51
|
Tanner K, Molina‐Menor E, Latorre‐Pérez A, Vidal‐Verdú À, Vilanova C, Peretó J, Porcar M. Extremophilic microbial communities on photovoltaic panel surfaces: a two-year study. Microb Biotechnol 2020; 13:1819-1830. [PMID: 32613706 PMCID: PMC7533311 DOI: 10.1111/1751-7915.13620] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 06/02/2020] [Accepted: 06/09/2020] [Indexed: 11/27/2022] Open
Abstract
Solar panel surfaces can be colonized by microorganisms adapted to desiccation, temperature fluctuations and solar radiation. Although the taxonomic and functional composition of these communities has been studied, the microbial colonization process remains unclear. In the present work, we have monitored this microbial colonization process during 24 months by performing weekly measurements of the photovoltaic efficiency, carrying out 16S rRNA gene high-throughput sequencing, and studying the effect of antimicrobial compounds on the composition of the microbial biocenosis. This is the first time a long-term study of the colonization process of solar panels has been performed, and our results reveal that species richness and biodiversity exhibit seasonal fluctuations and that there is a trend towards an increase or decrease of specialist (solar panel-adapted) and generalist taxa, respectively. On the former, extremophilic bacterial genera Deinococcus, Hymenobacter and Roseomonas and fungal Neocatenulostroma, Symmetrospora and Sporobolomyces tended to dominate the biocenosis; whereas Lactobacillus sp or Stemphyllium exhibited a decreasing trend. This profile was deeply altered by washing the panels with chemical agents (Virkon), but this did not lead to an increase of the solar panels efficiency. Our results show that solar panels are extreme environments that force the selection of a particular microbial community.
Collapse
Affiliation(s)
- Kristie Tanner
- Darwin Bioprospecting Excellence S.L.Calle Catedrático Agustín Escardino 9Paterna46980Spain
- Institute for Integrative Systems Biology I2SysBioUniversity of Valencia – CSICCatedrático José Beltrán 2Paterna46980Spain
| | - Esther Molina‐Menor
- Institute for Integrative Systems Biology I2SysBioUniversity of Valencia – CSICCatedrático José Beltrán 2Paterna46980Spain
| | - Adriel Latorre‐Pérez
- Darwin Bioprospecting Excellence S.L.Calle Catedrático Agustín Escardino 9Paterna46980Spain
| | - Àngela Vidal‐Verdú
- Institute for Integrative Systems Biology I2SysBioUniversity of Valencia – CSICCatedrático José Beltrán 2Paterna46980Spain
| | - Cristina Vilanova
- Darwin Bioprospecting Excellence S.L.Calle Catedrático Agustín Escardino 9Paterna46980Spain
| | - Juli Peretó
- Darwin Bioprospecting Excellence S.L.Calle Catedrático Agustín Escardino 9Paterna46980Spain
- Institute for Integrative Systems Biology I2SysBioUniversity of Valencia – CSICCatedrático José Beltrán 2Paterna46980Spain
- Department of Biochemistry and Molecular BiologyUniversity of ValenciaDr. Moliner 50Burjassot46100Spain
| | - Manuel Porcar
- Darwin Bioprospecting Excellence S.L.Calle Catedrático Agustín Escardino 9Paterna46980Spain
- Institute for Integrative Systems Biology I2SysBioUniversity of Valencia – CSICCatedrático José Beltrán 2Paterna46980Spain
| |
Collapse
|
52
|
Yadav M, Pandey R, Chauhan NS. Catabolic Machinery of the Human Gut Microbes Bestow Resilience Against Vanillin Antimicrobial Nature. Front Microbiol 2020; 11:588545. [PMID: 33193247 PMCID: PMC7605359 DOI: 10.3389/fmicb.2020.588545] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/17/2020] [Indexed: 12/20/2022] Open
Abstract
Vanillin is a phenolic food additive commonly used for flavor, antimicrobial, and antioxidant properties. Though it is one of the widely used food additives, strategies of the human gut microbes to evade its antimicrobial activity await extensive elucidation. The current study explores the human gut microbiome with a multi-omics approach to elucidate its composition and metabolic machinery to counter vanillin bioactivity. A combination of SSU rRNA gene diversity, metagenomic RNA features diversity, phylogenetic affiliation of metagenome encoded proteins, uniformly (R = 0.99) indicates the abundance of Bacteroidetes followed by Firmicutes and Proteobacteria. Manual curation of metagenomic dataset identified gene clusters specific for the vanillin metabolism (ligV, ligK, and vanK) and intermediary metabolic pathways (pca and cat operon). Metagenomic dataset comparison identified the omnipresence of vanillin catabolic features across diverse populations. The metabolomic analysis brings forth the functionality of the vanillin catabolic pathway through the Protocatechuate branch of the beta-ketoadipate pathway. These results highlight the human gut microbial features and metabolic bioprocess involved in vanillin catabolism to overcome its antimicrobial activity. The current study advances our understanding of the human gut microbiome adaption toward changing dietary habits.
Collapse
Affiliation(s)
- Monika Yadav
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, India
| | - Rajesh Pandey
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, India
| | - Nar Singh Chauhan
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, India
| |
Collapse
|
53
|
Freel KC, Fouteau S, Roche D, Farasin J, Huber A, Koechler S, Peres M, Chiboub O, Varet H, Proux C, Deschamps J, Briandet R, Torchet R, Cruveiller S, Lièvremont D, Coppée JY, Barbe V, Arsène-Ploetze F. Effect of arsenite and growth in biofilm conditions on the evolution of Thiomonas sp. CB2. Microb Genom 2020; 6:mgen000447. [PMID: 33034553 PMCID: PMC7660254 DOI: 10.1099/mgen.0.000447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 09/14/2020] [Indexed: 11/30/2022] Open
Abstract
Thiomonas bacteria are ubiquitous at acid mine drainage sites and play key roles in the remediation of water at these locations by oxidizing arsenite to arsenate, favouring the sorption of arsenic by iron oxides and their coprecipitation. Understanding the adaptive capacities of these bacteria is crucial to revealing how they persist and remain active in such extreme conditions. Interestingly, it was previously observed that after exposure to arsenite, when grown in a biofilm, some strains of Thiomonas bacteria develop variants that are more resistant to arsenic. Here, we identified the mechanisms involved in the emergence of such variants in biofilms. We found that the percentage of variants generated increased in the presence of high concentrations of arsenite (5.33 mM), especially in the detached cells after growth under biofilm-forming conditions. Analysis of gene expression in the parent strain CB2 revealed that genes involved in DNA repair were upregulated in the conditions where variants were observed. Finally, we assessed the phenotypes and genomes of the subsequent variants generated to evaluate the number of mutations compared to the parent strain. We determined that multiple point mutations accumulated after exposure to arsenite when cells were grown under biofilm conditions. Some of these mutations were found in what is referred to as ICE19, a genomic island (GI) carrying arsenic-resistance genes, also harbouring characteristics of an integrative and conjugative element (ICE). The mutations likely favoured the excision and duplication of this GI. This research aids in understanding how Thiomonas bacteria adapt to highly toxic environments, and, more generally, provides a window to bacterial genome evolution in extreme environments.
Collapse
Affiliation(s)
- Kelle C. Freel
- Laboratoire Génétique Moléculaire, Génomique et Microbiologie, UMR7156, Institut de Botanique, CNRS – Université de Strasbourg, Strasbourg, France
- Present address: Hawaiʻi Institute of Marine Biology, University of Hawaiʻi at Mānoa, Kāneʻohe, HI, USA
| | - Stephanie Fouteau
- Génomique Métabolique, Genoscope, Institut de Biologie François Jacob, Commissariat à l'Energie Atomique (CEA), CNRS, Université Evry, Université Paris-Saclay, Evry, France
| | - David Roche
- Génomique Métabolique, Genoscope, Institut de Biologie François Jacob, Commissariat à l'Energie Atomique (CEA), CNRS, Université Evry, Université Paris-Saclay, Evry, France
| | - Julien Farasin
- Laboratoire Génétique Moléculaire, Génomique et Microbiologie, UMR7156, Institut de Botanique, CNRS – Université de Strasbourg, Strasbourg, France
| | - Aline Huber
- Laboratoire Génétique Moléculaire, Génomique et Microbiologie, UMR7156, Institut de Botanique, CNRS – Université de Strasbourg, Strasbourg, France
| | - Sandrine Koechler
- Laboratoire Génétique Moléculaire, Génomique et Microbiologie, UMR7156, Institut de Botanique, CNRS – Université de Strasbourg, Strasbourg, France
- Present address: Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Martina Peres
- Laboratoire Génétique Moléculaire, Génomique et Microbiologie, UMR7156, Institut de Botanique, CNRS – Université de Strasbourg, Strasbourg, France
| | - Olfa Chiboub
- Laboratoire Génétique Moléculaire, Génomique et Microbiologie, UMR7156, Institut de Botanique, CNRS – Université de Strasbourg, Strasbourg, France
| | - Hugo Varet
- Plateforme Transcriptome et Epigenome, BioMics, Centre de Ressources et Recherches Technologiques, Institut Pasteur, Paris, France
- Hub Bioinformatique et Biostatistique, Centre de Bioinformatique, Biostatistique et Biologie Intégrative (C3BI, USR 3756, IP CNRS), Institut Pasteur, Paris, France
| | - Caroline Proux
- Plateforme Transcriptome et Epigenome, BioMics, Centre de Ressources et Recherches Technologiques, Institut Pasteur, Paris, France
| | - Julien Deschamps
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Romain Briandet
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Rachel Torchet
- Génomique Métabolique, Genoscope, Institut de Biologie François Jacob, Commissariat à l'Energie Atomique (CEA), CNRS, Université Evry, Université Paris-Saclay, Evry, France
| | - Stephane Cruveiller
- Génomique Métabolique, Genoscope, Institut de Biologie François Jacob, Commissariat à l'Energie Atomique (CEA), CNRS, Université Evry, Université Paris-Saclay, Evry, France
| | - Didier Lièvremont
- Laboratoire Génétique Moléculaire, Génomique et Microbiologie, UMR7156, Institut de Botanique, CNRS – Université de Strasbourg, Strasbourg, France
| | - Jean-Yves Coppée
- Plateforme Transcriptome et Epigenome, BioMics, Centre de Ressources et Recherches Technologiques, Institut Pasteur, Paris, France
| | - Valérie Barbe
- Génomique Métabolique, Genoscope, Institut de Biologie François Jacob, Commissariat à l'Energie Atomique (CEA), CNRS, Université Evry, Université Paris-Saclay, Evry, France
| | - Florence Arsène-Ploetze
- Laboratoire Génétique Moléculaire, Génomique et Microbiologie, UMR7156, Institut de Botanique, CNRS – Université de Strasbourg, Strasbourg, France
- Present address: Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
54
|
Wainwright BJ, Zahn GL, Afiq-Rosli L, Tanzil JTI, Huang D. Host age is not a consistent predictor of microbial diversity in the coral Porites lutea. Sci Rep 2020; 10:14376. [PMID: 32873814 PMCID: PMC7463248 DOI: 10.1038/s41598-020-71117-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 08/07/2020] [Indexed: 12/19/2022] Open
Abstract
Corals harbour diverse microbial communities that can change in composition as the host grows in age and size. Larger and older colonies have been shown to host a higher diversity of microbial taxa and this has been suggested to be a consequence of their more numerous, complex and varied micro-niches available. However, the effects of host age on community structure and diversity of microbial associates remain equivocal in the few studies performed to date. To test this relationship more robustly, we use established techniques to accurately determine coral host age by quantifying annual skeletal banding patterns, and utilise high-throughput sequencing to comprehensively characterise the microbiome of the common reef-building coral, Porites lutea. Our results indicate no clear link between coral age and microbial diversity or richness. Different sites display distinct age-dependent diversity patterns, with more anthropogenically impacted reefs appearing to show a winnowing of microbial diversity with host age, possibly a consequence of corals adapting to degraded environments. Less impacted sites do not show a signature of winnowing, and we observe increases in microbial richness and diversity as the host ages. Furthermore, we demonstrate that corals of a similar age from the same reef can show very different microbial richness and diversity.
