OS), particularly in mitochondria, is a common feature of Fe, Mn and Hg toxicity. However, the primary molecular targets triggering OS are distinct. Free cationic iron is a potent pro-oxidant and can initiate a set of reactions that form extremely reactive products, such as OH. Mn can oxidize dopamine (DA), generating reactive species and also affect mitochondrial function, leading to accumulation of metabolites and culminating with OS. Cationic Hg forms have strong affinity for nucleophiles, such as -SH and -SeH. Therefore, they target critical thiol- and selenol-molecules with antioxidant properties. Finally, we address the main sources of exposure to these metals, their transport mechanisms into the brain, and therapeutic modalities to mitigate their neurotoxic effects.
Collapse
Affiliation(s)
- Marcelo Farina
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | | | | | | |
Collapse
|
62
|
Page MD, Allen MD, Kropat J, Urzica EI, Karpowicz SJ, Hsieh SI, Loo JA, Merchant SS. Fe sparing and Fe recycling contribute to increased superoxide dismutase capacity in iron-starved Chlamydomonas reinhardtii. THE PLANT CELL 2012; 24:2649-65. [PMID: 22685165 PMCID: PMC3406916 DOI: 10.1105/tpc.112.098962] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 05/16/2012] [Accepted: 05/24/2012] [Indexed: 05/04/2023]
Abstract
Fe deficiency is one of several abiotic stresses that impacts plant metabolism because of the loss of function of Fe-containing enzymes in chloroplasts and mitochondria, including cytochromes, FeS proteins, and Fe superoxide dismutase (FeSOD). Two pathways increase the capacity of the Chlamydomonas reinhardtii chloroplast to detoxify superoxide during Fe limitation stress. In one pathway, MSD3 is upregulated at the transcriptional level up to 10(3)-fold in response to Fe limitation, leading to synthesis of a previously undiscovered plastid-specific MnSOD whose identity we validated immunochemically. In a second pathway, the plastid FeSOD is preferentially retained over other abundant Fe proteins, heme-containing cytochrome f, diiron magnesium protoporphyrin monomethyl ester cyclase, and Fe2S2-containing ferredoxin, demonstrating prioritized allocation of Fe within the chloroplast. Maintenance of FeSOD occurs, after an initial phase of degradation, by de novo resynthesis in the absence of extracellular Fe, suggesting the operation of salvage mechanisms for intracellular recycling and reallocation.
Collapse
Affiliation(s)
- M. Dudley Page
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569
| | | | - Janette Kropat
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569
| | - Eugen I. Urzica
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569
| | | | - Scott. I. Hsieh
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569
| | - Joseph A. Loo
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569
| | - Sabeeha S. Merchant
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569
| |
Collapse
|
63
|
Whittaker MM, Whittaker JW. Metallation state of human manganese superoxide dismutase expressed in Saccharomyces cerevisiae. Arch Biochem Biophys 2012; 523:191-7. [PMID: 22561997 DOI: 10.1016/j.abb.2012.04.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 03/30/2012] [Accepted: 04/17/2012] [Indexed: 12/22/2022]
Abstract
Human manganese superoxide dismutase (Sod2p) has been expressed in yeast and the protein purified from isolated yeast mitochondria, yielding both the metallated protein and the less stable apoprotein in a single chromatographic step. At 30 °C growth temperature, more than half of the purified enzyme is apoprotein that can be fully activated following reconstitution, while the remainder contains a mixture of manganese and iron. In contrast, only fully metallated enzyme was isolated from a similarly constructed yeast strain expressing the homologous yeast manganese superoxide dismutase. Both the manganese content and superoxide dismutase activity of the recombinant human enzyme increased with increasing growth temperatures. The dependence of in vivo metallation state on growth temperature resembles the in vitro thermal activation behavior of human manganese superoxide dismutase observed in previous studies. Partially metallated human superoxide dismutase is fully active in protecting yeast against superoxide stress produced by addition of paraquat to the growth medium. However, a splice variant of human manganese superoxide dismutase (isoform B) is expressed as insoluble protein in both Escherichia coli and yeast mitochondria and did not protect yeast against superoxide stress.
Collapse
Affiliation(s)
- Mei M Whittaker
- Institute for Environmental Health, Division of Environmental and Biomolecular Systems, Oregon Health and Science University, 20000 N.W. Walker Road, Beaverton, OR 97006-8921, USA
| | | |
Collapse
|
64
|
Cruz LF, Cobine PA, De La Fuente L. Calcium increases Xylella fastidiosa surface attachment, biofilm formation, and twitching motility. Appl Environ Microbiol 2012; 78:1321-31. [PMID: 22194297 PMCID: PMC3294462 DOI: 10.1128/aem.06501-11] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 12/12/2011] [Indexed: 01/21/2023] Open
Abstract
Xylella fastidiosa is a plant-pathogenic bacterium that forms biofilms inside xylem vessels, a process thought to be influenced by the chemical composition of xylem sap. In this work, the effect of calcium on the production of X. fastidiosa biofilm and movement was analyzed under in vitro conditions. After a dose-response study with 96-well plates using eight metals, the strongest increase of biofilm formation was observed when medium was supplemented with at least 1.0 mM CaCl(2). The removal of Ca by extracellular (EGTA, 1.5 mM) and intracellular [1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid acetoxymethyl ester (BAPTA/AM), 75 μM] chelators reduced biofilm formation without compromising planktonic growth. The concentration of Ca influenced the force of adhesion to the substrate, biofilm thickness, cell-to-cell aggregation, and twitching motility, as shown by assays with microfluidic chambers and other assays. The effect of Ca on attachment was lost when cells were treated with tetracycline, suggesting that Ca has a metabolic or regulatory role in cell adhesion. A double mutant (fimA pilO) lacking type I and type IV pili did not improve biofilm formation or attachment when Ca was added to the medium, while single mutants of type I (fimA) or type IV (pilB) pili formed more biofilm under conditions of higher Ca concentrations. The concentration of Ca in the medium did not significantly influence the levels of exopolysaccharide produced. Our findings indicate that the role of Ca in biofilm formation may be related to the initial surface and cell-to-cell attachment and colonization stages of biofilm establishment, which rely on critical functions by fimbrial structures.
Collapse
Affiliation(s)
- Luisa F. Cruz
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, USA
| | - Paul A. Cobine
- Department of Biological Sciences, Auburn University, Auburn, Alabama, USA
| | - Leonardo De La Fuente
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, USA
| |
Collapse
|
65
|
Aguirre JD, Culotta VC. Battles with iron: manganese in oxidative stress protection. J Biol Chem 2012; 287:13541-8. [PMID: 22247543 DOI: 10.1074/jbc.r111.312181] [Citation(s) in RCA: 215] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The redox-active metal manganese plays a key role in cellular adaptation to oxidative stress. As a cofactor for manganese superoxide dismutase or through formation of non-proteinaceous manganese antioxidants, this metal can combat oxidative damage without deleterious side effects of Fenton chemistry. In either case, the antioxidant properties of manganese are vulnerable to iron. Cellular pools of iron can outcompete manganese for binding to manganese superoxide dismutase, and through Fenton chemistry, iron may counteract the benefits of non-proteinaceous manganese antioxidants. In this minireview, we highlight ways in which cells maximize the efficacy of manganese as an antioxidant in the midst of pro-oxidant iron.
Collapse
Affiliation(s)
- J Dafhne Aguirre
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
66
|
Rim2, a pyrimidine nucleotide exchanger, is needed for iron utilization in mitochondria. Biochem J 2011; 440:137-46. [PMID: 21777202 DOI: 10.1042/bj20111036] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Mitochondria transport and utilize iron for the synthesis of haem and Fe-S clusters. Although many proteins are known to be involved in these processes, additional proteins are likely to participate. To test this hypothesis, in the present study we used a genetic screen looking for yeast mutants that are synthetically lethal with the mitochondrial iron carriers Mrs3 and Mrs4. Several genes were identified, including an isolate mutated for Yfh1, the yeast frataxin homologue. All such triple mutants were complemented by increased expression of Rim2, another mitochondrial carrier protein. Rim2 overexpression was able to enhance haem and Fe-S cluster synthesis in wild-type or Δmrs3/Δmrs4 backgrounds. Conversely Rim2 depletion impaired haem and Fe-S cluster synthesis in wild-type or Δmrs3/Δmrs4 backgrounds, indicating a unique requirement for this mitochondrial transporter for these processes. Rim2 was previously shown to mediate pyrimidine exchange in and out of vesicles. In the present study we found that isolated mitochondria lacking Rim2 exhibited concordant iron defects and pyrimidine transport defects, although the connection between these two functions is not explained. When organellar membranes were ruptured to bypass iron transport, haem synthesis from added iron and porphyrin was still markedly deficient in Rim2-depleted mitochondrial lysate. The results indicate that Rim2 is a pyrimidine exchanger with an additional unique function in promoting mitochondrial iron utilization.
