51
|
Malla MA, Dubey A, Yadav S, Kumar A, Hashem A, Abd Allah EF. Understanding and Designing the Strategies for the Microbe-Mediated Remediation of Environmental Contaminants Using Omics Approaches. Front Microbiol 2018; 9:1132. [PMID: 29915565 PMCID: PMC5994547 DOI: 10.3389/fmicb.2018.01132] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 05/14/2018] [Indexed: 12/24/2022] Open
Abstract
Rapid industrialization and population explosion has resulted in the generation and dumping of various contaminants into the environment. These harmful compounds deteriorate the human health as well as the surrounding environments. Current research aims to harness and enhance the natural ability of different microbes to metabolize these toxic compounds. Microbial-mediated bioremediation offers great potential to reinstate the contaminated environments in an ecologically acceptable approach. However, the lack of the knowledge regarding the factors controlling and regulating the growth, metabolism, and dynamics of diverse microbial communities in the contaminated environments often limits its execution. In recent years the importance of advanced tools such as genomics, proteomics, transcriptomics, metabolomics, and fluxomics has increased to design the strategies to treat these contaminants in ecofriendly manner. Previously researchers has largely focused on the environmental remediation using single omics-approach, however the present review specifically addresses the integrative role of the multi-omics approaches in microbial-mediated bioremediation. Additionally, we discussed how the multi-omics approaches help to comprehend and explore the structural and functional aspects of the microbial consortia in response to the different environmental pollutants and presented some success stories by using these approaches.
Collapse
Affiliation(s)
- Muneer A Malla
- Department of Zoology, Dr. Harisingh Gour University, Sagar, India
| | - Anamika Dubey
- Metagenomics and Secretomics Research Laboratory, Department of Botany, Dr. Harisingh Gour University, Sagar, India
| | - Shweta Yadav
- Department of Zoology, Dr. Harisingh Gour University, Sagar, India
| | - Ashwani Kumar
- Metagenomics and Secretomics Research Laboratory, Department of Botany, Dr. Harisingh Gour University, Sagar, India
| | - Abeer Hashem
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Elsayed Fathi Abd Allah
- Department of Plant Production, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
52
|
Schwarz A, Adetutu EM, Juhasz AL, Aburto-Medina A, Ball AS, Shahsavari E. Microbial Degradation of Phenanthrene in Pristine and Contaminated Sandy Soils. MICROBIAL ECOLOGY 2018; 75:888-902. [PMID: 29080101 DOI: 10.1007/s00248-017-1094-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 10/15/2017] [Indexed: 06/07/2023]
Abstract
Phenanthrene mineralisation studies in both pristine and contaminated sandy soils were undertaken through detailed assessment of the activity and diversity of the microbial community. Stable isotope probing (SIP) was used to assess and identify active 13C-labelled phenanthrene degraders. Baseline profiling indicated that there was little difference in fungal diversity but a significant difference in bacterial diversity dependent on contamination history. Identification of dominant fungal and bacterial species highlighted the presence of organisms capable of degrading various petroleum-based compounds together with other anthropogenic compounds, regardless of contamination history. Community response following a simulated contamination event (14C-phenanthrene) showed that the microbial community in deep pristine and shallow contaminated soils adapted most to the presence of phenanthrene. The similarity in microbial community structure of well-adapted soils demonstrated that a highly adaptable fungal community in these soils enabled a rapid response to the introduction of a contaminant. Ten fungal and 15 bacterial species were identified as active degraders of phenanthrene. The fungal degraders were dominated by the phylum Basidiomycota including the genus Crypotococcus, Cladosporium and Tremellales. Bacterial degraders included the genera Alcanivorax, Marinobacter and Enterococcus. There was little synergy between dominant baseline microbes, predicted degraders and those that were determined to be actually degrading the contaminant. Overall, assessment of baseline microbial community in contaminated soils provides useful information; however, additional laboratory assessment of the microbial community's ability to degrade pollutants allows for better prediction of the bioremediation potential of a soil.