Collapse
Affiliation(s)
| | - Geoffrey L Zahn
- Biology Department, Utah Valley University, 800 W. University Parkway, Orem, UT, 84058, USA
| | - Lutfi Afiq-Rosli
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore, 117558, Singapore
- Tropical Marine Science Institute, National University of Singapore, 18 Kent Ridge Road, Singapore, 119227, Singapore
| | - Jani T I Tanzil
- Tropical Marine Science Institute, National University of Singapore, 18 Kent Ridge Road, Singapore, 119227, Singapore
| | - Danwei Huang
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore, 117558, Singapore
- Tropical Marine Science Institute, National University of Singapore, 18 Kent Ridge Road, Singapore, 119227, Singapore
| |
Collapse
|
55
|
Giddings LA, Chlipala G, Kunstman K, Green S, Morillo K, Bhave K, Peterson H, Driscoll H, Maienschein-Cline M. Characterization of an acid rock drainage microbiome and transcriptome at the Ely Copper Mine Superfund site. PLoS One 2020; 15:e0237599. [PMID: 32785287 PMCID: PMC7423320 DOI: 10.1371/journal.pone.0237599] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/29/2020] [Indexed: 01/20/2023] Open
Abstract
The microbial oxidation of metal sulfides plays a major role in the formation of acid rock drainage (ARD). We aimed to broadly characterize the ARD at Ely Brook, which drains the Ely Copper Mine Superfund site in Vermont, USA, using metagenomics and metatranscriptomics to assess the metabolic potential and seasonal ecological roles of microorganisms in water and sediment. Using Centrifuge against the NCBI "nt" database, ~25% of reads in sediment and water samples were classified as acid-tolerant Proteobacteria (61 ± 4%) belonging to the genera Pseudomonas (2.6-3.3%), Bradyrhizobium (1.7-4.1%), and Streptomyces (2.9-5.0%). Numerous genes (12%) were differentially expressed between seasons and played significant roles in iron, sulfur, carbon, and nitrogen cycling. The most abundant RNA transcript encoded the multidrug resistance protein Stp, and most expressed KEGG-annotated transcripts were involved in amino acid metabolism. Biosynthetic gene clusters involved in secondary metabolism (BGCs, 449) as well as metal- (133) and antibiotic-resistance (8501) genes were identified across the entire dataset. Several antibiotic and metal resistance genes were colocalized and coexpressed with putative BGCs, providing insight into the protective roles of the molecules BGCs produce. Our study shows that ecological stimuli, such as metal concentrations and seasonal variations, can drive ARD taxa to produce novel bioactive metabolites.
Collapse
Affiliation(s)
- Lesley-Ann Giddings
- Department of Chemistry & Biochemistry, Middlebury College, Middlebury, Vermont, United States of America
- Department of Chemistry, Smith College, Northampton, Massachusetts, United States of America
| | - George Chlipala
- Research Resources Center, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Kevin Kunstman
- Research Resources Center, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Stefan Green
- Research Resources Center, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Katherine Morillo
- Department of Chemistry & Biochemistry, Middlebury College, Middlebury, Vermont, United States of America
| | - Kieran Bhave
- Department of Chemistry & Biochemistry, Middlebury College, Middlebury, Vermont, United States of America
| | - Holly Peterson
- Department of Geology, Guilford College, Greensboro, North Carolina, United States of America
| | - Heather Driscoll
- Vermont Genetics Network, Department of Biology, Norwich University, Northfield, Vermont, United States of America
| | - Mark Maienschein-Cline
- Research Resources Center, University of Illinois at Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
56
|
Gaete A, Mandakovic D, González M. Isolation and Identification of Soil Bacteria from Extreme Environments of Chile and Their Plant Beneficial Characteristics. Microorganisms 2020; 8:microorganisms8081213. [PMID: 32785053 PMCID: PMC7466141 DOI: 10.3390/microorganisms8081213] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/31/2020] [Accepted: 08/02/2020] [Indexed: 12/15/2022] Open
Abstract
The isolation of soil bacteria from extreme environments represents a major challenge, but also an opportunity to characterize the metabolic potential of soil bacteria that could promote the growth of plants inhabiting these harsh conditions. The aim of this study was to isolate and identify bacteria from two Chilean desert environments and characterize the beneficial traits for plants through a biochemical approach. By means of different culture strategies, we obtained 39 bacterial soil isolates from the Coppermine Peninsula (Antarctica) and 32 from Lejía Lake shore soil (Atacama Desert). The results obtained from the taxonomic classification and phylogenetic analysis based on 16S rDNA sequences indicated that the isolates belonged to four phyla (Proteobacteria, Actinobacteria, Firmicutes, and Bacteroidetes), and that the most represented genus at both sites was Pseudomonas. Regarding biochemical characterization, all strains displayed in vitro PGP capabilities, but these were in different proportions that grouped them according to their site of origin. This study contributes with microbial isolates from natural extreme environments with biotechnological potentials in improving plant growth under cold stress.
Collapse
Affiliation(s)
- Alexis Gaete
- Laboratorio de Bioinformática y Expresión Génica, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, El Libano 5524, 7810000 Santiago, Chile;
- Center for Genome Regulation, El Libano 5524, Santiago 7810000, Chile
- Programa de Doctorado en Ciencias Silvoagropecuarias y Veterinarias, Campus Sur Universidad de Chile. Santa Rosa 11315, 8820808 Santiago, Chile
| | - Dinka Mandakovic
- GEMA Center for Genomics, Ecology and Environment, Universidad Mayor, Camino La Pirámide 5750, 8320000 Santiago, Chile;
- Laboratorio de Genómica y Genética de Interacciones Biológicas (LGIB). Instituto de Nutrición y Tecnología de los Alimento, Universidad de Chile. El Líbano 5524, 7810000 Santiago, Chile
| | - Mauricio González
- Laboratorio de Bioinformática y Expresión Génica, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, El Libano 5524, 7810000 Santiago, Chile;
- Center for Genome Regulation, El Libano 5524, Santiago 7810000, Chile
- Correspondence:
| |
Collapse
|
57
|
Son S, Oh JD, Lee SH, Shin D, Kim Y. Comparative genomics of canine Lactobacillus reuteri reveals adaptation to a shared environment with humans. Genes Genomics 2020; 42:1107-1116. [PMID: 32761525 DOI: 10.1007/s13258-020-00978-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 07/23/2020] [Indexed: 01/19/2023]
Abstract
BACKGROUND Lactobacillus reuteri is a gram-positive, non-motile bacterial species that has been used as a representative microorganism model to describe the ecology and evolution of vertebrate gut symbionts. OBJECTIVE Because the genetic features and evolutionary strategies of L. reuteri from the gastrointestinal tract of canines remain unknown, we tried to construct draft genome canine L. reuteri and investigate modified, acquired, or lost genetic features that have facilitated the evolution and adaptation of strains to specific environmental niches by this study. METHODS To examine canine L. reuteri, we sequenced an L. reuteri strain isolated from a dog in Korea. A comparative genomic approach was used to assess genetic diversity and gain insight into the distinguishing features related to different hosts based on 27 published genomic sequences. RESULTS The pan-genome of 28 L. reuteri strains contained 7,369 gene families, and the core genome contained 1070 gene families. The ANI tree based on the core genes in the canine L. reuteri strain (C1) was very close to those for three strains (IRT, DSM20016, JCM1112) from humans. Evolutionarily, these four strains formed one clade, which we regarded as C1-clade in this study. We could investigate a total of 32,050 amino acid substitutions among the 28 L. reuteri strain genomes. In this comparison, 283 amino acid substitutions were specific to strain C1 and four strains in C1-clade shared most of these 283 C1-strain specific amino acid substitutions, suggesting strongly similar selective pressure. In accessory genes, we could identify 127 C1-clade host-specific genes and found that several genes were closely related to replication, recombination, and repair. CONCLUSION This study provides new insights into the adaptation of L. reuteri to the canine intestinal habitat, and suggests that the genome of L. reuteri from canines is closely associated with their living and shared environment with humans.
Collapse
Affiliation(s)
- Seungwoo Son
- The Animal Molecular Genetics and Breeding Center, Jeonbuk National University, Jeollabuk-do, Jeonju-si, 54896, Republic of Korea
| | - Jae-Don Oh
- The Animal Molecular Genetics and Breeding Center, Jeonbuk National University, Jeollabuk-do, Jeonju-si, 54896, Republic of Korea
| | - Sung Ho Lee
- Woogene B&G Co., Ltd., Gyeonggi-do, Hwaseong-si, 18630, Republic of Korea
| | - Donghyun Shin
- The Animal Molecular Genetics and Breeding Center, Jeonbuk National University, Jeollabuk-do, Jeonju-si, 54896, Republic of Korea.
| | - Yangseon Kim
- Center for Industrialization of Agriculture and Livestock Microorganism, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea.
| |
Collapse
|
58
|
Bünger W, Jiang X, Müller J, Hurek T, Reinhold-Hurek B. Novel cultivated endophytic Verrucomicrobia reveal deep-rooting traits of bacteria to associate with plants. Sci Rep 2020; 10:8692. [PMID: 32457320 PMCID: PMC7251102 DOI: 10.1038/s41598-020-65277-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 04/30/2020] [Indexed: 02/01/2023] Open
Abstract
Despite the relevance of complex root microbial communities for plant health, growth and productivity, the molecular basis of these plant-microbe interactions is not well understood. Verrucomicrobia are cosmopolitans in the rhizosphere, nevertheless their adaptations and functions are enigmatic since the proportion of cultured members is low. Here we report four cultivated Verrucomicrobia isolated from rice, putatively representing four novel species, and a novel subdivision. The aerobic strains were isolated from roots or rhizomes of Oryza sativa and O. longistaminata. Two of them are the first cultivated endophytes of Verrucomicrobia, as validated by confocal laser scanning microscopy inside rice roots after re-infection under sterile conditions. This extended known verrucomicrobial niche spaces. Two strains were promoting root growth of rice. Discovery of root compartment-specific Verrucomicrobia permitted an across-phylum comparison of the genomic conformance to life in soil, rhizoplane or inside roots. Genome-wide protein domain comparison with niche-specific reference bacteria from distant phyla revealed signature protein domains which differentiated lifestyles in these microhabitats. Our study enabled us to shed light into the dark microbial matter of root Verrucomicrobia, to define genetic drivers for niche adaptation of bacteria to plant roots, and provides cultured strains for revealing causal relationships in plant-microbe interactions by reductionist approaches.
