51
|
(C2G4)n repeat expansion sequences from the C9orf72 gene form an unusual DNA higher-order structure in the pH range of 5-6. PLoS One 2018; 13:e0198418. [PMID: 29912891 PMCID: PMC6005549 DOI: 10.1371/journal.pone.0198418] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 05/19/2018] [Indexed: 12/14/2022] Open
Abstract
Massive expansion of a DNA hexanucleotide sequence repeat (C2G4) within the human C9orf72 gene has been linked to a number of neurodegenerative diseases. In sodium or potassium salt solutions, single-stranded d(C2G4)n DNAs fold to form G-quadruplexes. We have found that in magnesium or lithium salt solutions, especially under slightly acidic conditions, d(C2G4)n oligonucleotides fold to form a distinctive higher order structure whose most striking feature is an “inverted” circular dichroism spectrum, which is distinguishable from the spectrum of the left handed DNA double-helix, Z-DNA. On the basis of CD spectroscopy, gel mobility as well as chemical protection analysis, we propose that this structure, which we call “iCD-DNA”, may be a left-handed Hoogsteen base-paired duplex, an unorthodox G-quadruplex/i-motif composite, or a non-canonical, “braided” DNA triplex. Given that iCD-DNA forms under slightly acidic solution conditions, we do not know at this point in time whether or not it forms within living cells.
Collapse
|
52
|
Differential expression of microRNAs and other small RNAs in muscle tissue of patients with ALS and healthy age-matched controls. Sci Rep 2018; 8:5609. [PMID: 29618798 PMCID: PMC5884852 DOI: 10.1038/s41598-018-23139-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 03/05/2018] [Indexed: 02/08/2023] Open
Abstract
Amyotrophic lateral sclerosis is a late-onset disorder primarily affecting motor neurons and leading to progressive and lethal skeletal muscle atrophy. Small RNAs, including microRNAs (miRNAs), can serve as important regulators of gene expression and can act both globally and in a tissue-/cell-type-specific manner. In muscle, miRNAs called myomiRs govern important processes and are deregulated in various disorders. Several myomiRs have shown promise for therapeutic use in cellular and animal models of ALS; however, the exact miRNA species differentially expressed in muscle tissue of ALS patients remain unknown. Following small RNA-Seq, we compared the expression of small RNAs in muscle tissue of ALS patients and healthy age-matched controls. The identified snoRNAs, mtRNAs and other small RNAs provide possible molecular links between insulin signaling and ALS. Furthermore, the identified miRNAs are predicted to target proteins that are involved in both normal processes and various muscle disorders and indicate muscle tissue is undergoing active reinnervation/compensatory attempts thus providing targets for further research and therapy development in ALS.
Collapse
|
53
|
McRae EKS, Booy EP, Moya-Torres A, Ezzati P, Stetefeld J, McKenna SA. Human DDX21 binds and unwinds RNA guanine quadruplexes. Nucleic Acids Res 2017; 45:6656-6668. [PMID: 28472472 PMCID: PMC5499804 DOI: 10.1093/nar/gkx380] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 04/24/2017] [Indexed: 12/24/2022] Open
Abstract
Guanine quadruplexes (G4s) are an important structure of nucleic acids (DNA and RNA) with roles in several cellular processes. RNA G4s require specialized unwinding enzymes, of which only two have been previously identified. We describe the results of a simple and specific mass spectrometry guided method used to screen HEK293T cell lysate for G4 binding proteins. From these results, we validated the RNA helicase protein DDX21. DDX21 is an established RNA helicase, but has not yet been validated as a G4 binding protein. Through biochemical techniques, we confirm that DDX21-quadruplex RNA interactions are direct and mediated via a site of interaction at the C-terminus of the protein. Furthermore, through monitoring changes in nuclease sensitivity we show that DDX21 can unwind RNA G4. Finally, as proof of principle, we demonstrate the ability of DDX21 to suppress the expression of a protein with G4s in the 3΄ UTR of its mRNA.