Collapse
Affiliation(s)
- Alexandra Schwarz
- Discipline of Biological Sciences, College of Science and Engineering, Flinders University, Adelaide, Australia
| | - Eric M Adetutu
- Medical Biotechnology, School of Medicine, Flinders University, Adelaide, Australia
| | - Albert L Juhasz
- Future Industries Institute, University of South Australia, Adelaide, Australia
| | - Arturo Aburto-Medina
- Centre for Environmental Sustainability and Remediation, School of Sciences, RMIT University, Bundoora, Australia
| | - Andrew S Ball
- Centre for Environmental Sustainability and Remediation, School of Sciences, RMIT University, Bundoora, Australia
| | - Esmaeil Shahsavari
- Centre for Environmental Sustainability and Remediation, School of Sciences, RMIT University, Bundoora, Australia.
| |
Collapse
|
53
|
Roberto AA, Van Gray JB, Leff LG. Sediment bacteria in an urban stream: Spatiotemporal patterns in community composition. WATER RESEARCH 2018; 134:353-369. [PMID: 29454907 DOI: 10.1016/j.watres.2018.01.045] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/04/2018] [Accepted: 01/20/2018] [Indexed: 05/25/2023]
Abstract
Sediment bacterial communities play a critical role in biogeochemical cycling in lotic ecosystems. Despite their ecological significance, the effects of urban discharge on spatiotemporal distribution of bacterial communities are understudied. In this study, we examined the effect of urban discharge on the spatiotemporal distribution of stream sediment bacteria in a northeast Ohio stream. Water and sediment samples were collected after large storm events (discharge > 100 m) from sites along a highly impacted stream (Tinkers Creek, Cuyahoga River watershed, Ohio, USA) and two reference streams. Although alpha (α) diversity was relatively constant spatially, multivariate analysis of bacterial community 16S rDNA profiles revealed significant spatial and temporal effects on beta (β) diversity and community composition and identified a number of significant correlative abiotic parameters. Clustering of upstream and reference sites from downstream sites of Tinkers Creek combined with the dominant families observed in specific locales suggests that environmentally-induced species sorting had a strong impact on the composition of sediment bacterial communities. Distinct groupings of bacterial families that are often associated with nutrient pollution (i.e., Comamonadaceae, Rhodobacteraceae, and Pirellulaceae) and other contaminants (i.e., Sphingomonadaceae and Phyllobacteriaceae) were more prominent at sites experiencing higher degrees of discharge associated with urbanization. Additionally, there were marked seasonal changes in community composition, with individual taxa exhibiting different seasonal abundance patterns. However, spatiotemporal variation in stream conditions did not affect bacterial community functional profiles. Together, these results suggest that local environmental drivers and niche filtering from discharge events associated with urbanization shape the bacterial community structure. However, dispersal limitations and interactions among other species likely play a role as well.
Collapse
Affiliation(s)
- Alescia A Roberto
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA.
| | - Jonathon B Van Gray
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA.
| | - Laura G Leff
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA.