Collapse
Affiliation(s)
- Wiebke Bünger
- Department of Microbe-Plant Interactions, University of Bremen, Bremen, Germany
| | - Xun Jiang
- Department of Microbe-Plant Interactions, University of Bremen, Bremen, Germany
| | - Jana Müller
- Department of Microbe-Plant Interactions, University of Bremen, Bremen, Germany.,Department of Botany, University of Bremen, Bremen, Germany
| | - Thomas Hurek
- Department of Microbe-Plant Interactions, University of Bremen, Bremen, Germany
| | | |
Collapse
|
59
|
Abstract
The marine subsurface is one of the largest habitats on Earth composed exclusively of microorganisms and harboring on the order of 1029 microbial cells. It is unclear if deep subsurface life impacts overlying seafloor diversity and biogeochemical cycling in the deep ocean. We analyzed the microbial communities of 172 seafloor surface sediment samples, including gas and oil seeps as well as sediments not subject to upward fluid flow. A strong correlation between typical subsurface clades and active geofluid seepage suggests that subsurface life is injected into the deep ocean floor at hydrocarbon seeps, a globally widespread hydrogeological phenomenon. This supply of subsurface-derived microbial populations, biomass, and metabolic potential thus increases biodiversity and impacts carbon cycling in the deep ocean. Marine cold seeps transmit fluids between the subseafloor and seafloor biospheres through upward migration of hydrocarbons that originate in deep sediment layers. It remains unclear how geofluids influence the composition of the seabed microbiome and if they transport deep subsurface life up to the surface. Here we analyzed 172 marine surficial sediments from the deep-water Eastern Gulf of Mexico to assess whether hydrocarbon fluid migration is a mechanism for upward microbial dispersal. While 132 of these sediments contained migrated liquid hydrocarbons, evidence of continuous advective transport of thermogenic alkane gases was observed in 11 sediments. Gas seeps harbored distinct microbial communities featuring bacteria and archaea that are well-known inhabitants of deep biosphere sediments. Specifically, 25 distinct sequence variants within the uncultivated bacterial phyla Atribacteria and Aminicenantes and the archaeal order Thermoprofundales occurred in significantly greater relative sequence abundance along with well-known seep-colonizing members of the bacterial genus Sulfurovum, in the gas-positive sediments. Metabolic predictions guided by metagenome-assembled genomes suggested these organisms are anaerobic heterotrophs capable of nonrespiratory breakdown of organic matter, likely enabling them to inhabit energy-limited deep subseafloor ecosystems. These results point to petroleum geofluids as a vector for the advection-assisted upward dispersal of deep biosphere microbes from subsurface to surface environments, shaping the microbiome of cold seep sediments and providing a general mechanism for the maintenance of microbial diversity in the deep sea.
Collapse
|
60
|
Baselga-Cervera B, García-Balboa C, Díaz-Alejo HM, Costas E, López-Rodas V. Rapid Colonization of Uranium Mining-Impacted Waters, the Biodiversity of Successful Lineages of Phytoplankton Extremophiles. MICROBIAL ECOLOGY 2020; 79:576-587. [PMID: 31463663 DOI: 10.1007/s00248-019-01431-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 08/19/2019] [Indexed: 06/10/2023]
Abstract
Anthropogenic extreme environments are emphasized as interesting sites for the study of evolutionary pathways, biodiversity, and extremophile bioprospection. Organisms that grow under these conditions are usually regarded as extremophiles; however, the extreme novelty of these environments may have favor adaptive radiations of facultative extremophiles. At the Iberian Peninsula, uranium mining operations have rendered highly polluted extreme environments in multiple locations. In this study, we examined the phytoplankton diversity, community structure, and possible determining factors in separate uranium mining-impacted waters. Some of these human-induced extreme environments may be able to sustain indigenous facultative extremophile phytoplankton species, as well as alleged obligate extremophiles. Therefore, we investigated the adaptation capacity of three laboratory strains, two Chlamydomonas reinhardtii and a Dictyosphaerium chlorelloides, to uranium-polluted waters. The biodiversity among the sampled waters was very low, and despite presenting unique taxonomic records, ecological patterns can be identified. The microalgae adaptation experiments indicated a gradient of ecological novelty and different phenomena of adaptation, from acclimation in some waters to non-adaptation in the harshest anthropogenic environment. Certainly, phytoplankton extremophiles might have been often overlooked, and the ability to flourish in extreme environments might be a functional feature in some neutrophilic species. Evolutionary biology and microbial biodiversity can benefit the study of recently evolved systems such as uranium-polluted waters. Moreover, anthropogenic extremophiles can be harnessed for industrial applications.
Collapse
Affiliation(s)
- Beatriz Baselga-Cervera
- Animal Science (Genetics), School of Veterinary Medicine, Complutense University of Madrid, 28040, Madrid, Spain
- Ecology, Evolution and Behavior Department, University of Minnesota, St. Paul, MN, 55108, USA
| | - Camino García-Balboa
- Animal Science (Genetics), School of Veterinary Medicine, Complutense University of Madrid, 28040, Madrid, Spain.
| | - Héctor M Díaz-Alejo
- Animal Science (Genetics), School of Veterinary Medicine, Complutense University of Madrid, 28040, Madrid, Spain
| | - Eduardo Costas
- Animal Science (Genetics), School of Veterinary Medicine, Complutense University of Madrid, 28040, Madrid, Spain
| | - Victoria López-Rodas
- Animal Science (Genetics), School of Veterinary Medicine, Complutense University of Madrid, 28040, Madrid, Spain
| |
Collapse
|
61
|
Gorter FA, Manhart M, Ackermann M. Understanding the evolution of interspecies interactions in microbial communities. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190256. [PMID: 32200743 DOI: 10.1098/rstb.2019.0256] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Microbial communities are complex multi-species assemblages that are characterized by a multitude of interspecies interactions, which can range from mutualism to competition. The overall sign and strength of interspecies interactions have important consequences for emergent community-level properties such as productivity and stability. It is not well understood how interspecies interactions change over evolutionary timescales. Here, we review the empirical evidence that evolution is an important driver of microbial community properties and dynamics on timescales that have traditionally been regarded as purely ecological. Next, we briefly discuss different modelling approaches to study evolution of communities, emphasizing the similarities and differences between evolutionary and ecological perspectives. We then propose a simple conceptual model for the evolution of interspecies interactions in communities. Specifically, we propose that to understand the evolution of interspecies interactions, it is important to distinguish between direct and indirect fitness effects of a mutation. We predict that in well-mixed environments, traits will be selected exclusively for their direct fitness effects, while in spatially structured environments, traits may also be selected for their indirect fitness effects. Selection of indirectly beneficial traits should result in an increase in interaction strength over time, while selection of directly beneficial traits should not have such a systematic effect. We tested our intuitions using a simple quantitative model and found support for our hypotheses. The next step will be to test these hypotheses experimentally and provide input for a more refined version of the model in turn, thus closing the scientific cycle of models and experiments. This article is part of the theme issue 'Conceptual challenges in microbial community ecology'.
Collapse
Affiliation(s)
- Florien A Gorter
- Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland.,Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), Dübendorf, Switzerland
| | - Michael Manhart
- Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland.,Institute of Integrative Biology, Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland.,Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), Dübendorf, Switzerland
| | - Martin Ackermann
- Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland.,Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), Dübendorf, Switzerland
| |
Collapse
|
62
|
Extreme Environments and High-Level Bacterial Tellurite Resistance. Microorganisms 2019; 7:microorganisms7120601. [PMID: 31766694 PMCID: PMC6955997 DOI: 10.3390/microorganisms7120601] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 01/10/2023] Open
Abstract
Bacteria have long been known to possess resistance to the highly toxic oxyanion tellurite, most commonly though reduction to elemental tellurium. However, the majority of research has focused on the impact of this compound on microbes, namely E. coli, which have a very low level of resistance. Very little has been done regarding bacteria on the other end of the spectrum, with three to four orders of magnitude greater resistance than E. coli. With more focus on ecologically-friendly methods of pollutant removal, the use of bacteria for tellurite remediation, and possibly recovery, further highlights the importance of better understanding the effect on microbes, and approaches for resistance/reduction. The goal of this review is to compile current research on bacterial tellurite resistance, with a focus on high-level resistance by bacteria inhabiting extreme environments.
Collapse
|
63
|
Velazquez S, Griffiths W, Dietz L, Horve P, Nunez S, Hu J, Shen J, Fretz M, Bi C, Xu Y, Van Den Wymelenberg KG, Hartmann EM, Ishaq SL. From one species to another: A review on the interaction between chemistry and microbiology in relation to cleaning in the built environment. INDOOR AIR 2019; 29:880-894. [PMID: 31429989 PMCID: PMC6852270 DOI: 10.1111/ina.12596] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 08/11/2019] [Accepted: 08/15/2019] [Indexed: 05/12/2023]
Abstract
Since the advent of soap, personal hygiene practices have revolved around removal, sterilization, and disinfection-both of visible soil and microscopic organisms-for a myriad of cultural, aesthetic, or health-related reasons. Cleaning methods and products vary widely in their recommended use, effectiveness, risk to users or building occupants, environmental sustainability, and ecological impact. Advancements in science and technology have facilitated in-depth analyses of the indoor microbiome, and studies in this field suggest that the traditional "scorched-earth cleaning" mentality-that surfaces must be completely sterilized and prevent microbial establishment-may contribute to long-term human health consequences. Moreover, the materials, products, activities, and microbial communities indoors all contribute to, or remove, chemical species to the indoor environment. This review examines the effects of cleaning with respect to the interaction of chemistry, indoor microbiology, and human health.
Collapse
Affiliation(s)
| | - Willem Griffiths
- Biology and the Built Environment CenterUniversity of OregonEugeneOR
| | - Leslie Dietz
- Biology and the Built Environment CenterUniversity of OregonEugeneOR
| | - Patrick Horve
- Biology and the Built Environment CenterUniversity of OregonEugeneOR
| | - Susie Nunez
- Biology and the Built Environment CenterUniversity of OregonEugeneOR
| | - Jinglin Hu
- Department of Civil and Environmental EngineeringNorthwestern UniversityEvanstonIL
| | - Jiaxian Shen
- Department of Civil and Environmental EngineeringNorthwestern UniversityEvanstonIL
| | - Mark Fretz
- Institute for Health and the Built EnvironmentUniversity of OregonPortlandOR
| | - Chenyang Bi
- Department of Civil Environmental EngineeringVirginia Polytechnic Institute and State UniversityBlacksburgVA
| | - Ying Xu
- Department of Building ScienceTsinghua UniversityBeijingChina
| | - Kevin G. Van Den Wymelenberg
- Biology and the Built Environment CenterUniversity of OregonEugeneOR
- Institute for Health and the Built EnvironmentUniversity of OregonPortlandOR
| | - Erica M. Hartmann
- Department of Civil and Environmental EngineeringNorthwestern UniversityEvanstonIL
| | - Suzanne L. Ishaq
- Biology and the Built Environment CenterUniversity of OregonEugeneOR
| |
Collapse
|
64
|
Functional Traits Co-Occurring with Mobile Genetic Elements in the Microbiome of the Atacama Desert. DIVERSITY 2019. [DOI: 10.3390/d11110205] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mobile genetic elements (MGEs) play an essential role in bacterial adaptation and evolution. These elements are enriched within bacterial communities from extreme environments. However, very little is known if specific genes co-occur with MGEs in extreme environments and, if so, what their function is. We used shotgun-sequencing to analyse the metagenomes of 12 soil samples and characterized the composition of MGEs and the genes co-occurring with them. The samples ranged from less arid coastal sites to the inland hyperarid core of the Atacama Desert, as well as from sediments below boulders, protected from UV-irradiation. MGEs were enriched at the hyperarid sites compared with sediments from below boulders and less arid sites. MGEs were mostly co-occurring with genes belonging to the Cluster Orthologous Group (COG) categories “replication, recombination and repair,” “transcription” and “signal transduction mechanisms.” In general, genes coding for transcriptional regulators and histidine kinases were the most abundant genes proximal to MGEs. Genes involved in energy production were significantly enriched close to MGEs at the hyperarid sites. For example, dehydrogenases, reductases, hydrolases and chlorite dismutase and other enzymes linked to nitrogen metabolism such as nitrite- and nitro-reductase. Stress response genes, including genes involved in antimicrobial and heavy metal resistance genes, were rarely found near MGEs. The present study suggests that MGEs could play an essential role in the adaptation of the soil microbiome in hyperarid desert soils by the modulation of housekeeping genes such as those involved in energy production.