Collapse
|
67
|
Kang Y, He YX, Zhao MX, Li WF. Structures of native and Fe-substituted SOD2 from Saccharomyces cerevisiae. Acta Crystallogr Sect F Struct Biol Cryst Commun 2011; 67:1173-8. [PMID: 22102021 DOI: 10.1107/s1744309111029186] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Accepted: 07/19/2011] [Indexed: 11/10/2022]
Abstract
The manganese-specific superoxide dismutase SOD2 from the yeast Saccharomyces cerevisiae is a protein that resides in the mitochondrion and protects it against attack by superoxide radicals. However, a high iron concentration in the mitochondria results in iron misincorporation at the active site, with subsequent inactivation of SOD2. Here, the crystal structures of SOD2 bound with the native metal manganese and with the `wrong' metal iron are presented at 2.05 and 1.79 Å resolution, respectively. Structural comparison of the two structures shows no significant conformational alteration in the overall structure or in the active site upon binding the non-native metal iron. Moreover, residues Asp163 and Lys80 are proposed to potentially be responsible for the metal specificity of the Mn-specific SOD. Additionally, the surface-potential distribution of SOD2 revealed a conserved positively charged electrostatic zone in the proximity of the active site that probably functions in the same way as in Cu/Zn-SODs by facilitating the diffusion of the superoxide anion to the metal ion.
Collapse
Affiliation(s)
- Yan Kang
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China
| | | | | | | |
Collapse
|
68
|
Ehrensberger KM, Bird AJ. Hammering out details: regulating metal levels in eukaryotes. Trends Biochem Sci 2011; 36:524-31. [PMID: 21840721 DOI: 10.1016/j.tibs.2011.07.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 07/07/2011] [Accepted: 07/15/2011] [Indexed: 12/01/2022]
Abstract
The transition metals zinc, iron and copper are common constituents in a wide range of proteins. Although these metals are all essential for life, when present in excess, they are frequently toxic to cell growth and viability. Therefore, all organisms rely on sophisticated mechanisms to maintain optimal levels of each metal. Genes that encode metal transport or storage proteins are often regulated at the transcriptional level in response to changes in metal status. In this review, we focus on what is known about the transcription factors that mediate these metal-dependent changes. Specifically, we highlight recent advances in our understanding of the mechanisms by which these factors sense metal ions.
Collapse
Affiliation(s)
- Kate M Ehrensberger
- Department of Molecular Genetics, Ohio State University, Columbus, OH 43210, USA
| | | |
Collapse
|
69
|
Nahon P, Sutton A, Pessayre D, Rufat P, Charnaux N, Trinchet JC, Beaugrand M, Deugnier Y. Do genetic variations in antioxidant enzymes influence the course of hereditary hemochromatosis? Antioxid Redox Signal 2011; 15:31-8. [PMID: 20673159 DOI: 10.1089/ars.2010.3529] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Iron-induced oxidative stress promotes hepatic injury in hereditary hemochromatosis, which can be influenced by genetic traits affecting antioxidant enzymes. We assessed the influence of Ala16Val-superoxide dismutase 2, Pro198Leu-glutathione peroxidase 1, and -463G/A-myeloperoxidase genotypes (high activity for the Ala, Pro, and G alleles, respectively) on the risks of cirrhosis and hepatocellular carcinoma (HCC) in patients homozygous for the C282Y-hemochromatosis (HFE) gene mutation. Both the 2G-myeloperoxidase genotype and carriage of one or two copies of the Ala-superoxide dismutase 2 allele were more frequent in patients with cirrhosis or HCC. Patients cumulating these two genetic traits had higher rates of cirrhosis and HCC than other patients.
Collapse
Affiliation(s)
- Pierre Nahon
- Hôpital Jean Verdier, AP-HP, Service d'Hépatologie, Bondy, France.
| | | | | | | | | | | | | | | |
Collapse
|
70
|
Mansouri A, Tarhuni A, Larosche I, Reyl-Desmars F, Demeilliers C, Degoul F, Nahon P, Sutton A, Moreau R, Fromenty B, Pessayre D. MnSOD overexpression prevents liver mitochondrial DNA depletion after an alcohol binge but worsens this effect after prolonged alcohol consumption in mice. Dig Dis 2011; 28:756-75. [PMID: 21525761 DOI: 10.1159/000324284] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Both acute and chronic alcohol consumption increase reactive oxygen species (ROS) formation and lipid peroxidation, whose products damage hepatic mitochondrial DNA (mtDNA). To test whether manganese superoxide dismutase (MnSOD) overexpression modulates acute and chronic alcohol-induced mtDNA lesions, transgenic MnSOD-overexpressing (TgMnSOD(+++)) mice and wild-type (WT) mice were treated by alcohol, either chronically (7 weeks in drinking water) or acutely (single intragastric dose of 5 g/kg). Acute alcohol administration increased mitochondrial ROS formation, decreased mitochondrial glutathione, depleted and damaged mtDNA, durably increased inducible nitric oxide synthase (NOS) expression, plasma nitrites/nitrates and the nitration of tyrosine residues in complex V proteins and decreased complex V activity in WT mice. These effects were prevented in TgMnSOD(+++) mice. In acutely alcoholized WT mice, mtDNA depletion was prevented by tempol, a superoxide scavenger, L-NAME and 1400W, two NOS inhibitors, or uric acid, a peroxynitrite scavenger. In contrast, chronic alcohol consumption decreased cytosolic glutathione and increased hepatic iron, lipid peroxidation products and respiratory complex I protein carbonyls only in ethanol-treated TgMnSOD(+++) mice but not in WT mice. In chronic ethanol-fed TgMnSOD(+++) mice, but not WT mice, mtDNA was damaged and depleted, and the iron chelator, deferoxamine (DFO), prevented this effect. In conclusion, MnSOD overexpression prevents mtDNA depletion after an acute alcohol binge but aggravates this effect after prolonged alcohol consumption, which selectively triggers iron accumulation in TgMnSOD(+++) mice but not in WT mice. In the model of acute alcohol binge, the protective effects of MnSOD, tempol, NOS inhibitors and uric acid suggested a role of the superoxide anion reacting with NO to form mtDNA-damaging peroxynitrite. In the model of prolonged ethanol consumption, the protective effects of DFO suggested the role of iron reacting with hydrogen peroxide to form mtDNA-damaging hydroxyl radical.
Collapse
Affiliation(s)
- Abdellah Mansouri
- INSERM U773, Centre de Recherche Biomédicale Bichat Beaujon (CRB3), Université Paris 7 Denis Diderot, site Bichat, Paris, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Lindahl PA, Holmes-Hampton GP. Biophysical probes of iron metabolism in cells and organelles. Curr Opin Chem Biol 2011; 15:342-6. [PMID: 21282072 PMCID: PMC3074042 DOI: 10.1016/j.cbpa.2011.01.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 01/04/2011] [Accepted: 01/05/2011] [Indexed: 10/18/2022]
Abstract
In living systems, iron is found in many different structures, including Fe/S clusters, hemes and nonheme centers, and magnetically interacting aggregates. Understanding Fe metabolism and trafficking will require biophysical spectroscopic tools that can evaluate the types of Fe centers within entire cells and isolated organelles. Mössbauer spectroscopy will play an important role in such analyses, as it has perhaps the best combination of resolution, sensitivity, coverage, and quantifying abilities. Other spectroscopic techniques, with particular strengths, will be used in combination with Mössbauer, and results will be integrated to assess the 'ironome' of such complex samples. This integrative biophysical approach is illustrated by a discussion of iron trafficking in yeast cells.