Collapse
Affiliation(s)
- Ewan K S McRae
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Evan P Booy
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Aniel Moya-Torres
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Peyman Ezzati
- Manitoba Centre for Proteomics and Systems Biology, Section of Biomedical Proteomics, Department of Internal Medicine, Rady Faculty of Health Sciences, University of Manitoba and Health Sciences Centre, Winnipeg, Manitoba, Canada
| | - Jörg Stetefeld
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada.,Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada.,Manitoba Institute for Materials, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Sean A McKenna
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada.,Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada.,Manitoba Institute for Materials, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
54
|
Mir B, Serrano I, Buitrago D, Orozco M, Escaja N, González C. Prevalent Sequences in the Human Genome Can Form Mini i-Motif Structures at Physiological pH. J Am Chem Soc 2017; 139:13985-13988. [DOI: 10.1021/jacs.7b07383] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Bartomeu Mir
- Inorganic and Organic
Chemistry Department, Organic Chemistry Section, and IBUB, University of Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
- BIOESTRAN associated unit UB-CSIC, 08028 Barcelona, Spain
| | - Israel Serrano
- Instituto de Química Física ‘Rocasolano’, CSIC, Serrano 119, 28006 Madrid, Spain
| | - Diana Buitrago
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - Modesto Orozco
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
- Departament de Bioquímica
i Biomedicina, Facultat de Biologia, Universitat de Barcelona, Spain
| | - Núria Escaja
- Inorganic and Organic
Chemistry Department, Organic Chemistry Section, and IBUB, University of Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
- BIOESTRAN associated unit UB-CSIC, 08028 Barcelona, Spain
| | - Carlos González
- Instituto de Química Física ‘Rocasolano’, CSIC, Serrano 119, 28006 Madrid, Spain
- BIOESTRAN associated unit UB-CSIC, 08028 Barcelona, Spain
| |
Collapse
|
55
|
Benabou S, Aviñó A, Lyonnais S, González C, Eritja R, De Juan A, Gargallo R. i-motif structures in long cytosine-rich sequences found upstream of the promoter region of the SMARCA4 gene. Biochimie 2017; 140:20-33. [DOI: 10.1016/j.biochi.2017.06.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 06/06/2017] [Indexed: 12/27/2022]
|
56
|
Barker HV, Niblock M, Lee YB, Shaw CE, Gallo JM. RNA Misprocessing in C9orf72-Linked Neurodegeneration. Front Cell Neurosci 2017; 11:195. [PMID: 28744202 PMCID: PMC5504096 DOI: 10.3389/fncel.2017.00195] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 06/21/2017] [Indexed: 12/12/2022] Open
Abstract
A large GGGGCC hexanucleotide repeat expansion in the first intron or promoter region of the C9orf72 gene is the most common genetic cause of familial and sporadic Amyotrophic lateral sclerosis (ALS), a devastating degenerative disease of motor neurons, and of Frontotemporal Dementia (FTD), the second most common form of presenile dementia after Alzheimer's disease. C9orf72-associated ALS/FTD is a multifaceted disease both in terms of its clinical presentation and the misregulated cellular pathways contributing to disease progression. Among the numerous pathways misregulated in C9orf72-associated ALS/FTD, altered RNA processing has consistently appeared at the forefront of C9orf72 research. This includes bidirectional transcription of the repeat sequence, accumulation of repeat RNA into nuclear foci sequestering specific RNA-binding proteins (RBPs) and translation of RNA repeats into dipeptide repeat proteins (DPRs) by repeat-associated non-AUG (RAN)-initiated translation. Over the past few years the true extent of RNA misprocessing in C9orf72-associated ALS/FTD has begun to emerge and disruptions have been identified in almost all aspects of the life of an RNA molecule, including release from RNA polymerase II, translation in the cytoplasm and degradation. Furthermore, several alterations have been identified in the processing of the C9orf72 RNA itself, in terms of its transcription, splicing and localization. This review article aims to consolidate our current knowledge on the consequence of the C9orf72 repeat expansion on RNA processing and draws attention to the mechanisms by which several aspects of C9orf72 molecular pathology converge to perturb every stage of RNA metabolism.