Collapse
|
65
|
Abstract
Although volcanoes represent extreme environments for life, they harbour bacterial communities. Vulcano Island (Aeolian Islands, Sicily) presents an intense fumarolic activity and widespread soil degassing, fed by variable amounts of magmatic gases (dominant at La Fossa Crater) and hydrothermal fluids (dominant at Levante Bay). The aim of this study is to analyse the microbial communities from the different environments of Vulcano Island and to evaluate their possible correlation with the composition of the gas emissions. Microbial analyses were carried out on soils and pioneer plants from both La Fossa Crater and Levante Bay. Total DNA has been extracted from all the samples and sequenced through Illumina MiSeq platform. The analysis of microbiome composition and the gases sampled in the same sites could suggest a possible correlation between the two parameters. We can suggest that the ability of different bacterial genera/species to survive in the same area might be due to the selection of particular genetic traits allowing the survival of these microorganisms. On the other side, the finding that microbial communities inhabiting different sites exhibiting different emission profiles are similar might be explained on the basis of a possible sharing of metabolic abilities related to the gas composition.
Collapse
|
66
|
Haas S, Desai DK, LaRoche J, Pawlowicz R, Wallace DWR. Geomicrobiology of the carbon, nitrogen and sulphur cycles in Powell Lake: a permanently stratified water column containing ancient seawater. Environ Microbiol 2019; 21:3927-3952. [PMID: 31314947 DOI: 10.1111/1462-2920.14743] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 07/12/2019] [Accepted: 07/13/2019] [Indexed: 11/30/2022]
Abstract
We present the first geomicrobiological characterization of the meromictic water column of Powell Lake (British Columbia, Canada), a former fjord, which has been stably stratified since the last glacial period. Its deepest layers (300-350 m) retain isolated, relict seawater from that period. Fine-scale vertical profiling of the water chemistry and microbial communities allowed subdivision of the water column into distinct geomicrobiological zones. These zones were further characterized by phylogenetic and functional marker genes from amplicon and shotgun metagenome sequencing. Binning of metagenomic reads allowed the linkage of function to specific taxonomic groups. Statistical analyses (analysis of similarities, Bray-Curtis similarity) confirmed that the microbial community structure followed closely the geochemical zonation. Yet, our characterization of the genetic potential relevant to carbon, nitrogen and sulphur cycling of each zone revealed unexpected features, including potential for facultative anaerobic methylotrophy, nitrogen fixation despite high ammonium concentrations and potential micro-aerobic nitrifiers within the chemocline. At the oxic-suboxic interface, facultative anaerobic potential was found in the widespread freshwater lineage acI (Actinobacteria), suggesting intriguing ecophysiological similarities to the marine SAR11. Evolutionary divergent lineages among diverse phyla were identified in the ancient seawater zone and may indicate novel adaptations to this unusual environment.
Collapse
Affiliation(s)
- Sebastian Haas
- Department of Oceanography, Dalhousie University, 1355 Oxford Street, Halifax, Nova Scotia, Canada
| | - Dhwani K Desai
- Department of Biology, Dalhousie University, 1355 Oxford Street, Halifax, Nova Scotia, Canada
| | - Julie LaRoche
- Department of Biology, Dalhousie University, 1355 Oxford Street, Halifax, Nova Scotia, Canada
| | - Rich Pawlowicz
- Department of Earth and Ocean Sciences, University of British Columbia, 6339 Stores Road, Vancouver, British Columbia, Canada
| | - Douglas W R Wallace
- Department of Oceanography, Dalhousie University, 1355 Oxford Street, Halifax, Nova Scotia, Canada
| |
Collapse
|
67
|
Martínez-Olivas MA, Jiménez-Bueno NG, Hernández-García JA, Fusaro C, Luna-Guido M, Navarro-Noya YE, Dendooven L. Bacterial and archaeal spatial distribution and its environmental drivers in an extremely haloalkaline soil at the landscape scale. PeerJ 2019; 7:e6127. [PMID: 31249729 PMCID: PMC6587938 DOI: 10.7717/peerj.6127] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 11/17/2018] [Indexed: 11/20/2022] Open
Abstract
Background A great number of studies have shown that the distribution of microorganisms in the soil is not random, but that their abundance changes along environmental gradients (spatial patterns). The present study examined the spatial variability of the physicochemical characteristics of an extreme alkaline saline soil and how they controlled the archaeal and bacterial communities so as to determine the main spatial community drivers. Methods The archaeal and bacterial community structure, and soil characteristics were determined at 13 points along a 211 m transect in the former lake Texcoco. Geostatistical techniques were used to describe spatial patterns of the microbial community and soil characteristics and determine soil properties that defined the prokaryotic community structure. Results A high variability in electrolytic conductivity (EC) and water content (WC) was found. Euryarchaeota dominated Archaea, except when the EC was low. Proteobacteria, Bacteroidetes and Actinobacteria were the dominant bacterial phyla independent of large variations in certain soil characteristics. Multivariate analysis showed that soil WC affected the archaeal community structure and a geostatistical analysis found that variation in the relative abundance of Euryarchaeota was controlled by EC. The bacterial alpha diversity was less controlled by soil characteristics at the scale of this study than the archaeal alpha diversity. Discussion Results indicated that WC and EC played a major role in driving the microbial communities distribution and scale and sampling strategies were important to define spatial patterns.
Collapse
Affiliation(s)
| | | | - Juan Alfredo Hernández-García
- Laboratory of Biological Variation and Evolution, Department of Zoology, Escuela Nacional de Ciencias Biológicas, Instituto Politecnico Nacional, Mexico City, Mexico
| | - Carmine Fusaro
- Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, Tlaxcala, Mexico
| | | | | | - Luc Dendooven
- Laboratory of Soil Ecology, Cinvestav, Mexico City, Mexico
| |
Collapse
|
68
|
Hyperosmotic Stress Response Memory is Modulated by Gene Positioning in Yeast. Cells 2019; 8:cells8060582. [PMID: 31200564 PMCID: PMC6627694 DOI: 10.3390/cells8060582] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/11/2019] [Accepted: 06/12/2019] [Indexed: 12/19/2022] Open
Abstract
Cellular memory is a critical ability that allows microorganisms to adapt to potentially detrimental environmental fluctuations. In the unicellular eukaryote Saccharomyces cerevisiae, cellular memory can take the form of faster or slower responses within the cell population to repeated stresses. Using microfluidics and fluorescence time-lapse microscopy, we studied how yeast responds to short, pulsed hyperosmotic stresses at the single-cell level by analyzing the dynamic behavior of the stress-responsive STL1 promoter (pSTL1) fused to a fluorescent reporter. We established that pSTL1 exhibits variable successive activation patterns following two repeated short stresses. Despite this variability, most cells exhibited a memory of the first stress as decreased pSTL1 activity in response to the second stress. Notably, we showed that genomic location is important for the memory effect, since displacement of the promoter to a pericentromeric chromatin domain decreased the transcriptional strength of pSTL1 and led to a loss of memory. This study provides a quantitative description of a cellular memory that includes single-cell variability and highlights the contribution of chromatin structure to stress memory.
Collapse
|
69
|
Mukhtar S, Ishaq A, Hassan S, Mehnaz S, Mirza MS, Malik KA. Comparison of Microbial Communities Associated with Halophyte (Salsola stocksii) and Non-Halophyte (Triticum aestivum) Using Culture-Independent Approaches. Pol J Microbiol 2019; 66:353-364. [PMID: 29319512 DOI: 10.5604/01.3001.0010.4866] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Halophyte microbiome contributes significantly to plant performance and can provide information regarding complex ecological processes involved in osmoregulation of these plants. The objective of this study is to investigate the microbiomes associated with belowground (rhizosphere), internal (endosphere) and aboveground (phyllosphere) tissues of halophyte (Salsola stocksii) through metagenomics approach. Plant samples were collected from Khewra Salt Mines. The metagenomic DNA from soil, root and shoot samples was isolated with the help of FastDNA spin kit. Through PCR, the 16S rRNA gene from four different Salsola plants and wheat plants was amplified and cloned in InsTAclone PCR cloning kit. Metagenomic analyses from rhizosphere, endosphere and phyllosphere of Salsola showed that approximately 29% bacteria were uncultured and unclassified. Proteobacteria and Actinobacteria were the most abundant phyla in Salsola and wheat. However, Firmicutes, Acidobacteria, Bacteriodetes, Planctomycetes, Cyanobacteria, Thermotogae, Verrucomicrobia, Choroflexi and Euryarchaeota were predominant groups from halophyte whereas Actinobacteria, Proteobacteria, Firmicutes, Cyanobacteria, Acidobacteria, Bacteriodetes, Planctomycetes and Verrucomicrobia were predominant phyla of wheat samples. Diversity and differences of microbial flora of Salsola and wheat suggested that functional interactions between plants and microorganisms contribute to salt stress tolerance.
Collapse
Affiliation(s)
- Salma Mukhtar
- Department of Biological Sciences, Forman Christian College (A Chartered University), Lahore, Pakistan
| | - Ayesha Ishaq
- Department of Biological Sciences, Forman Christian College (A Chartered University), Lahore, Pakistan
| | - Sara Hassan
- Department of Biological Sciences, Forman Christian College (A Chartered University), Lahore, Pakistan
| | - Samina Mehnaz
- Department of Biological Sciences, Forman Christian College (A Chartered University), Lahore, Pakistan
| | - Muhammad S Mirza
- Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Kauser A Malik
- Department of Biological Sciences, Forman Christian College (A Chartered University), Lahore, Pakistan
| |
Collapse
|
70
|
Galasso C, Gentile A, Orefice I, Ianora A, Bruno A, Noonan DM, Sansone C, Albini A, Brunet C. Microalgal Derivatives as Potential Nutraceutical and Food Supplements for Human Health: A Focus on Cancer Prevention and Interception. Nutrients 2019; 11:E1226. [PMID: 31146462 PMCID: PMC6627306 DOI: 10.3390/nu11061226] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/17/2019] [Accepted: 05/21/2019] [Indexed: 12/13/2022] Open
Abstract
Epidemiological studies are providing strong evidence on beneficial health effects from dietary measures, leading scientists to actively investigate which foods and which specific agents in the diet can prevent diseases. Public health officers and medical experts should collaborate toward the design of disease prevention diets for nutritional intervention. Functional foods are emerging as an instrument for dietary intervention in disease prevention. Functional food products are technologically developed ingredients with specific health benefits. Among promising sources of functional foods and chemopreventive diets of interest, microalgae are gaining worldwide attention, based on their richness in high-value products, including carotenoids, proteins, vitamins, essential amino acids, omega-rich oils and, in general, anti-inflammatory and antioxidant compounds. Beneficial effects of microalgae on human health and/or wellness could in the future be useful in preventing or delaying the onset of cancer and cardiovascular diseases. During the past decades, microalgal biomass was predominately used in the health food market, with more than 75% of the annual microalgal biomass production being employed for the manufacture of powders, tablets, capsules or pastilles. In this review, we report and discuss the present and future role of microalgae as marine sources of functional foods/beverages for human wellbeing, focusing on perspectives in chemoprevention. We dissected this topic by analyzing the different classes of microalgal compounds with health outputs (based on their potential chemoprevention activities), the biodiversity of microalgal species and how to improve their cultivation, exploring the perspective of sustainable food from the sea.
Collapse
Affiliation(s)
- Christian Galasso
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy.
| | - Antonio Gentile
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy.
| | - Ida Orefice
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy.
| | - Adrianna Ianora
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy.
| | - Antonino Bruno
- Laboratory of Vascular Biology and Angiogenesis, IRCCS MultiMedica, 20138 Milan, Italy.
| | - Douglas M Noonan
- Laboratory of Vascular Biology and Angiogenesis, IRCCS MultiMedica, 20138 Milan, Italy.