Collapse
Affiliation(s)
- Paul A Lindahl
- Department of Chemistry, Texas A&M University, College Station, TX 77843-3255, USA.
| | | |
Collapse
|
72
|
Bleackley MR, Young BP, Loewen CJR, MacGillivray RTA. High density array screening to identify the genetic requirements for transition metal tolerance in Saccharomyces cerevisiae. Metallomics 2011; 3:195-205. [PMID: 21212869 DOI: 10.1039/c0mt00035c] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Biological systems have developed with a strong dependence on transition metals for accomplishing a number of biochemical reactions. Iron, copper, manganese and zinc are essential for virtually all forms of life with their unique chemistries contributing to a variety of physiological processes including oxygen transport, generation of cellular energy and protein structure and function. Properties of these metals (and to a lesser extent nickel and cobalt) that make them so essential to life also make them extremely cytotoxic in many cases through the formation of damaging oxygen radicals via Fenton chemistry. While life has evolved to exploit the chemistries of transition metals to drive physiological reactions, systems have concomitantly evolved to protect against the damaging effects of these same metals. Saccharomyces cerevisiae is a valuable tool for studying metal homeostasis with many of the genes identified thus far having homologs in higher eukaryotes including humans. Using high density arrays, we have screened a haploid S. cerevisiae deletion set containing 4786 non-essential gene deletions for strains sensitive to each of Fe, Cu, Mn, Ni, Zn and Co and then integrated the six screens using cluster analysis to identify pathways that are unique to individual metals and others with function shared between metals. Genes with no previous implication in metal homeostasis were found to contribute to sensitivity to each metal. Significant overlap was observed between the strains that were sensitive to Mn, Ni, Zn and Co with many of these strains lacking genes for the high affinity Fe transport pathway and genes involved in vacuolar transport and acidification. The results from six genome-wide metal tolerance screens show that there is some commonality between the cellular defenses against the toxicity of Mn, Ni, Zn and Co with Fe and Cu requiring different systems. Additionally, potential new factors been identified that function in tolerance to each of the six metals.
Collapse
Affiliation(s)
- Mark R Bleackley
- Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | | | | | | |
Collapse
|
73
|
Ayer A, Tan SX, Grant CM, Meyer AJ, Dawes IW, Perrone GG. The critical role of glutathione in maintenance of the mitochondrial genome. Free Radic Biol Med 2010; 49:1956-68. [PMID: 20888410 DOI: 10.1016/j.freeradbiomed.2010.09.023] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Revised: 08/18/2010] [Accepted: 09/23/2010] [Indexed: 11/21/2022]
Abstract
Glutathione (GSH) is a key redox buffer and protectant. Growth (approx. one or two divisions) of cells lacking γ-glutamylcysteine synthetase (gsh1) in the absence of GSH led to irreversible respiratory incompetency in all cells, and after five divisions 75% of cells completely lacked mitochondrial DNA (mtDNA). The level of GSH required to allow continuous growth was distinct from that required to prevent loss of mtDNA. GSH limitation led to a change in the transcript levels of 190 genes, including 30 genes regulated by the Aft1p and/or Aft2p transcription factors, which regulate the cellular response to changes in iron availability. Disruption of AFT1 but not AFT2 in gsh1 cells afforded a protective effect on maintenance of respiratory competency, as did overexpression of GRX3 or GRX4 (encoding monothiol glutaredoxins that act as negative regulators of Aft1p). Importantly, an iron-independent mechanism (~30%) was also observed to mediate GSH-dependent mtDNA loss. Analysis of the redox environment in the cytosol, mitochondrial matrix, and intermembrane space (IMS) found that the cytosol was most severely and rapidly affected by GSH depletion. GSH may also modulate the redox environment of the IMS. The implications of altered GSH homeostasis for maintenance of mtDNA, compartmental redox, and the pathophysiology of certain diseases are discussed.
Collapse
Affiliation(s)
- Anita Ayer
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | | | | | | | | | | |
Collapse
|
74
|
Lin H, Li L, Jia X, Ward DM, Kaplan J. Genetic and biochemical analysis of high iron toxicity in yeast: iron toxicity is due to the accumulation of cytosolic iron and occurs under both aerobic and anaerobic conditions. J Biol Chem 2010; 286:3851-62. [PMID: 21115478 DOI: 10.1074/jbc.m110.190959] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Iron storage in yeast requires the activity of the vacuolar iron transporter Ccc1. Yeast with an intact CCC1 are resistant to iron toxicity, but deletion of CCC1 renders yeast susceptible to iron toxicity. We used genetic and biochemical analysis to identify suppressors of high iron toxicity in Δccc1 cells to probe the mechanism of high iron toxicity. All genes identified as suppressors of high iron toxicity in aerobically grown Δccc1 cells encode organelle iron transporters including mitochondrial iron transporters MRS3, MRS4, and RIM2. Overexpression of MRS3 suppressed high iron toxicity by decreasing cytosolic iron through mitochondrial iron accumulation. Under anaerobic conditions, Δccc1 cells were still sensitive to high iron toxicity, but overexpression of MRS3 did not suppress iron toxicity and did not result in mitochondrial iron accumulation. We conclude that Mrs3/Mrs4 can sequester iron within mitochondria under aerobic conditions but not anaerobic conditions. We show that iron toxicity in Δccc1 cells occurred under both aerobic and anaerobic conditions. Microarray analysis showed no evidence of oxidative damage under anaerobic conditions, suggesting that iron toxicity may not be solely due to oxidative damage. Deletion of TSA1, which encodes a peroxiredoxin, exacerbated iron toxicity in Δccc1 cells under both aerobic and anaerobic conditions, suggesting a unique role for Tsa1 in iron toxicity.
Collapse
Affiliation(s)
- Huilan Lin
- Department of Pharmacology, School of Medicine, University of California at San Diego, La Jolla, California 92093, USA
| | | | | | | | | |
Collapse
|
75
|
Santos R, Lefevre S, Sliwa D, Seguin A, Camadro JM, Lesuisse E. Friedreich ataxia: molecular mechanisms, redox considerations, and therapeutic opportunities. Antioxid Redox Signal 2010; 13:651-90. [PMID: 20156111 PMCID: PMC2924788 DOI: 10.1089/ars.2009.3015] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Revised: 02/08/2010] [Accepted: 02/14/2010] [Indexed: 12/14/2022]
Abstract
Mitochondrial dysfunction and oxidative damage are at the origin of numerous neurodegenerative diseases like Friedreich ataxia and Alzheimer and Parkinson diseases. Friedreich ataxia (FRDA) is the most common hereditary ataxia, with one individual affected in 50,000. This disease is characterized by progressive degeneration of the central and peripheral nervous systems, cardiomyopathy, and increased incidence of diabetes mellitus. FRDA is caused by a dynamic mutation, a GAA trinucleotide repeat expansion, in the first intron of the FXN gene. Fewer than 5% of the patients are heterozygous and carry point mutations in the other allele. The molecular consequences of the GAA triplet expansion is transcription silencing and reduced expression of the encoded mitochondrial protein, frataxin. The precise cellular role of frataxin is not known; however, it is clear now that several mitochondrial functions are not performed correctly in patient cells. The affected functions include respiration, iron-sulfur cluster assembly, iron homeostasis, and maintenance of the redox status. This review highlights the molecular mechanisms that underlie the disease phenotypes and the different hypothesis about the function of frataxin. In addition, we present an overview of the most recent therapeutic approaches for this severe disease that actually has no efficient treatment.
Collapse
Affiliation(s)
- Renata Santos
- Mitochondria, Metals and Oxidative Stress Laboratory, Institut Jacques Monod (UMR 7592 CNRS–University Paris-Diderot), Paris, France
| | - Sophie Lefevre
- Mitochondria, Metals and Oxidative Stress Laboratory, Institut Jacques Monod (UMR 7592 CNRS–University Paris-Diderot), Paris, France
- University Pierre et Marie Curie, Paris, France
| | - Dominika Sliwa
- Mitochondria, Metals and Oxidative Stress Laboratory, Institut Jacques Monod (UMR 7592 CNRS–University Paris-Diderot), Paris, France
| | - Alexandra Seguin
- Mitochondria, Metals and Oxidative Stress Laboratory, Institut Jacques Monod (UMR 7592 CNRS–University Paris-Diderot), Paris, France
| | - Jean-Michel Camadro
- Mitochondria, Metals and Oxidative Stress Laboratory, Institut Jacques Monod (UMR 7592 CNRS–University Paris-Diderot), Paris, France
| | - Emmanuel Lesuisse
- Mitochondria, Metals and Oxidative Stress Laboratory, Institut Jacques Monod (UMR 7592 CNRS–University Paris-Diderot), Paris, France
| |
Collapse
|
76
|
Erythropoiesis and iron sulfur cluster biogenesis. Adv Hematol 2010; 2010. [PMID: 20862391 PMCID: PMC2939393 DOI: 10.1155/2010/329394] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 06/04/2010] [Accepted: 08/02/2010] [Indexed: 11/22/2022] Open
Abstract
Erythropoiesis in animals is a synchronized process of erythroid cell differentiation that depends on successful acquisition of iron. Heme synthesis depends on iron through its dependence on iron sulfur (Fe-S) cluster biogenesis. Here, we review the relationship between Fe-S biogenesis and heme synthesis in erythropoiesis, with emphasis on the proteins, GLRX5, ABCB7, ISCA, and C1orf69. These Fe-S biosynthesis proteins are highly expressed in erythroid tissues, and deficiency of each of these proteins has been shown to cause anemia in zebrafish model. GLRX5 is involved in the production and ABCB7 in the export of an unknown factor that may function as a gauge of mitochondrial iron status, which may indirectly modulate activity of iron regulatory proteins (IRPs). ALAS2, the enzyme catalyzing the first step in heme synthesis, is translationally controlled by IRPs. GLRX5 may also provide Fe-S cofactor for ferrochelatase, the last enzyme in heme synthesis. ISCA and C1orf69 are thought to assemble Fe-S clusters for mitochondrial aconitase and for lipoate synthase, the enzyme producing lipoate for pyruvate dehydrogenase complex (PDC). PDC and aconitase are involved in the production of succinyl-CoA, a substrate for heme biosynthesis. Thus, many steps of heme synthesis depend on Fe-S cluster assembly.