Collapse
Affiliation(s)
- Holly V. Barker
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College LondonLondon, United Kingdom
| | - Michael Niblock
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College LondonLondon, United Kingdom
| | - Youn-Bok Lee
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College LondonLondon, United Kingdom
| | - Christopher E. Shaw
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College LondonLondon, United Kingdom
| | - Jean-Marc Gallo
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College LondonLondon, United Kingdom
| |
Collapse
|
57
|
Tetrahelical structural family adopted by AGCGA-rich regulatory DNA regions. Nat Commun 2017; 8:15355. [PMID: 28513602 PMCID: PMC5442326 DOI: 10.1038/ncomms15355] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 03/23/2017] [Indexed: 12/13/2022] Open
Abstract
Here we describe AGCGA-quadruplexes, an unexpected addition to the well-known tetrahelical families, G-quadruplexes and i-motifs, that have been a focus of intense research due to their potential biological impact in G- and C-rich DNA regions, respectively. High-resolution structures determined by solution-state nuclear magnetic resonance (NMR) spectroscopy demonstrate that AGCGA-quadruplexes comprise four 5′-AGCGA-3′ tracts and are stabilized by G-A and G-C base pairs forming GAGA- and GCGC-quartets, respectively. Residues in the core of the structure are connected with edge-type loops. Sequences of alternating 5′-AGCGA-3′ and 5′-GGG-3′ repeats could be expected to form G-quadruplexes, but are shown herein to form AGCGA-quadruplexes instead. Unique structural features of AGCGA-quadruplexes together with lower sensitivity to cation and pH variation imply their potential biological relevance in regulatory regions of genes responsible for basic cellular processes that are related to neurological disorders, cancer and abnormalities in bone and cartilage development. DNA tetrahelical structures such as G-quadruplexes are known to play important roles in DNA replication and repair. Here the authors present the structure of 5′-AGCGA-3′-quadruplexes enriched in genetic regulatory regions.
Collapse
|
58
|
Aviñó A, Dellafiore M, Gargallo R, González C, Iribarren AM, Montserrat J, Eritja R. Stabilization of Telomeric I-Motif Structures by (2'S)-2'-Deoxy-2'-C-Methylcytidine Residues. Chembiochem 2017; 18:1123-1128. [PMID: 28407336 DOI: 10.1002/cbic.201700112] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Indexed: 01/12/2023]
Abstract
G-quadruplexes and i-motifs are tetraplex structures present in telomeres and the promoter regions of oncogenes. The possibility of producing nanodevices with pH-sensitive functions has triggered interest in modified oligonucleotides with improved structural properties. We synthesized C-rich oligonucleotides carrying conformationally restricted (2'S)-2'-deoxy-2'-C-methyl-cytidine units. The effect of this modified nucleoside on the stability of intramolecular i-motifs from the vertebrate telomere was investigated by UV, CD, and NMR spectroscopy. The replacement of selected positions of the C-core with C-modified residues induced the formation of stable intercalated tetraplexes at near-neutral pH. This study demonstrates the possibility of enhancing the stability of the i-motif by chemical modification.