- Department of Biotechnology and Life Sciences, University of Insubria, 211000 Varese, Italy.
| | | | - Adriana Albini
- Laboratory of Vascular Biology and Angiogenesis, IRCCS MultiMedica, 20138 Milan, Italy.
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy.
| | - Christophe Brunet
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy.
| |
Collapse
|
71
|
Borton MA, Daly RA, O'Banion B, Hoyt DW, Marcus DN, Welch S, Hastings SS, Meulia T, Wolfe RA, Booker AE, Sharma S, Cole DR, Wunch K, Moore JD, Darrah TH, Wilkins MJ, Wrighton KC. Comparative genomics and physiology of the genus
Methanohalophilus
, a prevalent methanogen in hydraulically fractured shale. Environ Microbiol 2018; 20:4596-4611. [DOI: 10.1111/1462-2920.14467] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 11/28/2022]
Affiliation(s)
| | - Rebecca A. Daly
- Soil and Crop Sciences, Colorado State UniversityFort CollinsCOUSA
| | | | | | | | - Susan Welch
- School of Earth SciencesThe Ohio State UniversityColumbusOHUSA
| | | | - Tea Meulia
- Molecular and Cellular Imaging Center, The Ohio State University Wooster OH USA
| | - Richard A. Wolfe
- Soil and Crop Sciences, Colorado State UniversityFort CollinsCOUSA
| | - Anne E. Booker
- Depatment of MicrobiologyThe Ohio State UniversityColumbusOHUSA
| | - Shikha Sharma
- Department of Geology and Geography West Virginia University Morgantown WV USA
| | - David R. Cole
- School of Earth SciencesThe Ohio State UniversityColumbusOHUSA
| | | | | | | | | | | |
Collapse
|
72
|
Orellana R, Macaya C, Bravo G, Dorochesi F, Cumsille A, Valencia R, Rojas C, Seeger M. Living at the Frontiers of Life: Extremophiles in Chile and Their Potential for Bioremediation. Front Microbiol 2018; 9:2309. [PMID: 30425685 PMCID: PMC6218600 DOI: 10.3389/fmicb.2018.02309] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 09/10/2018] [Indexed: 11/19/2022] Open
Abstract
Extremophiles are organisms capable of adjust, survive or thrive in hostile habitats that were previously thought to be adverse or lethal for life. Chile gathers a wide range of extreme environments: salars, geothermal springs, and geysers located at Altiplano and Atacama Desert, salars and cold mountains in Central Chile, and ice fields, cold lakes and fjords, and geothermal sites in Patagonia and Antarctica. The aims of this review are to describe extremophiles that inhabit main extreme biotopes in Chile, and their molecular and physiological capabilities that may be advantageous for bioremediation processes. After briefly describing the main ecological niches of extremophiles along Chilean territory, this review is focused on the microbial diversity and composition of these biotopes microbiomes. Extremophiles have been isolated in diverse zones in Chile that possess extreme conditions such as Altiplano, Atacama Desert, Central Chile, Patagonia, and Antarctica. Interesting extremophiles from Chile with potential biotechnological applications include thermophiles (e.g., Methanofollis tationis from Tatio Geyser), acidophiles (e.g., Acidithiobacillus ferrooxidans, Leptospirillum ferriphilum from Atacama Desert and Central Chile copper ores), halophiles (e.g., Shewanella sp. Asc-3 from Altiplano, Streptomyces sp. HKF-8 from Patagonia), alkaliphiles (Exiguobacterium sp. SH31 from Altiplano), xerotolerant bacteria (S. atacamensis from Atacama Desert), UV- and Gamma-resistant bacteria (Deinococcus peraridilitoris from Atacama Desert) and psychrophiles (e.g., Pseudomonas putida ATH-43 from Antarctica). The molecular and physiological properties of diverse extremophiles from Chile and their application in bioremediation or waste treatments are further discussed. Interestingly, the remarkable adaptative capabilities of extremophiles convert them into an attractive source of catalysts for bioremediation and industrial processes.
Collapse
Affiliation(s)
- Roberto Orellana
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química and Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso, Chile
- Departamento de Biología, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha, Valparaíso, Chile
| | - Constanza Macaya
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química and Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Guillermo Bravo
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química and Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Flavia Dorochesi
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química and Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Andrés Cumsille
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química and Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Ricardo Valencia
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química and Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Claudia Rojas
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química and Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Michael Seeger
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química and Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso, Chile
| |
Collapse
|
73
|
Chaudhari NM, Gautam A, Gupta VK, Kaur G, Dutta C, Paul S. PanGFR-HM: A Dynamic Web Resource for Pan-Genomic and Functional Profiling of Human Microbiome With Comparative Features. Front Microbiol 2018; 9:2322. [PMID: 30349509 PMCID: PMC6187978 DOI: 10.3389/fmicb.2018.02322] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 09/11/2018] [Indexed: 01/07/2023] Open
Abstract
The conglomerate of microorganisms inhabiting various body-sites of human, known as the human microbiome, is one of the key determinants of human health and disease. Comprehensive pan-genomic and functional analysis approach for human microbiome components can enrich our understanding about impact of microbiome on human health. By utilizing this approach we developed PanGFR-HM (http://www.bioinfo.iicb.res.in/pangfr-hm/) – a novel dynamic web-resource that integrates genomic and functional characteristics of 1293 complete microbial genomes available from Human Microbiome Project. The resource allows users to explore genomic/functional diversity and genome-based phylogenetic relationships between human associated microbial genomes, not provided by any other resource. The key features implemented here include pan-genome and functional analysis of organisms based on taxonomy or body-site, and comparative analysis between groups of organisms. The first feature can also identify probable gene-loss events and significantly over/under represented KEGG/COG categories within pan-genome. The unique second feature can perform comparative genomic, functional and pathways analysis between 4 groups of microbes. The dynamic nature of this resource enables users to define parameters for orthologous clustering and to select any set of organisms for analysis. As an application for comparative feature of PanGFR-HM, we performed a comparative analysis with 67 Lactobacillus genomes isolated from human gut, oral cavity and urogenital tract, and therefore characterized the body-site specific genes, enzymes and pathways. Altogether, PanGFR-HM, being unique in its content and functionality, is expected to provide a platform for microbiome-based comparative functional and evolutionary genomics.
Collapse
Affiliation(s)
- Narendrakumar M Chaudhari
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Anupam Gautam
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India.,Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Kolkata, India
| | - Vinod Kumar Gupta
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Gagneet Kaur
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India.,Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Kolkata, India
| | - Chitra Dutta
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Sandip Paul
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| |
Collapse
|
74
|
Spring S, Bunk B, Spröer C, Rohde M, Klenk H. Genome biology of a novel lineage of planctomycetes widespread in anoxic aquatic environments. Environ Microbiol 2018; 20:2438-2455. [DOI: 10.1111/1462-2920.14253] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/23/2018] [Accepted: 04/23/2018] [Indexed: 01/22/2023]
Affiliation(s)
- Stefan Spring
- Department MicroorganismsLeibniz Institute DSMZ‐German Collection of Microorganisms and Cell CulturesBraunschweig Germany
| | - Boyke Bunk
- Department BioinformaticsLeibniz Institute DSMZ‐German Collection of Microorganisms and Cell CulturesBraunschweig Germany
| | - Cathrin Spröer
- Department Central ServicesLeibniz Institute DSMZ‐German Collection of Microorganisms and Cell CulturesBraunschweig Germany
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection ResearchBraunschweig Germany
| | - Hans‐Peter Klenk
- Department MicroorganismsLeibniz Institute DSMZ‐German Collection of Microorganisms and Cell CulturesBraunschweig Germany
| |
Collapse
|
75
|
Martinez-Pastor M, Tonner PD, Darnell CL, Schmid AK. Transcriptional Regulation in Archaea: From Individual Genes to Global Regulatory Networks. Annu Rev Genet 2018; 51:143-170. [PMID: 29178818 DOI: 10.1146/annurev-genet-120116-023413] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Archaea are major contributors to biogeochemical cycles, possess unique metabolic capabilities, and resist extreme stress. To regulate the expression of genes encoding these unique programs, archaeal cells use gene regulatory networks (GRNs) composed of transcription factor proteins and their target genes. Recent developments in genetics, genomics, and computational methods used with archaeal model organisms have enabled the mapping and prediction of global GRN structures. Experimental tests of these predictions have revealed the dynamical function of GRNs in response to environmental variation. Here, we review recent progress made in this area, from investigating the mechanisms of transcriptional regulation of individual genes to small-scale subnetworks and genome-wide global networks. At each level, archaeal GRNs consist of a hybrid of bacterial, eukaryotic, and uniquely archaeal mechanisms. We discuss this theme from the perspective of the role of individual transcription factors in genome-wide regulation, how these proteins interact to compile GRN topological structures, and how these topologies lead to emergent, high-level GRN functions. We conclude by discussing how systems biology approaches are a fruitful avenue for addressing remaining challenges, such as discovering gene function and the evolution of GRNs.
Collapse
Affiliation(s)
| | - Peter D Tonner
- Department of Biology, Duke University, Durham, North Carolina 27708, USA.,Graduate Program in Computational Biology and Bioinformatics, Duke University, Durham, North Carolina 27708, USA
| | - Cynthia L Darnell
- Department of Biology, Duke University, Durham, North Carolina 27708, USA
| | - Amy K Schmid
- Department of Biology, Duke University, Durham, North Carolina 27708, USA.,Graduate Program in Computational Biology and Bioinformatics, Duke University, Durham, North Carolina 27708, USA.,Center for Genomic and Computational Biology, Duke University, Durham, North Carolina 27708, USA;
| |
Collapse
|
76
|
Wu L, Ali DC, Liu P, Peng C, Zhai J, Wang Y, Ye B. Degradation of phenol via ortho-pathway by Kocuria sp. strain TIBETAN4 isolated from the soils around Qinghai Lake in China. PLoS One 2018; 13:e0199572. [PMID: 29949643 PMCID: PMC6021097 DOI: 10.1371/journal.pone.0199572] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 06/09/2018] [Indexed: 01/17/2023] Open
Abstract
Based on the feature of high-altitude permafrost topography and the diverse microbial ecological communities of the Qinghai-Tibetan Plateau, soil samples from thirteen different collection points around Qinghai lake were collected to screen for extremophilic strains with the ability to degrade phenol, and one bacterial strain recorded as TIBETAN4 that showed effective biodegradation of phenol was isolated and identified. TIBETAN4 was closely related to Kocuria based on its observed morphological, molecular and biochemical characteristics. TIBETAN4 grew well in the LB medium at pH 7–9 and 0–4% NaCl showing alkalophilicity and halophilism. The isolate could also tolerate up to 12.5 mM phenol and could degrade 5 mM phenol within 3 days. It maintained a high phenol degradation rate at pH 7–9 and 0–3% NaCl in MSM with 5 mM phenol added as the sole carbon source. Moreover, TIBETAN4 could maintain efficient phenol degradation activity in MSM supplemented with both phenol and glucose and complex water environments, including co-culture Penicillium strains or selection of non-sterilized natural lake water as a culture. It was found that TIBETAN4 showed enzymatic activity of phenol hydroxylase and catechol 1,2-dioxygenase after induction by phenol and the corresponding genes of the two enzymes were detected in the genome of the isolate, while catechol 2,3-dioxygenase or its gene was not, which means there could be a degradation pathway of phenol through the ortho-pathway. The Q-PCR results showed that the transcripts of both the phenol hydroxylase gene and catechol 1,2-dioxygenase gene were up-regulated under the stimulation of phenol, demonstrating again that the strain degraded phenol via ortho-degradation pathway.