Collapse
|
77
|
Abstract
Friedreich ataxia is an inherited neurodegenerative disease caused by frataxin deficiency. Frataxin is a conserved mitochondrial protein that plays a role in FeS cluster assembly in mitochondria. FeS clusters are modular cofactors that perform essential functions throughout the cell. They are synthesized by a multistep and multisubunit mitochondrial machinery that includes the scaffold protein Isu for assembling a protein-bound FeS cluster intermediate. Frataxin interacts with Isu, iron, and the cysteine desulfurase Nfs1, which supplies sulfide, thus placing it at the center of mitochondrial FeS cluster biosynthesis.
Collapse
Affiliation(s)
- Timothy L Stemmler
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, Michigan 48201, France
| | - Emmanuel Lesuisse
- Laboratoire Mitochondrie, Metaux et Stress Oxydant, Institut Jacques Monod, CNRS-Universite Paris Diderot, 75205 Paris, France
| | - Debkumar Pain
- Department of Pharmacology and Physiology, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, New Jersey 07101
| | - Andrew Dancis
- Department of Medicine, Division of Hematology-Oncology, University of Pennsylvania, Philadelphia, Pennsylvania 19104.
| |
Collapse
|
78
|
Dowling DP, Gattis SG, Fierke CA, Christianson DW. Structures of metal-substituted human histone deacetylase 8 provide mechanistic inferences on biological function . Biochemistry 2010; 49:5048-56. [PMID: 20545365 PMCID: PMC2895166 DOI: 10.1021/bi1005046] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The metal-dependent histone deacetylases (HDACs) adopt an alpha/beta protein fold first identified in rat liver arginase. Despite insignificant overall amino acid sequence identity, these enzymes share a strictly conserved metal binding site with divergent metal specificity and stoichiometry. HDAC8, originally thought to be a Zn(2+)-metallohydrolase, exhibits increased activity with Co(2+) and Fe(2+) cofactors based on k(cat)/K(M) (Gantt, S. L., Gattis, S. G., and Fierke, C. A. (2006) Biochemistry 45, 6170-6178). Here, we report the first X-ray crystal structures of metallo-substituted HDAC8, Co(2+)-HDAC8, D101L Co(2+)-HDAC8, D101L Mn(2+)-HDAC8, and D101L Fe(2+)-HDAC8, each complexed with the inhibitor M344. Metal content of protein samples in solution is confirmed by inductively coupled plasma mass spectrometry. For the crystalline enzymes, peaks in Bijvoet difference Fourier maps calculated from X-ray diffraction data collected near the respective elemental absorption edges confirm metal substitution. Additional solution studies confirm incorporation of Cu(2+); Fe(3+) and Ni(2+) do not bind under conditions tested. The metal dependence of the substrate K(M) values and the K(i) values of hydroxamate inhibitors that chelate the active site metal are consistent with substrate-metal coordination in the precatalytic Michaelis complex that enhances catalysis. Additionally, although HDAC8 binds Zn(2+) nearly 10(6)-fold more tightly than Fe(2+), the affinities for both metal ions are comparable to the readily exchangeable metal concentrations estimated in living cells, suggesting that HDAC8 could bind either or both Fe(2+) or Zn(2+) in vivo.
Collapse
Affiliation(s)
- Daniel P. Dowling
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323
| | - Samuel G. Gattis
- Departments of Chemistry and Biological Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055
| | - Carol A. Fierke
- Departments of Chemistry and Biological Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055
| | - David W. Christianson
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323
| |
Collapse
|
79
|
Chabrier-Roselló Y, Giesselman BR, De Jesús-Andino FJ, Foster TH, Mitra S, Haidaris CG. Inhibition of electron transport chain assembly and function promotes photodynamic killing of Candida. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2010; 99:117-25. [PMID: 20381373 PMCID: PMC2881298 DOI: 10.1016/j.jphotobiol.2010.03.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Revised: 03/16/2010] [Accepted: 03/17/2010] [Indexed: 01/05/2023]
Abstract
Respiratory deficiency increases the sensitivity of the pathogenic fungi Candida albicans and Candida glabrata to oxidative stress induced by photodynamic therapy (PDT) sensitized by the cationic porphyrin meso-tetra (N-methyl-4-pyridyl) porphine tetra tosylate (TMP-1363). Since disruption of electron transport chain (ETC) function increases intracellular levels of reactive oxygen species in yeast, we determined whether interference with ETC assembly or function increased sensitivity to TMP-1363-PDT in C. albicans, C. glabrata and the non-pathogenic yeast Saccharomyces cerevisiae. Metabolic inhibitor antimycin A and defined genetic mutants were used to identify ETC components that contribute to the sensitivity to PDT. Inhibition of cytochrome bc(1) (Complex III) with antimycin A increases mitochondrial levels of reactive oxygen species. PDT performed following pre-treatment with antimycin A reduced colony forming units (CFU) of C. albicans and C. glabrata by approximately two orders of magnitude relative to PDT alone. A S. cerevisiae mitochondrial glutaredoxin grx5 mutant, defective in assembly of Fe-S clusters critical for Complex III function, displayed increased sensitivity to PDT. Furthermore, C. glabrata and S.cerevisiae mutants in cytochrome c oxidase (Complex IV) synthesis and assembly were also significantly more sensitive to PDT. These included suv3, encoding an ATP-dependent RNA helicase critical for maturation of cytochrome c oxidase subunit transcripts, and pet117, encoding an essential cytochrome c oxidase assembly factor. Following PDT, the reduction in CFU of these mutants was one to two orders of magnitude greater than in their respective parental strains. The data demonstrate that selective inhibition of ETC Complexes III and IV significantly increases the sensitivity of C. albicans, C. glabrata and S. cerevisiae to PDT sensitized with TMP-1363.
Collapse
Affiliation(s)
- Yeissa Chabrier-Roselló
- Department of Microbiology and Immunology, University of Rochester Medical Center, Box 672, 601 Elmwood Ave., Rochester, NY 14642, U.S.A
| | - Benjamin R. Giesselman
- Department of Imaging Sciences, University of Rochester Medical Center, Box 648, 601 Elmwood Ave., Rochester, NY 14642, U.S.A
| | - Francisco J. De Jesús-Andino
- Department of Microbiology and Immunology, University of Rochester Medical Center, Box 672, 601 Elmwood Ave., Rochester, NY 14642, U.S.A
- Department of Imaging Sciences, University of Rochester Medical Center, Box 648, 601 Elmwood Ave., Rochester, NY 14642, U.S.A
| | - Thomas H. Foster
- Department of Imaging Sciences, University of Rochester Medical Center, Box 648, 601 Elmwood Ave., Rochester, NY 14642, U.S.A
| | - Soumya Mitra
- Department of Imaging Sciences, University of Rochester Medical Center, Box 648, 601 Elmwood Ave., Rochester, NY 14642, U.S.A
| | - Constantine G. Haidaris
- Department of Microbiology and Immunology, University of Rochester Medical Center, Box 672, 601 Elmwood Ave., Rochester, NY 14642, U.S.A
- Center for Oral Biology, University of Rochester Medical Center, Box 672, 601 Elmwood Ave., Rochester, NY 14642, U.S.A
| |
Collapse
|
80
|
Seguin A, Sutak R, Bulteau AL, Garcia-Serres R, Oddou JL, Lefevre S, Santos R, Dancis A, Camadro JM, Latour JM, Lesuisse E. Evidence that yeast frataxin is not an iron storage protein in vivo. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1802:531-8. [PMID: 20307653 DOI: 10.1016/j.bbadis.2010.03.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2009] [Revised: 03/14/2010] [Accepted: 03/16/2010] [Indexed: 11/29/2022]
Abstract
Yeast cells deficient in the yeast frataxin homolog (Yfh1p) accumulate iron in their mitochondria. Whether this iron is toxic, however, remains unclear. We showed that large excesses of iron in the growth medium did not inhibit growth and did not decrease cell viability. Increasing the ratio of mitochondrial iron-to-Yfh1p by decreasing the steady-state level of Yfh1p to less than 100 molecules per cell had very few deleterious effects on cell physiology, even though the mitochondrial iron concentration greatly exceeded the iron-binding capacity of Yfh1p in these conditions. Mössbauer spectroscopy and FPLC analyses of whole mitochondria or of isolated mitochondrial matrices showed that the chemical and biochemical forms of the accumulated iron in mitochondria of mutant yeast strains (Deltayfh1, Deltaggc1 and Deltassq1) displayed a nearly identical distribution. This was also the case for Deltaggc1 cells, in which Yfh1p was overproduced. In these mitochondria, most of the iron was insoluble, and the ratio of soluble-to-insoluble iron did not change when the amount of Yfh1p was increased up to 4500 molecules per cell. Our results do not privilege the hypothesis of Yfh1p being an iron storage protein in vivo.