| |
Collapse
|
54
|
Meneghine AK, Nielsen S, Varani AM, Thomas T, Carareto Alves LM. Metagenomic analysis of soil and freshwater from zoo agricultural area with organic fertilization. PLoS One 2017; 12:e0190178. [PMID: 29267397 PMCID: PMC5739480 DOI: 10.1371/journal.pone.0190178] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 12/08/2017] [Indexed: 01/27/2023] Open
Abstract
Microbial communities drive biogeochemical cycles in agricultural areas by decomposing organic materials and converting essential nutrients. Organic amendments improve soil quality by increasing the load of essential nutrients and enhancing the productivity. Additionally, fresh water used for irrigation can affect soil quality of agricultural soils, mainly due to the presence of microbial contaminants and pathogens. In this study, we investigated how microbial communities in irrigation water might contribute to the microbial diversity and function of soil. Whole-metagenomic sequencing approaches were used to investigate the taxonomic and the functional profiles of microbial communities present in fresh water used for irrigation, and in soil from a vegetable crop, which received fertilization with organic compost made from animal carcasses. The taxonomic analysis revealed that the most abundant genera were Polynucleobacter (~8% relative abundance) and Bacillus (~10%) in fresh water and soil from the vegetable crop, respectively. Low abundance (0.38%) of cyanobacterial groups were identified. Based on functional gene prediction, denitrification appears to be an important process in the soil community analysed here. Conversely, genes for nitrogen fixation were abundant in freshwater, indicating that the N-fixation plays a crucial role in this particular ecosystem. Moreover, pathogenicity islands, antibiotic resistance and potential virulence related genes were identified in both samples, but no toxigenic genes were detected. This study provides a better understanding of the community structure of an area under strong agricultural activity with regular irrigation and fertilization with an organic compost made from animal carcasses. Additionally, the use of a metagenomic approach to investigate fresh water quality proved to be a relevant method to evaluate its use in an agricultural ecosystem.
Collapse
Affiliation(s)
- Aylan K. Meneghine
- Department of Technology, São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Jaboticabal, São Paulo State, Brazil
| | - Shaun Nielsen
- Centre for Marine Bio-Innovation, University of New South Wales, Sydney, New South Wales, Australia
| | - Alessandro M. Varani
- Department of Technology, São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Jaboticabal, São Paulo State, Brazil
| | - Torsten Thomas
- Centre for Marine Bio-Innovation, University of New South Wales, Sydney, New South Wales, Australia
- School of Biological, Earth and Environmental Science, University of New South Wales, Sydney, New South Wales, Australia
| | - Lucia Maria Carareto Alves
- Department of Technology, São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Jaboticabal, São Paulo State, Brazil
| |
Collapse
|
55
|
Influences of anthropogenic land use on microbial community structure and functional potentials of stream benthic biofilms. Sci Rep 2017; 7:15117. [PMID: 29118402 PMCID: PMC5678132 DOI: 10.1038/s41598-017-15624-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 10/30/2017] [Indexed: 12/19/2022] Open
Abstract
Stream ecosystems are the primary receivers of nutrient and organic carbon exported from terrestrial ecosystems and are profoundly influenced by the land use of the surrounding landscape. The aquatic impacts of anthropogenic land use are often first observed in stream benthic biofilms. We studied the benthic biofilms in streams flowing through forest (upstream) and anthropogenic land use (downstream) areas in southwestern China. The results showed that anthropogenic land use increased nutrient and organic carbon in both stream water and benthic biofilms, which are closely related to the differences in the microbial communities. The taxonomic dissimilarity of the communities was significantly correlated with the functional gene dissimilarity, and the upstream sites had more distinct functional genes. Network analysis showed that upstream sites had more highly connected microbial networks. Furthermore, downstream sites had higher relative abundances of anammox and denitrification suggesting stronger nitrogen removal than upstream sites. Increased nutrients in both the stream water and biofilms caused by anthropogenic land use had severe impacts on the nitrogen cycle in stream ecosystems. Downstream sites also had stronger carbon metabolism than upstream sites. This study provides insights into the influences of anthropogenic land use on microbial community structure and functions of stream benthic biofilms.