Collapse
Affiliation(s)
- Anna Aviñó
- Institute for Advanced Chemistry of Catalonia (IQAC), Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, 08034, Barcelona, Spain.,Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN)
| | - María Dellafiore
- INGEBI (CONICET), Vuelta de Obligado 2490-(1428), Buenos Aires, Argentina
| | - Raimundo Gargallo
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès, 1-11, 08028, Barcelona, Spain.,BIOESTRAN, Associated Unit UB-CSIC
| | - Carlos González
- BIOESTRAN, Associated Unit UB-CSIC.,Institute of Physical Chemistry Rocasolano (IQFR), Spanish Council for Scientific Research (CSIC), Serrano 119, 28006, Madrid, Spain
| | - Adolfo M Iribarren
- CONICET. Laboratorio de Biotransformaciones, Universidad Nacional de Quilmes, Roque Saenz Peña 352 (1876) Bernal, Prov. de Buenos Aires, Argentina
| | - Javier Montserrat
- CONICET. Universidad Nacional de General Sarmiento, J. M. Gutiérrez 1150, 1613, Los Polvorines, Buenos Aires, Argentina
| | - Ramon Eritja
- Institute for Advanced Chemistry of Catalonia (IQAC), Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, 08034, Barcelona, Spain.,Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN)
| |
Collapse
|
59
|
Arévalo-Ruiz M, Doria F, Belmonte-Reche E, De Rache A, Campos-Salinas J, Lucas R, Falomir E, Carda M, Pérez-Victoria JM, Mergny JL, Freccero M, Morales JC. Synthesis, Binding Properties, and Differences in Cell Uptake of G-Quadruplex Ligands Based on Carbohydrate Naphthalene Diimide Conjugates. Chemistry 2017; 23:2157-2164. [PMID: 27925323 DOI: 10.1002/chem.201604886] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Indexed: 11/06/2022]
Abstract
The G-quadruplexes (G4s) are currently being explored as therapeutic targets in cancer and other pathologies. Six carbohydrate naphthalene diimide conjugates (carb-NDIs) have been synthesized as G4 ligands to investigate their potential selectivity in G4 binding and cell penetration. Carb-NDIs have shown certain selectivity for G4 structures against DNA duplexes, but different sugar moieties do not induce a preference for a specific G4 topology. Interestingly, when monosaccharides were attached through a short ethylene linker to the NDI scaffold, their cellular uptake was two- to threefold more efficient than that when the sugar was directly attached through its anomeric position. Moreover, a correlation between more efficient cell uptake of these carb-NDIs and their higher toxicity in cancerous cell lines has been observed. Carb-NDIs seem to be mainly translocated into cancer cells through glucose transporters (GLUT), of which GLUT4 plays a major role.
Collapse
Affiliation(s)
- Matilde Arévalo-Ruiz
- Department of Biochemistry and Molecular Pharmacology, Instituto de Parasitología y Biomedicina, CSIC, Parque Tecnológico Ciencias de la Salud, Avenida del Conocimiento, s/n, 18016, Armilla, Granada, Spain
| | - Filippo Doria
- Department of Chemistry, University of Pavia, V.le Taramelli 10, 27100, Pavia, Italy
| | - Efres Belmonte-Reche
- Department of Biochemistry and Molecular Pharmacology, Instituto de Parasitología y Biomedicina, CSIC, Parque Tecnológico Ciencias de la Salud, Avenida del Conocimiento, s/n, 18016, Armilla, Granada, Spain
| | - Aurore De Rache
- Institut Européen de Chimie Biologie (IECB), ARNA Laboratory, Université de Bordeaux, Inserm U1212, CNRS UMR5320, 2, rue Robert Escarpit, Pessac, France
| | - Jenny Campos-Salinas
- Department of Biochemistry and Molecular Pharmacology, Instituto de Parasitología y Biomedicina, CSIC, Parque Tecnológico Ciencias de la Salud, Avenida del Conocimiento, s/n, 18016, Armilla, Granada, Spain
| | - Ricardo Lucas
- Department of Biochemistry and Molecular Pharmacology, Instituto de Parasitología y Biomedicina, CSIC, Parque Tecnológico Ciencias de la Salud, Avenida del Conocimiento, s/n, 18016, Armilla, Granada, Spain
| | - Eva Falomir
- Department of Inorganic and Organic Chemistry, University Jaume I, 12071, Castellón, Spain
| | - Miguel Carda
- Department of Inorganic and Organic Chemistry, University Jaume I, 12071, Castellón, Spain
| | - José María Pérez-Victoria
- Department of Biochemistry and Molecular Pharmacology, Instituto de Parasitología y Biomedicina, CSIC, Parque Tecnológico Ciencias de la Salud, Avenida del Conocimiento, s/n, 18016, Armilla, Granada, Spain
| | - Jean-Louis Mergny
- Institut Européen de Chimie Biologie (IECB), ARNA Laboratory, Université de Bordeaux, Inserm U1212, CNRS UMR5320, 2, rue Robert Escarpit, Pessac, France