Collapse
Affiliation(s)
- Alexandra Seguin
- Laboratoire Mitochondries, Métaux et Stress oxydant, Institut Jacques Monod, CNRS-Université Paris Diderot, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Tan YF, O'Toole N, Taylor NL, Millar AH. Divalent metal ions in plant mitochondria and their role in interactions with proteins and oxidative stress-induced damage to respiratory function. PLANT PHYSIOLOGY 2010; 152:747-61. [PMID: 20018591 PMCID: PMC2815878 DOI: 10.1104/pp.109.147942] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Accepted: 12/10/2009] [Indexed: 05/18/2023]
Abstract
Understanding the metal ion content of plant mitochondria and metal ion interactions with the proteome are vital for insights into both normal respiratory function and the process of protein damage during oxidative stress. We have analyzed the metal content of isolated Arabidopsis (Arabidopsis thaliana) mitochondria, revealing a 26:8:6:1 molar ratio for iron:zinc:copper:manganese and trace amounts of cobalt and molybdenum. We show that selective changes occur in mitochondrial copper and iron content following in vivo and in vitro oxidative stresses. Immobilized metal affinity chromatography charged with Cu(2+), Zn(2+), and Co(2+) was used to identify over 100 mitochondrial proteins with metal-binding properties. There were strong correlations between the sets of immobilized metal affinity chromatography-interacting proteins, proteins predicted to contain metal-binding motifs, and protein sets known to be oxidized or degraded during abiotic stress. Mitochondrial respiratory chain pathways and matrix enzymes varied widely in their susceptibility to metal-induced loss of function, showing the selectivity of the process. A detailed study of oxidized residues and predicted metal interaction sites in the tricarboxylic acid cycle enzyme aconitase identified selective oxidation of residues in the active site and showed an approach for broader screening of functionally significant oxidation events in the mitochondrial proteome.
Collapse
|
82
|
Whittaker JW. Metal uptake by manganese superoxide dismutase. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1804:298-307. [PMID: 19699328 PMCID: PMC2818121 DOI: 10.1016/j.bbapap.2009.08.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Revised: 08/09/2009] [Accepted: 08/12/2009] [Indexed: 12/15/2022]
Abstract
Manganese superoxide dismutase is an important antioxidant defense metalloenzyme that protects cells from damage by the toxic oxygen metabolite, superoxide free radical, formed as an unavoidable by-product of aerobic metabolism. Many years of research have gone into understanding how the metal cofactor interacts with small molecules in its catalytic role. In contrast, very little is presently known about how the protein acquires its metal cofactor, an important step in the maturation of the protein and one that is absolutely required for its biological function. Recent work is beginning to provide insight into the mechanisms of metal delivery to manganese superoxide dismutase in vivo and in vitro.
Collapse
Affiliation(s)
- James W Whittaker
- Department of Science and Engineering, School of Medicine, Oregon Health and Science University, Beaverton, OR 97006-8921, USA.
| |
Collapse
|
83
|
Li Y, Reuter NP, Li X, Liu Q, Zhang J, Martin RCG. Colocalization of MnSOD expression in response to oxidative stress. Mol Carcinog 2010; 49:44-53. [PMID: 19623544 DOI: 10.1002/mc.20575] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The loss of manganese superoxide dismutase function has been associated with increased incidence of Barrett's esophagus and esophageal adenocarcinoma. In previous studies, we have demonstrated that loss of MnSOD resulted in severe esophageal damage by both endogenous and exogenous bile. However, the alterative manner of MnSOD in esophageal epithelium is largely unknown. In this study, we investigated the expression and localization of MnSOD in response to the exposure to bile salts in an esophageal epithelial cell line. Het-1A cells were seeded at 5 x 10(5) and 10(7) and incubated with taurocholate, cholate, glycocholate, deoxycholate, and the mixture of these bile salts. Mitochondria and cytoplasma were separated, and the expression and localization of MnSOD was determined by Western blot and immunocytochemical assay. Proliferation rates were strongly inhibited in the groups with taurocholate and bile salts mixture at 4 h, with 0.367 +/- 0.042 and 0.396 +/- 0.046, respectively, compared to 0.684 +/- 0.054 in untreated groups (P < 0.05). An increased apoptotic rate compared to untreated group (3.65 +/- 0.59) were significantly increased in taurocholate group and in bile salts mixture group were 33.62 +/- 10.25 and 31.52 +/- 8.97 at 4 h, respectively (P < 0.05). The protein level of MnSOD in mitochondria was increased at 4 h, but with a decreased enzymatic activity after bile salts treatment. Cytoplasmic MnSOD was detected in the cells with bile salts treatment. Immunocytochemical staining demonstrated that esophageal epithelial cell underwent morphological alteration and MnSOD relocalization after bile salts treatment. This is the first study to demonstrate cellular cytosolic MnSOD expression and that this relocalization to the cytosol is a cause for decreased MnSOD enzymatic activity. This suggests that bile salts may contribute to the dysfunction of mitochondria, by enzymatically inhibiting of MnSOD localization and thus activation in the mitochondria.
Collapse
Affiliation(s)
- Yan Li
- University of Louisville School of Medicine, Kentucky 40202, USA
| | | | | | | | | | | |
Collapse
|
84
|
Affiliation(s)
- Craig D Kaplan
- Department of Biochemistry and Biophysics, Texas A&M University, USA
| | | |
Collapse
|
85
|
Pynyaha YV, Boretsky YR, Fedorovych DV, Fayura LR, Levkiv AI, Ubiyvovk VM, Protchenko OV, Philpott CC, Sibirny AA. Deficiency in frataxin homologue YFH1 in the yeast Pichia guilliermondii leads to missregulation of iron acquisition and riboflavin biosynthesis and affects sulfate assimilation. Biometals 2009; 22:1051-61. [PMID: 19649569 PMCID: PMC3428027 DOI: 10.1007/s10534-009-9256-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Accepted: 07/19/2009] [Indexed: 11/28/2022]
Abstract
Pichia guilliermondii is a representative of yeast species that overproduce riboflavin (vitamin B2) in response to iron deprivation. P. guilliermondii YFH1 gene coding for frataxin homologue, eukaryotic mitochondrial protein involved in iron trafficking and storage, was identified and deleted. Constructed P. guilliermondii Δyfh1 mutant grew very poorly in a sucrose-containing synthetic medium supplemented with sulfate or sulfite as a sole sulfur source. Addition of sodium sulfide, glutathione, cysteine, methionine, N-acetyl-L-cysteine partially restored growth rate of the mutant suggesting that it is impaired in sulfate assimilation. Cellular iron content in Δyfh1 mutant was ~3-3.5 times higher as compared to the parental strain. It produced 50-70 times more riboflavin in iron sufficient synthetic media relative to the parental wildtype strain. Biomass yield of the mutant in the synthetic glutathione containing medium supplemented with glycerol as a sole carbon source was 1.4- and 2.6-fold increased as compared to sucrose and succinate containing media, respectively. Oxygen uptake of the Δyfh1 mutant on sucrose, glycerol or succinate, when compared to the parental strain, was decreased 5.5-, 1.7- and 1.5-fold, respectively. Substitution of sucrose or glycerol in the synthetic iron sufficient medium with succinate completely abolished riboflavin overproduction by the mutants. Deletion of the YFH1 gene caused hypersensitivity to hydrogen peroxide and exogenously added riboflavin and led to alterations in superoxide dismutase activities. Thus, deletion of the gene coding for yeast frataxin homologue has pleiotropic effect on metabolism in P. guilliermondii.