Collapse
Affiliation(s)
- Leyang Wu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Daniel C. Ali
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Peng Liu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Cheng Peng
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Jingxin Zhai
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Ying Wang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, People’s Republic of China
- * E-mail: (YW); (BY)
| | - Boping Ye
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, People’s Republic of China
- * E-mail: (YW); (BY)
| |
Collapse
|
77
|
Dasgupta D, Jasmine J, Mukherji S. Characterization, phylogenetic distribution and evolutionary trajectories of diverse hydrocarbon degrading microorganisms isolated from refinery sludge. 3 Biotech 2018; 8:273. [PMID: 29868311 DOI: 10.1007/s13205-018-1297-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 05/20/2018] [Indexed: 12/01/2022] Open
Abstract
Phylogenic association between bacteria living under harsh conditions can provide important information on adaptive mechanism, survival strategy and their potential application. Indigenous microorganisms isolated from toxic refinery oily sludge with ability to degrade a diverse range of hydrocarbons were identified and characterized. The strains including Pseudomonas aeruginosa RS1, Microbacterium sp. RS2, Bacillus sp. RS3, Acinetobacter baumannii RS4 and Stenotrophomonas sp. RS5 could utilize n-alkanes, cycloalkanes, polynuclear aromatic hydrocarbons (PAHs) with 2-4 rings and also substituted PAHs as sole substrate. The phylogenetic position of Bacillus sp. RS3 and Pseudomonas sp. RS1 was tested by applying the maximum likelihood (ML) method to the aligned 16S rRNA nucleotide sequences of PAH and aliphatic hydrocarbon degrading strains belonging to the corresponding genus. The base substitution matrix created with each set of organisms capable of degrading aromatic and aliphatic hydrocarbons showed significant transitional event with high values of transition: transversion ratio (R) under all conditions. The guanine-cytosine (GC) content of the hydrocarbon degrading test strains was also found to be highest for the clade which harbored them. The test strains consistently occupied a distinct terminal end within the phylogenetic tree constructed by ML analysis. This study reveals that the refinery sludge imposed environmental stress on the bacterial strains which possibly caused significant genetic alteration and phenotypic adaptation. Due to the divergent evolution of the Pseudomonas and Bacillus strains in the sludge, they appeared distinctly different from other hydrocarbon degrading strains of the same genus.
Collapse
Affiliation(s)
- Debdeep Dasgupta
- 1Centre for Environmental Science and Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra 400076 India
- 2Present Address: Amity Institute of Biotechnology, Amity University Mumbai, Bhatan, Post-Somathne, Panvel, Mumbai, Maharashtra 410206 India
| | - Jublee Jasmine
- 1Centre for Environmental Science and Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra 400076 India
| | - Suparna Mukherji
- 1Centre for Environmental Science and Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra 400076 India
| |
Collapse
|
78
|
Kumar A, Alam A, Tripathi D, Rani M, Khatoon H, Pandey S, Ehtesham NZ, Hasnain SE. Protein adaptations in extremophiles: An insight into extremophilic connection of mycobacterial proteome. Semin Cell Dev Biol 2018; 84:147-157. [PMID: 29331642 DOI: 10.1016/j.semcdb.2018.01.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 09/01/2017] [Accepted: 01/09/2018] [Indexed: 02/02/2023]
Abstract
The biological paradox about how extremophiles persist at extreme ecological conditions throws a fascinating picture of the enormous potential of a single cell to adapt to homeostatic conditions in order to propagate. Unicellular organisms face challenges from both environmental factors and the ecological niche provided by the host tissue. Although the existence of extremophiles and their physiological properties were known for a long time, availability of whole genome sequence has catapulted the study on mechanisms of adaptation and the underlying principles that have enabled these unique organisms to withstand evolutionary and environmental pressures. Comparative genomics has shown that extremophiles possess the unique set of genes and proteins that empower them with biochemical machinery necessary to thrive in extreme environments. The presence of these proteins safeguards the cell against a wide array of extreme conditions such as temperature, pressure, radiations, chemicals, drugs etc. An insight into these adaptive mechanisms in extremophiles may help us to devise strategies to alter the genes and proteins that may have therapeutic potential and commercial value. Here we present an overview of the various adaptations in extremophiles. We also try to explain how mycobacterium channelizes its proteome to survive in stress conditions posed by host immune system.
Collapse
Affiliation(s)
- Ashutosh Kumar
- Molecular Infection and Functional Biology Lab, Kusuma School of Biological Sciences, Indian Institute of Technology-Delhi, New Delhi, India
| | - Anwar Alam
- Molecular Infection and Functional Biology Lab, Kusuma School of Biological Sciences, Indian Institute of Technology-Delhi, New Delhi, India
| | - Deeksha Tripathi
- Department of Microbiology, Central University of Rajasthan, Bandar Sindri, Ajmer, Rajasthan, India
| | - Mamta Rani
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology-Delhi, New Delhi, India
| | - Hafeeza Khatoon
- Molecular Infection and Functional Biology Lab, Kusuma School of Biological Sciences, Indian Institute of Technology-Delhi, New Delhi, India
| | - Saurabh Pandey
- National Institute of Pathology, Safdarjang Hospital Campus, New Delhi, India
| | - Nasreen Z Ehtesham
- National Institute of Pathology, Safdarjang Hospital Campus, New Delhi, India
| | - Seyed E Hasnain
- Molecular Infection and Functional Biology Lab, Kusuma School of Biological Sciences, Indian Institute of Technology-Delhi, New Delhi, India; JH-Institute of Molecular Medicine, Hamdard Nagar, New Delhi, India; Dr Reddy's Institute of Life Sciences, University of Hyderabad Campus, Hyderabad, India.
| |
Collapse
|
79
|
|
80
|
Dasmeh P, Girard É, Serohijos AWR. Highly expressed genes evolve under strong epistasis from a proteome-wide scan in E. coli. Sci Rep 2017; 7:15844. [PMID: 29158562 PMCID: PMC5696520 DOI: 10.1038/s41598-017-16030-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 11/06/2017] [Indexed: 11/11/2022] Open
Abstract
Epistasis or the non-additivity of mutational effects is a major force in protein evolution, but it has not been systematically quantified at the level of a proteome. Here, we estimated the extent of epistasis for 2,382 genes in E. coli using several hundreds of orthologs for each gene within the class Gammaproteobacteria. We found that the average epistasis is ~41% across genes in the proteome and that epistasis is stronger among highly expressed genes. This trend is quantitatively explained by the prevailing model of sequence evolution based on minimizing the fitness cost of protein unfolding and aggregation. The genes with the highest epistasis are also functionally involved in the maintenance of proteostasis, translation and central metabolism. In contrast, genes evolving with low epistasis mainly encode for membrane proteins and are involved in transport activity. Our results highlight the coupling between selection and epistasis in the long-term evolution of a proteome.
Collapse
Affiliation(s)
- Pouria Dasmeh
- Departement de Biochimie, Université de Montréal, 2900 Édouard-Montpetit, Montréal, Québec, H3T 1J4, Canada
- Centre Robert Cedergren en Bioinformatique et Génomique, Université de Montréal, 2900 Édouard-Montpetit, Montréal, Québec, H3T 1J4, Canada
| | - Éric Girard
- Departement de Biochimie, Université de Montréal, 2900 Édouard-Montpetit, Montréal, Québec, H3T 1J4, Canada
- Centre Robert Cedergren en Bioinformatique et Génomique, Université de Montréal, 2900 Édouard-Montpetit, Montréal, Québec, H3T 1J4, Canada
| | - Adrian W R Serohijos
- Departement de Biochimie, Université de Montréal, 2900 Édouard-Montpetit, Montréal, Québec, H3T 1J4, Canada.
- Centre Robert Cedergren en Bioinformatique et Génomique, Université de Montréal, 2900 Édouard-Montpetit, Montréal, Québec, H3T 1J4, Canada.
| |
Collapse
|
81
|
Vigil-Stenman T, Ininbergs K, Bergman B, Ekman M. High abundance and expression of transposases in bacteria from the Baltic Sea. THE ISME JOURNAL 2017; 11:2611-2623. [PMID: 28731472 PMCID: PMC5649170 DOI: 10.1038/ismej.2017.114] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 05/23/2017] [Accepted: 06/01/2017] [Indexed: 02/06/2023]
Abstract
Transposases are mobile genetic elements suggested to have an important role in bacterial genome plasticity and host adaptation but their transcriptional activity in natural bacterial communities is largely unexplored. Here we analyzed metagenomes and -transcriptomes of size fractionated (0.1-0.8, 0.8-3.0 and 3.0-200 μm) bacterial communities from the brackish Baltic Sea, and adjacent marine waters. The Baltic Sea transposase levels, up to 1.7% of bacterial genes and 2% of bacterial transcripts, were considerably higher than in marine waters and similar to levels reported for extreme environments. Large variations in expression were found between transposase families and groups of bacteria, with a two-fold higher transcription in Cyanobacteria than in any other phylum. The community-level results were corroborated at the genus level by Synechococcus transposases reaching up to 5.2% of genes and 6.9% of transcripts, which is in contrast to marine Synechococcus that largely lack these genes. Levels peaked in Synechococcus from the largest size fraction, suggesting high frequencies of lateral gene transfer and high genome plasticity in colony-forming picocyanobacteria. Together, the results support an elevated rate of transposition-based genome change and adaptation in bacterial populations of the Baltic Sea, and possibly also of other highly dynamic estuarine waters.
Collapse
Affiliation(s)
- Theoden Vigil-Stenman
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Karolina Ininbergs
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Birgitta Bergman
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Martin Ekman
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| |
Collapse
|
82
|
Saxena R, Dhakan DB, Mittal P, Waiker P, Chowdhury A, Ghatak A, Sharma VK. Metagenomic Analysis of Hot Springs in Central India Reveals Hydrocarbon Degrading Thermophiles and Pathways Essential for Survival in Extreme Environments. Front Microbiol 2017; 7:2123. [PMID: 28105025 PMCID: PMC5214690 DOI: 10.3389/fmicb.2016.02123] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 12/15/2016] [Indexed: 12/28/2022] Open
Abstract
Extreme ecosystems such as hot springs are of great interest as a source of novel extremophilic species, enzymes, metabolic functions for survival and biotechnological products. India harbors hundreds of hot springs, the majority of which are not yet explored and require comprehensive studies to unravel their unknown and untapped phylogenetic and functional diversity. The aim of this study was to perform a large-scale metagenomic analysis of three major hot springs located in central India namely, Badi Anhoni, Chhoti Anhoni, and Tattapani at two geographically distinct regions (Anhoni and Tattapani), to uncover the resident microbial community and their metabolic traits. Samples were collected from seven distinct sites of the three hot spring locations with temperature ranging from 43.5 to 98°C. The 16S rRNA gene amplicon sequencing of V3 hypervariable region and shotgun metagenome sequencing uncovered a unique taxonomic and metabolic diversity of the resident thermophilic microbial community in these hot springs. Genes associated with hydrocarbon degradation pathways, such as benzoate, xylene, toluene, and benzene were observed to be abundant in the Anhoni hot springs (43.5–55°C), dominated by Pseudomonas stutzeri and Acidovorax sp., suggesting the presence of chemoorganotrophic thermophilic community with the ability to utilize complex hydrocarbons as a source of energy. A high abundance of genes belonging to methane metabolism pathway was observed at Chhoti Anhoni hot spring, where methane is reported to constitute >80% of all the emitted gases, which was marked by the high abundance of Methylococcus capsulatus. The Tattapani hot spring, with a high-temperature range (61.5–98°C), displayed a lower microbial diversity and was primarily dominated by a nitrate-reducing archaeal species Pyrobaculum aerophilum. A higher abundance of cell metabolism pathways essential for the microbial survival in extreme conditions was observed at Tattapani. Taken together, the results of this study reveal a novel consortium of microbes, genes, and pathways associated with the hot spring environment.