Collapse
|
56
|
Borowik A, Wyszkowska J, Wyszkowski M. Resistance of aerobic microorganisms and soil enzyme response to soil contamination with Ekodiesel Ultra fuel. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:24346-24363. [PMID: 28890995 PMCID: PMC5655587 DOI: 10.1007/s11356-017-0076-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 09/01/2017] [Indexed: 05/04/2023]
Abstract
This study determined the susceptibility of cultured soil microorganisms to the effects of Ekodiesel Ultra fuel (DO), to the enzymatic activity of soil and to soil contamination with PAHs. Studies into the effects of any type of oil products on reactions taking place in soil are necessary as particular fuels not only differ in the chemical composition of oil products but also in the composition of various fuel improvers and antimicrobial fuel additives. The subjects of the study included loamy sand and sandy loam which, in their natural state, have been classified into the soil subtype 3.1.1 Endocalcaric Cambisols. The soil was contaminated with the DO in amounts of 0, 5 and 10 cm3 kg-1. Differences were noted in the resistance of particular groups or genera of microorganisms to DO contamination in loamy sand (LS) and sandy loam (SL). In loamy sand and sandy loam, the most resistant microorganisms were oligotrophic spore-forming bacteria. The resistance of microorganisms to DO contamination was greater in LS than in SL. It decreased with the duration of exposure of microorganisms to the effects of DO. The factor of impact (IFDO) on the activity of particular enzymes varied. For dehydrogenases, urease, arylsulphatase and β-glucosidase, it had negative values, while for catalase, it had positive values and was close to 0 for acid phosphatase and alkaline phosphatase. However, in both soils, the noted index of biochemical activity of soil (BA) decreased with the increase in DO contamination. In addition, a positive correlation occurred between the degree of soil contamination and its PAH content.
Collapse
Affiliation(s)
- Agata Borowik
- Department of Microbiology, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-727 Olsztyn, Poland
| | - Jadwiga Wyszkowska
- Department of Microbiology, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-727 Olsztyn, Poland
| | - Mirosław Wyszkowski
- Department of Environmental Chemistry, University of Warmia and Mazury in Olsztyn, Plac Łódzki 4, 10-727 Olsztyn, Poland
| |
Collapse
|
57
|
Liu Q, Tang J, Liu X, Song B, Zhen M, Ashbolt N. Response of microbial community and catabolic genes to simulated petroleum hydrocarbon spills in soils/sediments from different geographic locations. J Appl Microbiol 2017; 123:875-885. [DOI: 10.1111/jam.13549] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 06/30/2017] [Accepted: 07/12/2017] [Indexed: 11/29/2022]
Affiliation(s)
- Q. Liu
- College of Environmental Science and Engineering; Nankai University; Tianjin China
| | - J. Tang
- College of Environmental Science and Engineering; Nankai University; Tianjin China
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education); Tianjin China
- Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation; Tianjin China
| | - X. Liu
- College of Environmental Science and Engineering; Nankai University; Tianjin China
| | - B. Song
- College of Environmental Science and Engineering; Nankai University; Tianjin China
| | - M. Zhen
- College of Environmental Science and Engineering; Nankai University; Tianjin China
| | - N.J. Ashbolt
- School of Public Health; University of Alberta; Edmonton AB Canada
| |
Collapse
|
58
|
Behrendorff JBYH, Gillam EMJ. Prospects for Applying Synthetic Biology to Toxicology: Future Opportunities and Current Limitations for the Repurposing of Cytochrome P450 Systems. Chem Res Toxicol 2016; 30:453-468. [DOI: 10.1021/acs.chemrestox.6b00396] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | - Elizabeth M. J. Gillam
- School
of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Brisbane 4072, Australia
| |
Collapse
|
59
|
Tanveer A, Yadav S, Yadav D. Comparative assessment of methods for metagenomic DNA isolation from soils of different crop growing fields. 3 Biotech 2016; 6:220. [PMID: 28330292 PMCID: PMC5061652 DOI: 10.1007/s13205-016-0543-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 10/04/2016] [Indexed: 11/26/2022] Open
Abstract
The isolation of good quality metagenomic DNA from diverse soil, in appreciable amount, is a prerequisite for metagenomics. The availability of commercial kits for isolation of genomic DNAs from soil has drastically expedited the application of metagenomics approach for identifying novel sources of industrially important enzymes. The quantitative and qualitative assessment of metagenomic DNA isolated using either the manual method or the kit-based method should be performed prior to its use in downstream applications. The metagenomic DNA isolated from six different soil samples, using three methods, were analyzed in terms of yield, quality and downstream application as template for PCR amplification. The yield of DNA was approximately 3.52, 7.35, and 232.42 μg of DNA per gram of soil sample for the kit-based method, kit-modified method, and manual method, respectively. The manual method seems to be promising based on better yield and lesser humic acid content than the other two methods. The maximum yield was obtained in the soil collected from teak forest with all the three methods, indicating maximum microbial content and diversity. Furthermore, in terms of its suitability as template DNA for PCR amplification using 16S RNA primer, all methods are equally well. Thus, comparative assessment of three methods revealed suitability of manual method based on DNA yield and humic acid content, which could be important for many downstream applications like library preparations during metageomics approach.