Collapse
Affiliation(s)
- Yuriy V. Pynyaha
- Institute of Cell Biology, NAS of Ukraine, Drahomanov Street 14/16, 79005 Lviv, Ukraine
| | - Yuriy R. Boretsky
- Institute of Cell Biology, NAS of Ukraine, Drahomanov Street 14/16, 79005 Lviv, Ukraine
| | - Daria V. Fedorovych
- Institute of Cell Biology, NAS of Ukraine, Drahomanov Street 14/16, 79005 Lviv, Ukraine
| | - Lubov R. Fayura
- Institute of Cell Biology, NAS of Ukraine, Drahomanov Street 14/16, 79005 Lviv, Ukraine
| | - Andriy I. Levkiv
- Institute of Cell Biology, NAS of Ukraine, Drahomanov Street 14/16, 79005 Lviv, Ukraine
| | - Vira M. Ubiyvovk
- Institute of Cell Biology, NAS of Ukraine, Drahomanov Street 14/16, 79005 Lviv, Ukraine
| | - Olha V. Protchenko
- Liver Diseases Branch, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Building 10, Room 9B-16, 10 Center Drive, Bethesda, MD 20892-1800, USA
| | - Caroline C. Philpott
- Liver Diseases Branch, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Building 10, Room 9B-16, 10 Center Drive, Bethesda, MD 20892-1800, USA
| | - Andriy A. Sibirny
- Institute of Cell Biology, NAS of Ukraine, Drahomanov Street 14/16, 79005 Lviv, Ukraine. Rzeszów University, Ćwiklińskiej 2, 35-601 Rzeszów, Poland
| |
Collapse
|
86
|
Nahon P, Sutton A, Rufat P, Ziol M, Akouche H, Laguillier C, Charnaux N, Ganne-Carrié N, Grando-Lemaire V, N'Kontchou G, Trinchet JC, Gattegno L, Pessayre D, Beaugrand M. Myeloperoxidase and superoxide dismutase 2 polymorphisms comodulate the risk of hepatocellular carcinoma and death in alcoholic cirrhosis. Hepatology 2009; 50:1484-93. [PMID: 19731237 DOI: 10.1002/hep.23187] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
UNLABELLED Alcohol increases reactive oxygen species (ROS) formation in hepatocyte mitochondria and by reduced nicotinamide adenine dinucleotide phosphate oxidases and myeloperoxidase (MPO) in Kupffer cells and liver-infiltrating neutrophils. Manganese superoxide dismutase (MnSOD) converts superoxide anion into hydrogen peroxide, which, unless detoxified by glutathione peroxidase or catalase (CAT), can form the hydroxyl radical with iron. Our aim was to determine whether Ala16Val-superoxide dismutase 2 (SOD2), G-463A-MPO, or T-262C-CAT dimorphisms modulate the risks of hepatocellular carcinoma (HCC) and death in alcoholic cirrhosis. Genotypes and the hepatic iron score were assessed in 190 prospectively followed patients with alcoholic cirrhosis. During follow-up (61.1 +/- 2.7 months), 51 patients developed HCC, and 71 died. The T-262C-CAT dimorphism did not modify hepatic iron, HCC, or death. The GG-MPO genotype did not modify iron but increased the risks of HCC and death. The hazard ratio (HR) was 4.7 (2.1-10.1) for HCC and 3.6 (1.9-6.7) for death. Carriage of one or two Ala-SOD2 allele(s) was associated with higher liver iron scores and higher risks of HCC and death. The 5-year incidence of HCC was 34.4% in patients with both the GG-MPO genotype and one or two Ala-SOD2 alleles, 5.1% in patients with only one of these two traits, and 0% in patients with none of these traits. Corresponding 5-year death rates were 37.6%, 11.6%, and 5%. CONCLUSION The combination of the GG-MPO genotype (leading to high MPO expression) and at least one Ala-SOD2 allele (associated with high liver iron score) markedly increased the risks of HCC occurrence and death in patients with alcoholic cirrhosis.
Collapse
Affiliation(s)
- Pierre Nahon
- Service d'Hépatologie, Hôpital Jean Verdier, AP-HP, Bondy, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Yamakura F, Kawasaki H. Post-translational modifications of superoxide dismutase. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1804:318-25. [PMID: 19837190 DOI: 10.1016/j.bbapap.2009.10.010] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2009] [Revised: 10/05/2009] [Accepted: 10/06/2009] [Indexed: 12/31/2022]
Abstract
Post-translational modifications of proteins control many biological processes through the activation, inactivation, or gain-of-function of the proteins. Recent developments in mass spectrometry have enabled detailed structural analyses of covalent modifications of proteins and also have shed light on the post-translational modification of superoxide dismutase. In this review, we introduce some covalent modifications of superoxide dismutase, nitration, phosphorylation, glutathionylaion, and glycation. Nitration has been the most extensively analyzed modification both in vitro and in vivo. Reaction of human Cu,Zn superoxide dismutase (SOD) with reactive nitrogen species resulted in nitration of a single tryptophan residue to 6-nitrotryptophan, which could be a new biomarker of a formation of reactive nitrogen species. On the other hand, tyrosine 34 of human MnSOD was exclusively nitrated to 3-nitrotyrosine and almost completely inactivated by the reaction with peroxynitrite. The nitrated MnSOD has been found in many diseases caused by ischemia/reperfusion, inflammation, and others and may have a pivotal role in the pathology of the diseases. Most of the post-translational modifications have given rise to a reduced activity of SOD. Since phosphorylation and nitration of SOD have been shown to have a possible reversible process, these modifications may be related to a redox signaling process in cells. Finally we briefly introduce a metal insertion system of SOD, focusing particularly on the iron misincorporation of nSOD, as a part of post-translational modifications.
Collapse
Affiliation(s)
- Fumiyuki Yamakura
- Department of Chemistry, Juntendo University School of Health Care and Nursing, Japan.
| | | |
Collapse
|
88
|
Affiliation(s)
- Aaron Atkinson
- Departments of Medicine and Biochemistry, University of Utah Health Sciences Center, Salt Lake City, Utah 84132
| | - Dennis R. Winge
- Departments of Medicine and Biochemistry, University of Utah Health Sciences Center, Salt Lake City, Utah 84132
| |
Collapse
|
89
|
Naranuntarat A, Jensen LT, Pazicni S, Penner-Hahn JE, Culotta VC. The interaction of mitochondrial iron with manganese superoxide dismutase. J Biol Chem 2009; 284:22633-40. [PMID: 19561359 PMCID: PMC2755670 DOI: 10.1074/jbc.m109.026773] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Revised: 06/24/2009] [Indexed: 01/01/2023] Open
Abstract
Superoxide dismutase 2 (SOD2) is one of the rare mitochondrial enzymes evolved to use manganese as a cofactor over the more abundant element iron. Although mitochondrial iron does not normally bind SOD2, iron will misincorporate into Saccharomyces cerevisiae Sod2p when cells are starved for manganese or when mitochondrial iron homeostasis is disrupted by mutations in yeast grx5, ssq1, and mtm1. We report here that such changes in mitochondrial manganese and iron similarly affect cofactor selection in a heterologously expressed Escherichia coli Mn-SOD, but not a highly homologous Fe-SOD. By x-ray absorption near edge structure and extended x-ray absorption fine structure analyses of isolated mitochondria, we find that misincorporation of iron into yeast Sod2p does not correlate with significant changes in the average oxidation state or coordination chemistry of bulk mitochondrial iron. Instead, small changes in mitochondrial iron are likely to promote iron-SOD2 interactions. Iron binds Sod2p in yeast mutants blocking late stages of iron-sulfur cluster biogenesis (grx5, ssq1, and atm1), but not in mutants defective in the upstream Isu proteins that serve as scaffolds for iron-sulfur biosynthesis. In fact, we observed a requirement for the Isu proteins in iron inactivation of yeast Sod2p. Sod2p activity was restored in mtm1 and grx5 mutants by depleting cells of Isu proteins or using a dominant negative Isu1p predicted to stabilize iron binding to Isu1p. In all cases where disruptions in iron homeostasis inactivated Sod2p, we observed an increase in mitochondrial Isu proteins. These studies indicate that the Isu proteins and the iron-sulfur pathway can donate iron to Sod2p.