Collapse
Affiliation(s)
- Rituja Saxena
- Metagenomics and Systems Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, India
| | - Darshan B Dhakan
- Metagenomics and Systems Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, India
| | - Parul Mittal
- Metagenomics and Systems Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, India
| | - Prashant Waiker
- Metagenomics and Systems Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, India
| | - Anirban Chowdhury
- Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research Bhopal, India
| | - Arundhuti Ghatak
- Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research Bhopal, India
| | - Vineet K Sharma
- Metagenomics and Systems Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, India
| |
Collapse
|
83
|
Hernández KL, Yannicelli B, Olsen LM, Dorador C, Menschel EJ, Molina V, Remonsellez F, Hengst MB, Jeffrey WH. Microbial Activity Response to Solar Radiation across Contrasting Environmental Conditions in Salar de Huasco, Northern Chilean Altiplano. Front Microbiol 2016; 7:1857. [PMID: 27920763 PMCID: PMC5118629 DOI: 10.3389/fmicb.2016.01857] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 11/04/2016] [Indexed: 11/13/2022] Open
Abstract
In high altitude environments, extreme levels of solar radiation and important differences of ionic concentrations over narrow spatial scales may modulate microbial activity. In Salar de Huasco, a high-altitude wetland in the Andean mountains, the high diversity of microbial communities has been characterized and associated with strong environmental variability. Communities that differed in light history and environmental conditions, such as nutrient concentrations and salinity from different spatial locations, were assessed for bacterial secondary production (BSP, 3H-leucine incorporation) response from short-term exposures to solar radiation. We sampled during austral spring seven stations categorized as: (a) source stations, with recently emerged groundwater (no-previous solar exposure); (b) stream running water stations; (c) stations connected to source waters but far downstream from source points; and (d) isolated ponds disconnected from ground sources or streams with a longer isolation and solar exposure history. Very high values of 0.25 μE m-2 s-1, 72 W m-2 and 12 W m-2 were measured for PAR, UVA, and UVB incident solar radiation, respectively. The environmental factors measured formed two groups of stations reflected by principal component analyses (near to groundwater sources and isolated systems) where isolated ponds had the highest BSP and microbial abundance (35 microalgae taxa, picoeukaryotes, nanoflagellates, and bacteria) plus higher salinities and PO43- concentrations. BSP short-term response (4 h) to solar radiation was measured by 3H-leucine incorporation under four different solar conditions: full sun, no UVB, PAR, and dark. Microbial communities established in waters with the longest surface exposure (e.g., isolated ponds) had the lowest BSP response to solar radiation treatments, and thus were likely best adapted to solar radiation exposure contrary to ground source waters. These results support our light history (solar exposure) hypothesis where the more isolated the community is from ground water sources, the better adapted it is to solar radiation. We suggest that factors other than solar radiation (e.g., salinity, PO43-, NO3-) are also important in determining microbial productivity in heterogeneous environments such as the Salar de Huasco.
Collapse
Affiliation(s)
- Klaudia L Hernández
- Centro de Investigación Marina Quintay CIMARQ, Facultad de Ecología y Recursos Naturales, Universidad Andres BelloSantiago, Chile; Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de ChileValdivia, Chile
| | - Beatriz Yannicelli
- Centro de Estudios Avanzados en Zonas AridasLa Serena, Chile; Facultad de Ciencias del Mar, Universidad Católica del NorteCoquimbo, Chile; Ecology and Sustainable Management of Oceanic Islands, Universidad Católica del Norte, CoquimboCoquimbo, Chile; Centro Universitario de la Región Este, Universidad de la RepúblicaRocha, Uruguay
| | | | - Cristina Dorador
- Laboratorio de Complejidad Microbiana y Ecología Funcional and Departamento de Biotecnología, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de AntofagastaAntofagasta, Chile; Centro de Biotecnología y BioingenieríaSantiago, Chile
| | - Eduardo J Menschel
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de ChileValdivia, Chile; Programa de Postgrado en Oceanografía, Departamento de Oceanografía, Universidad de ConcepciónConcepción, Chile; Centro de Investigación Dinámica de Ecosistemas Marinos de Altas Latitudes (FONDAP-IDEAL), Universidad Austral de ChileValdivia-Punta Arenas, Chile
| | - Verónica Molina
- Departamento de Biología, Observatorio de Ecología Microbiana, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha Valparaíso, Chile
| | - Francisco Remonsellez
- Laboratorio de Microbiología Aplicada y Extremófilos, Departamento de Ingeniería Química, Universidad Católica del Norte Antofagasta, Chile
| | - Martha B Hengst
- Centro de Biotecnología y BioingenieríaSantiago, Chile; Departamento de Ciencias Farmacéuticas, Facultad de Ciencias, Universidad Católica del NorteAntofagasta, Chile
| | - Wade H Jeffrey
- Center for Environmental Diagnostics and Bioremediation, University of West Florida, Pensacola FL, USA
| |
Collapse
|
84
|
Cardenas JP, Quatrini R, Holmes DS. Aerobic Lineage of the Oxidative Stress Response Protein Rubrerythrin Emerged in an Ancient Microaerobic, (Hyper)Thermophilic Environment. Front Microbiol 2016; 7:1822. [PMID: 27917155 PMCID: PMC5114695 DOI: 10.3389/fmicb.2016.01822] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 10/31/2016] [Indexed: 11/27/2022] Open
Abstract
Rubrerythrins (RBRs) are non-heme di-iron proteins belonging to the ferritin-like superfamily. They are involved in oxidative stress defense as peroxide scavengers in a wide range of organisms. The vast majority of RBRs, including classical forms of this protein, contain a C-terminal rubredoxin-like domain involved in electron transport that is used during catalysis in anaerobic conditions. Rubredoxin is an ancient and large protein family of short length (<100 residues) that contains a Fe-S center involved in electron transfer. However, functional forms of the enzyme lacking the rubredoxin-like domain have been reported (e.g., sulerythrin and ferriperoxin). In this study, phylogenomic evidence is presented that suggests that a complete lineage of rubrerythrins, lacking the rubredoxin-like domain, arose in an ancient microaerobic and (hyper)thermophilic environments in the ancestors of the Archaea Thermoproteales and Sulfolobales. This lineage (termed the “aerobic-type” lineage) subsequently evolved to become adapted to environments with progressively lower temperatures and higher oxygen concentrations via the acquisition of two co-localized genes, termed DUF3501 and RFO, encoding a conserved protein of unknown function and a predicted Fe-S oxidoreductase, respectively. Proposed Horizontal Gene Transfer events from these archaeal ancestors to Bacteria expanded the opportunities for further evolution of this RBR including adaption to lower temperatures. The second lineage (termed the cyanobacterial lineage) is proposed to have evolved in cyanobacterial ancestors, maybe in direct response to the production of oxygen via oxygenic photosynthesis during the Great Oxygen Event (GOE). It is hypothesized that both lineages of RBR emerged in a largely anaerobic world with “whiffs” of oxygen and that their subsequent independent evolutionary trajectories allowed microorganisms to transition from this anaerobic world to an aerobic one.
Collapse
Affiliation(s)
- Juan P Cardenas
- Center for Bioinformatics and Genome Biology, Fundacion Ciencia & VidaSantiago, Chile; Facultad de Ciencias Biologicas, Universidad Andres BelloSantiago, Chile
| | - Raquel Quatrini
- Laboratory of Microbial Ecophysiology, Fundación Ciencia & Vida Santiago, Chile
| | - David S Holmes
- Center for Bioinformatics and Genome Biology, Fundacion Ciencia & VidaSantiago, Chile; Facultad de Ciencias Biologicas, Universidad Andres BelloSantiago, Chile
| |
Collapse
|
85
|
Survey of (Meta)genomic Approaches for Understanding Microbial Community Dynamics. Indian J Microbiol 2016; 57:23-38. [PMID: 28148977 DOI: 10.1007/s12088-016-0629-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 10/27/2016] [Indexed: 01/06/2023] Open
Abstract
Advancement in the next generation sequencing technologies has led to evolution of the field of genomics and metagenomics in a slim duration with nominal cost at precipitous higher rate. While metagenomics and genomics can be separately used to reveal the culture-independent and culture-based microbial evolution, respectively, (meta)genomics together can be used to demonstrate results at population level revealing in-depth complex community interactions for specific ecotypes. The field of metagenomics which started with answering "who is out there?" based on 16S rRNA gene has evolved immensely with the precise organismal reconstruction at species/strain level from the deeply covered metagenome data outweighing the need to isolate bacteria of which 99% are de facto non-cultivable. In this review we have underlined the appeal of metagenomic-derived genomes in providing insights into the evolutionary patterns, growth dynamics, genome/gene-specific sweeps, and durability of environmental pressures. We have demonstrated the use of culture-based genomics and environmental shotgun metagenome data together to elucidate environment specific genome modulations via metagenomic recruitments in terms of gene loss/gain, accessory and core-genome extent. We further illustrated the benefit of (meta)genomics in the understanding of infectious diseases by deducing the relationship between human microbiota and clinical microbiology. This review summarizes the technological advances in the (meta)genomic strategies using the genome and metagenome datasets together to increase the resolution of microbial population studies.
Collapse
|
86
|
Abstract
The large diversity of marine microorganisms harboured by oceans plays an important role in planet sustainability by driving globally important biogeochemical cycles; all primary and most secondary production in the oceans is performed by microorganisms. The largest part of the planet is covered by cold environments; consequently, cold-adapted microorganisms have crucial functional roles in globally important environmental processes and biogeochemical cycles cold-adapted extremophiles are a remarkable model to shed light on the molecular basis of survival at low temperature. The indigenous populations of Antarctic and Arctic microorganisms are endowed with genetic and physiological traits that allow them to live and effectively compete at the temperatures prevailing in polar regions. Some genes, e.g. glycosyltransferases and glycosylsynthetases involved in the architecture of the cell wall, may have been acquired/retained during evolution of polar strains or lost in tropical strains. This present work focusses on temperature and its role in shaping microbial adaptations; however, in assessing the impacts of climate changes on microbial diversity and biogeochemical cycles in polar oceans, it should not be forgotten that physiological studies need to include the interaction of temperature with other abiotic and biotic factors.
Collapse
|
87
|
Microbial communities and arsenic biogeochemistry at the outflow of an alkaline sulfide-rich hot spring. Sci Rep 2016; 6:25262. [PMID: 27126380 PMCID: PMC4850476 DOI: 10.1038/srep25262] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 03/21/2016] [Indexed: 02/03/2023] Open
Abstract
Alkaline sulfide-rich hot springs provide a unique environment for microbial community and arsenic (As) biogeochemistry. In this study, a representative alkaline sulfide-rich hot spring, Zimeiquan in the Tengchong geothermal area, was chosen to study arsenic geochemistry and microbial community using Illumina MiSeq sequencing. Over 0.26 million 16S rRNA sequence reads were obtained from 5-paired parallel water and sediment samples along the hot spring’s outflow channel. High ratios of As(V)/AsSum (total combined arsenate and arsenite concentrations) (0.59–0.78), coupled with high sulfide (up to 5.87 mg/L), were present in the hot spring’s pools, which suggested As(III) oxidation occurred. Along the outflow channel, AsSum increased from 5.45 to 13.86 μmol/L, and the combined sulfide and sulfate concentrations increased from 292.02 to 364.28 μmol/L. These increases were primarily attributed to thioarsenic transformation. Temperature, sulfide, As and dissolved oxygen significantly shaped the microbial communities between not only the pools and downstream samples, but also water and sediment samples. Results implied that the upstream Thermocrinis was responsible for the transformation of thioarsenic to As(III) and the downstream Thermus contributed to derived As(III) oxidation. This study improves our understanding of microbially-mediated As transformation in alkaline sulfide-rich hot springs.