| | - Mauro Freccero
- Department of Chemistry, University of Pavia, V.le Taramelli 10, 27100, Pavia, Italy
| | - Juan Carlos Morales
- Department of Biochemistry and Molecular Pharmacology, Instituto de Parasitología y Biomedicina, CSIC, Parque Tecnológico Ciencias de la Salud, Avenida del Conocimiento, s/n, 18016, Armilla, Granada, Spain
| |
Collapse
|
60
|
ALS and FTD linked GGGGCC-repeat containing DNA oligonucleotide folds into two distinct G-quadruplexes. Biochim Biophys Acta Gen Subj 2016; 1861:1237-1245. [PMID: 27856299 DOI: 10.1016/j.bbagen.2016.11.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 11/11/2016] [Accepted: 11/13/2016] [Indexed: 01/24/2023]
Abstract
BACKGROUND The most common genetic cause of neurological disorders ALS and FTD is a largely increased number of GGGGCC repeats in C9orf72 gene. Non-canonical structures including G-quadruplexes adopted by expanded repeats are hypothesized to be crucial in pathogenesis. Recently, we have shown that structural polymorphism of oligonucleotide d(G4C2)3G4 is reduced by dG to 8Br-dG substitution. High-resolution structure of one of the two major G-quadruplexes adopts antiparallel topology comprising of four G-quartets. Herein, we describe the topology of the second major G-quadruplex structure and influence of folding conditions on relative populations of the two folds. METHODS Influence of folding conditions was explored by 1H 1D NMR. Determination of topology was achieved by 2D NMR complemented with PAGE and CD. UV melting experiment was used to explore thermal stability of structures. RESULTS Two structures adopted by oligonucleotide d(G4C2)3GGBrGG denoted AQU and NAN coexist in solution and ratio of their populations is determined by pH and rate of cooling when folding from thermally denatured state in the presence of K+ ions. CONCLUSIONS AQU is kinetically favored and forms by folding at low pH, while NAN is favored thermodynamically and at neutral pH. AQU and NAN share similar antiparallel topology with four G-quartets and three edgewise loops, however they exhibit distinct structural and dynamic properties. GENERAL SIGNIFICANCE Novel G-quadruplex topology adds insight into diverse polymorphism of DNA sequences comprising potentially pathological GGGGCC repeat. Relative populations of the two structures and their dependence on folding conditions contribute to understanding of factors that govern G-quadruplex folding. This article is part of a Special Issue entitled "Gquadruplex" Guest Editor: Dr. Concetta Giancola and Dr. Daniela Montesarchio.
Collapse
|
61
|
Kumar V, kashav T, Islam A, Ahmad F, Hassan MI. Structural insight into C9orf72 hexanucleotide repeat expansions: Towards new therapeutic targets in FTD-ALS. Neurochem Int 2016; 100:11-20. [DOI: 10.1016/j.neuint.2016.08.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 08/12/2016] [Accepted: 08/12/2016] [Indexed: 12/12/2022]
|
62
|
Abstract
The non-B DNA structures formed by short tandem repeats on the nascent strand during DNA replication have been proposed to be the structural intermediates that lead to repeat expansion mutations. Tetranucleotide TTTA and CCTG repeat expansions have been known to cause reduction in biofilm formation in Staphylococcus aureus and myotonic dystrophy type 2 in human, respectively. In this study, we report the first three-dimensional minidumbbell (MDB) structure formed by natural DNA sequences containing two TTTA or CCTG repeats. The formation of MDB provides possible pathways for strand slippage to occur, which ultimately leads to repair escape and thus expansion mutations. Our result here shows that MDB is a highly compact structure composed of two type II loops. In addition to the typical stabilizing interactions in type II loops, MDB shows extensive stabilizing forces between the two loops, including two distinctive modes of interactions between the minor groove residues. The formation of MDB enriches the structural diversity of natural DNA sequences, reveals the importance of loop-loop interactions in unusual DNA structures, and provides insights into novel mechanistic pathways of DNA repeat expansion mutations.
Collapse
Affiliation(s)
- Pei Guo
- Department of Chemistry, The Chinese University of Hong Kong , Shatin, New Territories, Hong Kong
| | - Sik Lok Lam
- Department of Chemistry, The Chinese University of Hong Kong , Shatin, New Territories, Hong Kong
| |
Collapse
|