Collapse
Affiliation(s)
- Amornrat Naranuntarat
- From the Department of Environmental Health Sciences, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205 and
| | - Laran T. Jensen
- From the Department of Environmental Health Sciences, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205 and
| | - Samuel Pazicni
- the Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109
| | | | - Valeria C. Culotta
- From the Department of Environmental Health Sciences, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205 and
| |
Collapse
|
90
|
Nilsson R, Schultz IJ, Pierce EL, Soltis KA, Naranuntarat A, Ward DM, Baughman J, Paradkar PN, Kingsley PD, Culotta VC, Kaplan J, Palis J, Paw BH, Mootha VK. Discovery of genes essential for heme biosynthesis through large-scale gene expression analysis. Cell Metab 2009; 10:119-30. [PMID: 19656490 PMCID: PMC2745341 DOI: 10.1016/j.cmet.2009.06.012] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Revised: 05/21/2009] [Accepted: 06/25/2009] [Indexed: 11/19/2022]
Abstract
Heme biosynthesis consists of a series of eight enzymatic reactions that originate in mitochondria and continue in the cytosol before returning to mitochondria. Although these core enzymes are well studied, additional mitochondrial transporters and regulatory factors are predicted to be required. To discover such unknown components, we utilized a large-scale computational screen to identify mitochondrial proteins whose transcripts consistently coexpress with the core machinery of heme biosynthesis. We identified SLC25A39, SLC22A4, and TMEM14C, which are putative mitochondrial transporters, as well as C1orf69 and ISCA1, which are iron-sulfur cluster proteins. Targeted knockdowns of all five genes in zebrafish resulted in profound anemia without impacting erythroid lineage specification. Moreover, silencing of Slc25a39 in murine erythroleukemia cells impaired iron incorporation into protoporphyrin IX, and vertebrate Slc25a39 complemented an iron homeostasis defect in the orthologous yeast mtm1Delta deletion mutant. Our results advance the molecular understanding of heme biosynthesis and offer promising candidate genes for inherited anemias.
Collapse
Affiliation(s)
- Roland Nilsson
- Department of Systems Biology, Harvard Medical School; Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA; and Broad Institute of MIT/Harvard, Cambridge, MA 02142 USA
| | - Iman J. Schultz
- Department of Medicine, Hematology Division, Brigham & Women’s Hospital; Hematology-Oncology Division, Children’s Hospital Boston; and Harvard Medical School, Boston, MA 02115 USA
| | - Eric L. Pierce
- Department of Medicine, Hematology Division, Brigham & Women’s Hospital; Hematology-Oncology Division, Children’s Hospital Boston; and Harvard Medical School, Boston, MA 02115 USA
| | - Kathleen A. Soltis
- Department of Medicine, Hematology Division, Brigham & Women’s Hospital; Hematology-Oncology Division, Children’s Hospital Boston; and Harvard Medical School, Boston, MA 02115 USA
| | - Amornrat Naranuntarat
- Department of Environmental Health Sciences, Toxicological Sciences Division, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205 USA
| | - Diane M. Ward
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84132 USA
| | - Joshua Baughman
- Department of Systems Biology, Harvard Medical School; Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA; and Broad Institute of MIT/Harvard, Cambridge, MA 02142 USA
| | - Prasad N. Paradkar
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84132 USA
| | - Paul D. Kingsley
- Department of Pediatrics, Center for Pediatric Biomedical Research, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642 USA
| | - Valeria C. Culotta
- Department of Environmental Health Sciences, Toxicological Sciences Division, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205 USA
| | - Jerry Kaplan
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84132 USA
| | - James Palis
- Department of Pediatrics, Center for Pediatric Biomedical Research, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642 USA
| | - Barry H. Paw
- Department of Medicine, Hematology Division, Brigham & Women’s Hospital; Hematology-Oncology Division, Children’s Hospital Boston; and Harvard Medical School, Boston, MA 02115 USA
| | - Vamsi K. Mootha
- Department of Systems Biology, Harvard Medical School; Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA; and Broad Institute of MIT/Harvard, Cambridge, MA 02142 USA
| |
Collapse
|
91
|
Laparra JM, Barberá R, Alegría A, Glahn RP, Miller DD. Purified Glycosaminoglycans from Cooked Haddock May Enhance Fe Uptake Via Endocytosis in a Caco-2 Cell Culture Model. J Food Sci 2009; 74:H168-73. [PMID: 19723201 DOI: 10.1111/j.1750-3841.2009.01216.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
92
|
Hänsch R, Mendel RR. Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). CURRENT OPINION IN PLANT BIOLOGY 2009; 12:259-66. [PMID: 19524482 DOI: 10.1016/j.pbi.2009.05.006] [Citation(s) in RCA: 644] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Revised: 05/07/2009] [Accepted: 05/08/2009] [Indexed: 05/18/2023]
Abstract
Micronutrients are involved in all metabolic and cellular functions. Plants differ in their need for micronutrients, and we will focus here only on those elements that are generally accepted as essential for all higher plants: boron (B), chloride (Cl), copper (Cu), iron (Fe), manganese (Mn), molybdenum (Mo), nickel (Ni), and zinc (Zn). Several of these elements are redox-active that makes them essential as catalytically active cofactors in enzymes, others have enzyme-activating functions, and yet others fulfill a structural role in stabilizing proteins. In this review, we focus on the major functions of mineral micronutrients, mostly in cases where they were shown as constituents of proteins, making a selection and highlighting some functions in more detail.
Collapse
Affiliation(s)
- Robert Hänsch
- Institut für Pflanzenbiologie, Technische Universität Braunschweig, Braunschweig, Germany
| | | |
Collapse
|
93
|
Linares GR, Xing W, Govoni KE, Chen ST, Mohan S. Glutaredoxin 5 regulates osteoblast apoptosis by protecting against oxidative stress. Bone 2009; 44:795-804. [PMID: 19442627 PMCID: PMC4683083 DOI: 10.1016/j.bone.2009.01.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Revised: 11/19/2008] [Accepted: 01/05/2009] [Indexed: 11/17/2022]
Abstract
There is now increasing evidence which suggests an important role for reactive oxygen species (ROS) in the pathogenesis of osteoporosis. However, little is known on the molecular components of the oxidative stress pathway or their functions in bone. In this study, we evaluated the role and mechanism of action of glutaredoxin (Grx) 5, a protein that is highly expressed in bone. Osteoblasts were transfected with Grx5 siRNA and treated with hydrogen peroxide (H(2)O(2)). Grx5 siRNA treatment increased apoptosis while Grx5 overexpression protected MC3T3-E1 cells against H(2)O(2) induced apoptosis and ROS formation. Grx5 deficiency results in impaired biogenesis of Fe-S cluster in yeast. Accordingly, activity of mitochondrial aconitase, whose activity is dependent on Fe-S cluster, decreased in Grx5 siRNA treated cells. Since reduced formation of Fe-S cluster would lead to increased level of free iron, a competitive inhibitor of manganese superoxide dismutase (MnSOD), we measured MnSOD activity in Grx5 deficient osteoblasts and found MnSOD activity was significantly reduced. The consequence of long term inhibition of Grx5 on osteoblast apoptosis was evaluated using lentiviral shRNA technology. Grx5 shRNA cells exhibited higher caspase activity and cardiolipin oxidation in the presence of H(2)O(2). MnSOD activity was rescued by the addition of MnCl(2) to Grx5 shRNA osteoblasts in the presence of H(2)O(2). Our findings are consistent with the hypothesis that Grx5 is an important determinant of osteoblast apoptosis and acts via a molecular pathway that involves regulation of ROS production, cardiolipin oxidation, caspase activity, Fe-S cluster formation, and MnSOD activity.
Collapse
Affiliation(s)
- Gabriel R Linares
- Musculoskeletal Disease Center, Jerry L Pettis Memorial Veterans Affairs Medical Center, Loma Linda, CA 92357, USA
| | | | | | | | | |
Collapse
|
94
|
Bleackley MR, Wong AY, Hudson DM, Wu CHY, MacGillivray RT. Blood Iron Homeostasis: Newly Discovered Proteins and Iron Imbalance. Transfus Med Rev 2009; 23:103-23. [DOI: 10.1016/j.tmrv.2008.12.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
95
|
Wei ZB, Miao XY, Yang MQ, Luo XG. [Advances in the expression and regulation of MnSOD gene]. YI CHUAN = HEREDITAS 2009; 30:831-7. [PMID: 18779124 DOI: 10.3724/sp.j.1005.2008.00831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
MnSOD, which is an important oxygen free radical scavenger in organisms, has an effect to resist oxidative stress and tumor. The expression and regulation of MnSOD gene is a complicated process, which includes many kinds of transcription factors, cell signal molecules and cell signal pathways. It refers to three aspects including transcription regulation, post-transcription regulation and translation regulation. Transcription regulation is the primary step for MnSOD gene expression and plays a key role during the expression of MnSOD gene. The activity of transcription factors, which controls MnSOD gene expression, such as SP-1, AP-2, AP-1, NF-kB and so on, can be changed in the course of transcription regulation. Drugs and metalions can also affect those transcription factors' activity. Furthermore some genes mutation and depletion also have an influence on the activity of those transcription factors. Post-transcription regulation is in a way of changing the stability of mRNA and its translation. Translation regulation is a process to regulate edition, modification, binding to metalion and site-specific of MnSOD polypeptide. Recently a kind of manganese trafficking factor for mitochondrial MnSOD called MTMl which is very important for activation of MnSOD has been discovered. Here, we review the advances in this field with an emphasis on transcription regulation and translation regulation of MnSOD gene. And at last, we discussed the prospect of MnSOD gene expression and regulation.