Collapse
|
88
|
Macqueen DJ, Gubry-Rangin C. Molecular adaptation of ammonia monooxygenase during independent pH specialization in Thaumarchaeota. Mol Ecol 2016; 25:1986-99. [DOI: 10.1111/mec.13607] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/24/2016] [Accepted: 03/02/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Daniel J. Macqueen
- Institute of Biological and Environmental Sciences; University of Aberdeen; Aberdeen AB24 2TZ UK
| | - Cécile Gubry-Rangin
- Institute of Biological and Environmental Sciences; University of Aberdeen; Aberdeen AB24 2TZ UK
| |
Collapse
|
89
|
Warren LA, Kendra KE, Brady AL, Slater GF. Sulfur Biogeochemistry of an Oil Sands Composite Tailings Deposit. Front Microbiol 2016; 6:1533. [PMID: 26869997 PMCID: PMC4737920 DOI: 10.3389/fmicb.2015.01533] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 12/21/2015] [Indexed: 11/13/2022] Open
Abstract
Composite tailings (CT), an engineered, alkaline, saline mixture of oil sands tailings (FFT), processed sand and gypsum (CaSO4; 1 kg CaSO4 per m3 FFT) are used as a dry reclamation strategy in the Alberta Oil Sands Region (AOSR). It is estimated that 9.6 × 108 m3 of CT are either in, or awaiting emplacement in surface pits within the AOSR, highlighting their potential global importance in sulfur cycling. Here, in the first CT sulfur biogeochemistry investigation, integrated geochemical, pyrosequencing and lipid analyses identified high aqueous concentrations of ∑H2S (>300 μM) and highly altered sulfur compounds composition; low cell biomass (3.3 × 106– 6.0 × 106 cells g−1) and modest bacterial diversity (H' range between 1.4 and 1.9) across 5 depths spanning 34 m of an in situ CT deposit. Pyrosequence results identified a total of 29,719 bacterial 16S rRNA gene sequences, representing 131 OTUs spanning19 phyla including 7 candidate divisions, not reported in oil sands tailings pond studies to date. Legacy FFT common phyla, notably, gamma and beta Proteobacteria, Firmicutes, Actinobacteria, and Chloroflexi were represented. However, overall CT microbial diversity and PLFA values were low relative to other contexts. The identified known sulfate/sulfur reducing bacteria constituted at most 2% of the abundance; however, over 90% of the 131 OTUs identified are capable of sulfur metabolism. While PCR biases caution against overinterpretation of pyrosequence surveys, bacterial sequence results identified here, align with phospholipid fatty acid (PLFA) and geochemical results. The highest bacterial diversities were associated with the depth of highest porewater [∑H2S] (22–24 m) and joint porewater co-occurrence of Fe2+ and ∑H2S (6–8 m). Three distinct bacterial community structure depths corresponded to CT porewater regions of (1) shallow evident Fe(II) (<6 m), (2) co-occurring Fe(II) and ∑H2S (6–8 m) and (3) extensive ∑H2S (6–34 m) (UniFrac). Candidate divisions GNO2, NKB19 and Spam were present only at 6–8 m associated with co-occurring [Fe(II)] and [∑H2S]. Collectively, results indicate that CT materials are differentiated from other sulfur rich environments by modestly diverse, low abundance, but highly sulfur active and more enigmatic communities (7 candidate divisions present within the 19 phyla identified).
Collapse
Affiliation(s)
- Lesley A Warren
- School of Geography and Earth Sciences, McMaster University Hamilton ON, Canada
| | - Kathryn E Kendra
- School of Geography and Earth Sciences, McMaster University Hamilton ON, Canada
| | - Allyson L Brady
- School of Geography and Earth Sciences, McMaster University Hamilton ON, Canada
| | - Greg F Slater
- School of Geography and Earth Sciences, McMaster University Hamilton ON, Canada
| |
Collapse
|
90
|
Zhang W, Tian R, Bo Y, Cao H, Cai L, Chen L, Zhou G, Sun J, Zhang X, Al-Suwailem A, Qian PY. Environmental switching during biofilm development in a cold seep system and functional determinants of species sorting. Mol Ecol 2016; 25:1958-71. [DOI: 10.1111/mec.13501] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Revised: 11/22/2015] [Accepted: 11/24/2015] [Indexed: 01/28/2023]
Affiliation(s)
- Weipeng Zhang
- KAUST Global Partnership Program; Division of Life Science; Hong Kong University of Science and Technology; Clear Water Bay Hong Kong Hong Kong
| | - Renmao Tian
- KAUST Global Partnership Program; Division of Life Science; Hong Kong University of Science and Technology; Clear Water Bay Hong Kong Hong Kong
| | - Yang Bo
- KAUST Global Partnership Program; Division of Life Science; Hong Kong University of Science and Technology; Clear Water Bay Hong Kong Hong Kong
| | - Huiluo Cao
- KAUST Global Partnership Program; Division of Life Science; Hong Kong University of Science and Technology; Clear Water Bay Hong Kong Hong Kong
| | - Lin Cai
- KAUST Global Partnership Program; Division of Life Science; Hong Kong University of Science and Technology; Clear Water Bay Hong Kong Hong Kong
| | - Lianguo Chen
- KAUST Global Partnership Program; Division of Life Science; Hong Kong University of Science and Technology; Clear Water Bay Hong Kong Hong Kong
| | - Guowei Zhou
- KAUST Global Partnership Program; Division of Life Science; Hong Kong University of Science and Technology; Clear Water Bay Hong Kong Hong Kong
| | - Jin Sun
- KAUST Global Partnership Program; Division of Life Science; Hong Kong University of Science and Technology; Clear Water Bay Hong Kong Hong Kong
| | - Xixiang Zhang
- King Abdullah University of Science and Technology; Thuwal Saudi Arabia
| | | | - Pei-Yuan Qian
- KAUST Global Partnership Program; Division of Life Science; Hong Kong University of Science and Technology; Clear Water Bay Hong Kong Hong Kong
| |
Collapse
|
91
|
Age-Related Shifts in Bacterial Diversity in a Reef Coral. PLoS One 2015; 10:e0144902. [PMID: 26700869 PMCID: PMC4689413 DOI: 10.1371/journal.pone.0144902] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 11/24/2015] [Indexed: 01/19/2023] Open
Abstract
This study investigated the relationship between microbial communities in differently sized colonies of the massive coral Coelastrea aspera at Phuket, Thailand where colony size could be used as a proxy for age. Results indicated significant differences between the bacterial diversity (ANOSIM, R = 0.76, p = 0.001) of differently sized colonies from the same intertidal reef habitat. Juvenile and small colonies (<6cm mean diam) harboured a lower bacterial richness than medium (~10cm mean diam) and large colonies (>28 cm mean diam). Bacterial diversity increased in a step-wise pattern from juveniles<small<medium colonies, which was then followed by a slight decrease in the two largest size classes. These changes appear to resemble a successional process which occurs over time, similar to that observed in the ageing human gut. Furthermore, the dominant bacterial ribotypes present in the tissues of medium and large sized colonies of C. aspera, (such as Halomicronema, an Oscillospira and an unidentified cyanobacterium) were also the dominant ribotypes found within the endolithic algal band of the coral skeleton; a result providing some support for the hypothesis that the endolithic algae of corals may directly influence the bacterial community present in coral tissues.
Collapse
|
92
|
Leis B, Heinze S, Angelov A, Pham VTT, Thürmer A, Jebbar M, Golyshin PN, Streit WR, Daniel R, Liebl W. Functional Screening of Hydrolytic Activities Reveals an Extremely Thermostable Cellulase from a Deep-Sea Archaeon. Front Bioeng Biotechnol 2015; 3:95. [PMID: 26191525 PMCID: PMC4486847 DOI: 10.3389/fbioe.2015.00095] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 06/17/2015] [Indexed: 01/27/2023] Open
Abstract
Extreme habitats serve as a source of enzymes that are active under extreme conditions and are candidates for industrial applications. In this work, six large-insert mixed genomic libraries were screened for hydrolase activities in a broad temperature range (8-70°C). Among a variety of hydrolytic activities, one fosmid clone, derived from a library of pooled isolates of hyperthermophilic archaea from deep sea vents, displayed hydrolytic activity on carboxymethyl cellulose substrate plates at 70°C but not at lower temperatures. Sequence analysis of the fosmid insert revealed a gene encoding a novel glycoside hydrolase family 12 (GHF12) endo-1,4-β-glucanase, termed Cel12E. The enzyme shares 45% sequence identity with a protein from the archaeon Thermococcus sp. AM4 and displays a unique multidomain architecture. Biochemical characterization of Cel12E revealed a remarkably thermostable protein, which appears to be of archaeal origin. The enzyme displayed maximum activity at 92°C and was active on a variety of linear 1,4-β-glucans like carboxymethyl cellulose, β-glucan, lichenan, and phosphoric acid swollen cellulose. The protein is able to bind to various insoluble β-glucans. Product pattern analysis indicated that Cel12E is an endo-cleaving β-glucanase. Cel12E expands the toolbox of hyperthermostable archaeal cellulases with biotechnological potential.
Collapse
Affiliation(s)
- Benedikt Leis
- Department of Microbiology, School of Life Sciences Weihenstephan, Technische Universität München, Freising-Weihenstephan, Germany
| | - Simon Heinze
- Department of Microbiology, School of Life Sciences Weihenstephan, Technische Universität München, Freising-Weihenstephan, Germany
| | - Angel Angelov
- Department of Microbiology, School of Life Sciences Weihenstephan, Technische Universität München, Freising-Weihenstephan, Germany
| | - Vu Thuy Trang Pham
- Department of Microbiology, School of Life Sciences Weihenstephan, Technische Universität München, Freising-Weihenstephan, Germany
| | - Andrea Thürmer
- Göttingen Genomics Laboratory, Department of Genomic and Applied Microbiology, Georg-August University Göttingen, Göttingen, Germany
| | - Mohamed Jebbar
- Laboratoire de Microbiologie des Environnements Extrêmes-UMR 6197 (CNRS-Ifremer-UBO), Institut Universitaire Européen de la Mer, Université de Bretagne Occidentale, Plouzané, France
| | | | - Wolfgang R. Streit
- Fakultät für Mathematik, Informatik und Naturwissenschaften Biologie, Biozentrum Klein Flottbek, Universität Hamburg, Hamburg, Germany
| | - Rolf Daniel
- Göttingen Genomics Laboratory, Department of Genomic and Applied Microbiology, Georg-August University Göttingen, Göttingen, Germany
| | - Wolfgang Liebl
- Department of Microbiology, School of Life Sciences Weihenstephan, Technische Universität München, Freising-Weihenstephan, Germany
| |
Collapse
|
93
|
Toxic metal resistance in biofilms: diversity of microbial responses and their evolution. Res Microbiol 2015; 166:764-73. [PMID: 25869223 DOI: 10.1016/j.resmic.2015.03.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 03/23/2015] [Accepted: 03/25/2015] [Indexed: 11/20/2022]
Abstract
Since biofilms are an important issue in the fields of medicine and health, several recent microbiological studies have focused on their formation and their contribution to toxic compound resistance mechanisms. In this review, we describe how metals impact biofilm formation and resistance, and how biofilms can help cells resist toxic metals. First, the organic matrix acts as a barrier isolating the cells from many environmental stresses. Secondly, the metabolism of the cells changes, and a slowly-growing or non-growing sub-population of cells known as persisters emerges. Thirdly, in the case of multispecies biofilms, metabolic interactions are developed, allowing cells to be more persistent or to have greater capacity to survive than a single species biofilm. Finally, we discuss how the high density of the cells may promote horizontal gene transfer processes, resulting in the acquisition of new features. All these crucial mechanisms enable microorganisms to survive and colonize toxic environments, and probably accelerate ongoing evolutionary processes.
Collapse
|