Collapse
|
60
|
Yang S, Wen X, Shi Y, Liebner S, Jin H, Perfumo A. Hydrocarbon degraders establish at the costs of microbial richness, abundance and keystone taxa after crude oil contamination in permafrost environments. Sci Rep 2016; 6:37473. [PMID: 27886221 PMCID: PMC5122841 DOI: 10.1038/srep37473] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 10/11/2016] [Indexed: 01/07/2023] Open
Abstract
Oil spills from pipeline ruptures are a major source of terrestrial petroleum pollution in cold regions. However, our knowledge of the bacterial response to crude oil contamination in cold regions remains to be further expanded, especially in terms of community shifts and potential development of hydrocarbon degraders. In this study we investigated changes of microbial diversity, population size and keystone taxa in permafrost soils at four different sites along the China-Russia crude oil pipeline prior to and after perturbation with crude oil. We found that crude oil caused a decrease of cell numbers together with a reduction of the species richness and shifts in the dominant phylotypes, while bacterial community diversity was highly site-specific after exposure to crude oil, reflecting different environmental conditions. Keystone taxa that strongly co-occurred were found to form networks based on trophic interactions, that is co-metabolism regarding degradation of hydrocarbons (in contaminated samples) or syntrophic carbon cycling (in uncontaminated samples). With this study we demonstrate that after severe crude oil contamination a rapid establishment of endemic hydrocarbon degrading communities takes place under favorable temperature conditions. Therefore, both endemism and trophic correlations of bacterial degraders need to be considered in order to develop effective cleanup strategies.
Collapse
Affiliation(s)
- Sizhong Yang
- State Key Laboratory of Frozen Soils Engineering (SKLFSE), Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences (CAS), Lanzhou, 730000, China.,GFZ German Research Centre for Geosciences, Helmholtz Centre Potsdam, Section 5.3 Geomicrobiology, Telegrafenberg, 14473 Potsdam, Germany
| | - Xi Wen
- GFZ German Research Centre for Geosciences, Helmholtz Centre Potsdam, Section 5.3 Geomicrobiology, Telegrafenberg, 14473 Potsdam, Germany.,College of Electrical Engineering, Northwest University for Nationalities, Lanzhou, 730030, China
| | - Yulan Shi
- State Key Laboratory of Frozen Soils Engineering (SKLFSE), Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences (CAS), Lanzhou, 730000, China
| | - Susanne Liebner
- GFZ German Research Centre for Geosciences, Helmholtz Centre Potsdam, Section 5.3 Geomicrobiology, Telegrafenberg, 14473 Potsdam, Germany
| | - Huijun Jin
- State Key Laboratory of Frozen Soils Engineering (SKLFSE), Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences (CAS), Lanzhou, 730000, China
| | - Amedea Perfumo
- GFZ German Research Centre for Geosciences, Helmholtz Centre Potsdam, Section 5.3 Geomicrobiology, Telegrafenberg, 14473 Potsdam, Germany
| |
Collapse
|