Collapse
Affiliation(s)
- Zong-Bo Wei
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100094, China
| | | | | | | |
Collapse
|
96
|
Froschauer EM, Schweyen RJ, Wiesenberger G. The yeast mitochondrial carrier proteins Mrs3p/Mrs4p mediate iron transport across the inner mitochondrial membrane. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:1044-50. [PMID: 19285482 DOI: 10.1016/j.bbamem.2009.03.004] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Revised: 11/28/2008] [Accepted: 03/05/2009] [Indexed: 11/16/2022]
Abstract
The yeast proteins Mrs3p and Mrs4p are two closely related members of the mitochondrial carrier family (MCF), which had previously been implicated in mitochondrial Fe(2+) homeostasis. A vertebrate Mrs3/4 homologue named mitoferrin was shown to be essential for erythroid iron utilization and proposed to function as an essential mitochondrial iron importer. Indirect reporter assays in isolated yeast mitochondria indicated that the Mrs3/4 proteins are involved in mitochondrial Fe(2+) utilization or transport under iron-limiting conditions. To have a more direct test for Mrs3/4p mediated iron uptake into mitochondria we studied iron (II) transport across yeast inner mitochondrial membrane vesicles (SMPs) using the iron-sensitive fluorophore PhenGreen SK (PGSK). Wild-type SMPs showed rapid uptake of Fe(2+) which was driven by the external Fe(2+) concentration and stimulated by acidic pH. SMPs from the double deletion strain mrs3/4Delta failed to show this rapid Fe(2+) uptake, while SMPs from cells overproducing Mrs3/4p exhibited increased Fe(2+) uptake rates. Cu(2+) was transported at similar rates as Fe(2+), while other divalent cations, such as Zn(2+) and Cd(2+) apparently did not serve as substrates for the Mrs3/4p transporters. We conclude that the carrier proteins Mrs3p and Mrs4p transport Fe(2+) across the inner mitochondrial membrane. Their activity is dependent on the pH gradient and it is stimulated by iron shortage.
Collapse
Affiliation(s)
- Elisabeth M Froschauer
- Max F. Perutz Laboratories, Department of Genetics, University of Vienna, Dr. Bohrgasse 9, A-1030 Vienna, Austria
| | | | | |
Collapse
|
97
|
Prolonged ethanol administration depletes mitochondrial DNA in MnSOD-overexpressing transgenic mice, but not in their wild type littermates. Toxicol Appl Pharmacol 2009; 234:326-38. [DOI: 10.1016/j.taap.2008.11.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2008] [Revised: 10/15/2008] [Accepted: 11/04/2008] [Indexed: 02/05/2023]
|
98
|
Campanella A, Rovelli E, Santambrogio P, Cozzi A, Taroni F, Levi S. Mitochondrial ferritin limits oxidative damage regulating mitochondrial iron availability: hypothesis for a protective role in Friedreich ataxia. Hum Mol Genet 2009; 18:1-11. [PMID: 18815198 PMCID: PMC3298861 DOI: 10.1093/hmg/ddn308] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Accepted: 09/22/2008] [Indexed: 01/18/2023] Open
Abstract
Mitochondrial ferritin (FtMt) is a nuclear-encoded iron-sequestering protein that specifically localizes in mitochondria. In mice it is highly expressed in cells characterized by high-energy consumption, while is undetectable in iron storage tissues like liver and spleen. FtMt expression in mammalian cells was shown to cause a shift of iron from cytosol to mitochondria, and in yeast it rescued the defects associated with frataxin deficiency. To study the role of FtMt in oxidative damage, we analyzed the effect of its expression in HeLa cells after incubation with H(2)O(2) and Antimycin A, and after a long-term growth in glucose-free media that enhances mitochondrial respiratory activity. FtMt reduced the level of reactive oxygen species (ROS), increased the level of adenosine 5'triphosphate and the activity of mitochondrial Fe-S enzymes, and had a positive effect on cell viability. Furthermore, FtMt expression reduces the size of cytosolic and mitochondrial labile iron pools. In cells grown in glucose-free media, FtMt level was reduced owing to faster degradation rate, however it still protected the activity of mitochondrial Fe-S enzymes without affecting the cytosolic iron status. In addition, FtMt expression in fibroblasts from Friedreich ataxia (FRDA) patients prevented the formation of ROS and partially rescued the impaired activity of mitochondrial Fe-S enzymes, caused by frataxin deficiency. These results indicate that the primary function of FtMt involves the control of ROS formation through the regulation of mitochondrial iron availability. They are consistent with the expression pattern of FtMt observed in mouse tissues, suggesting a FtMt protective role in cells characterized by defective iron homeostasis and respiration, such as in FRDA.
Collapse
Affiliation(s)
- Alessandro Campanella
- IIT Network, Research Unit of Molecular Neuroscience
- Vita-Salute San Raffaele University
| | - Elisabetta Rovelli
- San Raffaele Scientific Institute, Via Olgettina 58, Milano 20132, Italy
| | - Paolo Santambrogio
- San Raffaele Scientific Institute, Via Olgettina 58, Milano 20132, Italy
| | - Anna Cozzi
- San Raffaele Scientific Institute, Via Olgettina 58, Milano 20132, Italy
| | - Franco Taroni
- Division of Biochemistry and Genetics, Fondazione IRCCS-Istituto Neurologico Carlo Besta, Via Celoria 11, Milan 20133, Italy
| | - Sonia Levi
- Vita-Salute San Raffaele University
- San Raffaele Scientific Institute, Via Olgettina 58, Milano 20132, Italy
| |
Collapse
|
99
|
Andrew AJ, Song JY, Schilke B, Craig EA. Posttranslational regulation of the scaffold for Fe-S cluster biogenesis, Isu. Mol Biol Cell 2008; 19:5259-66. [PMID: 18843040 DOI: 10.1091/mbc.e08-06-0622] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Isu, the scaffold protein on which Fe-S clusters are built in the mitochondrial matrix, plays a central role in the biogenesis of Fe-S cluster proteins. We report that the reduction in the activity of several components of the cluster biogenesis system, including the specialized Hsp70 Ssq1, causes a 15-20-fold up-regulation of Isu. This up-regulation results from changes at both the transcriptional and posttranslational level: an increase in ISU mRNA levels and in stability of ISU protein. Its biological importance is demonstrated by the fact that cells lacking Ssq1 grow poorly when Isu levels are prevented from rising above those found in wild-type cells. Of the biogenesis factors tested, Nfs1, the sulfur donor, was unique. Little increase in Isu levels occurred when Nfs1 was depleted. However, its presence was required for the up-regulation caused by reduction in activity of other components. Our results are consistent with the existence of a mechanism to increase the stability of Isu, and thus its level, that is dependent on the presence of the cysteine desulfurase Nfs1.
Collapse
Affiliation(s)
- Amy J Andrew
- Department of Biochemistry, University of Wisconsin, Madison WI 53706, USA
| | | | | | | |
Collapse
|
100
|
Jouihan HA, Cobine PA, Cooksey RC, Hoagland EA, Boudina S, Abel ED, Winge DR, McClain DA. Iron-mediated inhibition of mitochondrial manganese uptake mediates mitochondrial dysfunction in a mouse model of hemochromatosis. Mol Med 2008; 14:98-108. [PMID: 18317567 DOI: 10.2119/2007-00114.jouihan] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2007] [Accepted: 12/28/2007] [Indexed: 12/14/2022] Open
Abstract
Previous phenotyping of glucose homeostasis and insulin secretion in a mouse model of hereditary hemochromatosis (Hfe(-/-)) and iron overload suggested mitochondrial dysfunction. Mitochondria from Hfe(-/-) mouse liver exhibited decreased respiratory capacity and increased lipid peroxidation. Although the cytosol contained excess iron, Hfe(-/-) mitochondria contained normal iron but decreased copper, manganese, and zinc, associated with reduced activities of copper-dependent cytochrome c oxidase and manganese-dependent superoxide dismutase (MnSOD). The attenuation in MnSOD activity was due to substantial levels of unmetallated apoprotein. The oxidative damage in Hfe(-/-) mitochondria is due to diminished MnSOD activity, as manganese supplementation of Hfe(-/-) mice led to enhancement of MnSOD activity and suppressed lipid peroxidation. Manganese supplementation also resulted in improved insulin secretion and glucose tolerance associated with increased MnSOD activity and decreased lipid peroxidation in islets. These data suggest a novel mechanism of iron-induced cellular dysfunction, namely altered mitochondrial uptake of other metal ions.
Collapse
Affiliation(s)
- Hani A Jouihan
- Department of Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | | | | | | | | | | | | | | |
Collapse
|